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A Simple Power-Law Tail Estimation of Financial Stock Return
(Penganggaran Hukum-Kuasa Taburan Hujung terhadap Pulangan Saham Kewangan)

CHIN WEN CHEONG*, ABU HASSAN SHAARI MOHD NOR & ZAIDI ISA

Abstract

This study proposes a simple methodology to estimate the power-law tail index of the Malaysian stock exchange by using 
the maximum likelihood Hill’s estimator. Recursive procedures base on empirical distribution tests are use to determine 
the threshold number of observations in the tail estimation. The threshold extreme values can be selected bases on the 
desired level of p-value in the goodness-of-fit tests. Finally, these procedures are apply to three indices in the Malaysian 
stock exchange. 
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Abstrak

Kajian ini bertujuan menganggarkan indeks hukum kuasa taburan hujung ke atas bursa saham Malaysia dengan 
menggunakan penganggar Hill. Prosedur rekursif berdasarkan ujian taburan empirik digunakan untuk menentukan nombor 
ambang bagi pencerapan di dalam penganggaran hujung. Nilai ambang melampau dipilih berdasarkan kepada aras nilai-p 
ujian ketepatan padanan. Akhir sekali, prosedur ini dilaksanakan ke atas tiga indek di bursa saham Malaysia. 

Kata kunci: Bursa saham; penganggar Hill; taburan hukum-kuasa; ujian ketepatan padanan

Introduction

The power-law distribution (Lux 2001) has successfully 
described the extreme variations of financial time series 
(Bauchaud 2001; Lux 1996; Sarah 2000) which includes 
the stock price changes, volume as well as volatility decay 
distributions. From economic point of view, the major 
advantage of these findings provides good understanding 
on how the extreme asset prices behave under a particular 
equity market. Especially in risk management (Sarah  
2000), the extreme swings in the asset prices have 
major impacts to the derivatives hedging and portfolio 
management. Besides the power-law distribution in the 
extreme tail, the upper and lower tails are also often 
observe to be asymmetry (Giot, 2004; Lambert & Laurent, 
2001) in the financial time series. This phenomenon is 
very important in risk analysis where the different assets 
financial positions over a given time period relies seriously 
on the tail behaviours. 
	 In this study, we use the percentage continuously 
compounded price changes (return): rt = (pt – pt–1) × 100%, 
where pt denotes the natural logarithm of a particular index 
at time t. The Pareto power-law distribution is a simple 
and useful model to provide a good fit for the empirical 
stock return distribution. Given R observations in a return 
series, the cumulative distribution for Pareto’s law, F(rt; 
r(min), α) = 1 – (r(min)/rt)

α, where 0<r(min)<rt is the threshold 
value of the subset of R observations and α>0 denotes the 
shape parameter. In practice, the fit between the empirical 
and theoretical distributions is often perform by judging 
the degree of linearity (under the ordinary least squared 

estimation) in a double logarithmic graphical method 
by using the ordinary least squared estimates. Others 
suggested R0.6 (Hall 1990) or the ratio n/R ~0.5%- 1.0% 
(Franke et al. 2004) as the threshold observations that 
should included in the tail estimation. In general, these 
approaches encounter drawbacks of less subjectiveness 
(Goldstein et al. 2004) in selecting the threshold value. 
If a non-optimal (too large or small) threshold value has 
been used, the estimations might cause inaccurate, bias 
and large variance estimators. However, the maximum 
likelihood estimator in general provids more accurate 
and robust estimates (Goldstein et al. 2004) than the 
geometrical method. The optimal threshold selection issue 
has received great attention from researchers. However, 
there is no consensus of one particular methodology that 
out-performs others. For example, Clementi et al. (2006) 
proposed a subsample semi-parametric bootstrap procedure 
to minimize the variance estimator to obtain the threshold 
value, while Coronel-Brizio and Hernandez-Montoya 
(2005) used the empirical distributed function to identify 
the best threshold in the Pareto-Levy distribution. In 
general, recursive procedures are necessary to obtain the 
threshold in a more objective manner. 
	 In the analysis of Malaysian stock equity market, 
the proposed method is based on the graphical plots and 
goodness-of-fit statistics. In order to compromise the trade-
off of sample size and mean square error of the estimators, 
the selection of threshold relies on the p-value of the null 
hypothesis test that give by the goodness-of-fit statistics. 
The p-value approach has the advantage to provide a 
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reference (in term of probability) to observe how well the 
empirical and theoretical distributions are fit. For example, 
one must avoid choosing the threshold when the p-value is 
either merely ‘rejected’ or ‘do not reject’ conclusion, even 
though one more observations can be included in the tail 
estimation to reduce the standard error. A series of steps is 
introduces to provide the threshold and Pareto distribution 
for both the upper and lower tails. For the purpose of 
illustrations, three indices namely, the Composite Index 
(CI), Finance Index (FIN) and Plantation (PLN) from 1987 
to 2007 will be considered in the analyses. 

Methodology

(α +1) where l(α, r(1)) is monotonically increasing 

with r(1). Finally, the estimated α can be obtained by using 
the analytic partial derivative approach:
	 	
							       (1)
			 

Step 3:Use quantile-quantile plot and goodness-of-fit tests 
to diagnose the fitted distribution.
The goodness-of-fit tests follow the null and alternative 
hypotheses as follows:

	 H0:	 Both the empirical distribution, F1(x) and Pareto 
distribution, F0(x) are identical;

	 H1:	 H0 is not true.

	 Both the quadratic statistics are define as the modified 
Cramer-von Misses statistic (W2) and Watson statistic (U2) 
as below: 

	

	

	 (2)

where r(n) is the largest observation and [F1(r(i)) – F0(r(i))]
2 

P0(r(i)) is weighted by a function Ψ(x) = 1. If the quadratic 
deviations between the F1 and F0 are large, most likely the 
two sample cumulative distribution come from different 
populations. 

Step 4: Determine the threshold, n.
If both the W2 and U2 statistics fail to reject the null 
hypotheses at p-value = αthreshold, stop the computation and 
the threshold n is obtains. Else go to Step 1 with (N−1) 
observations. 

	 These procedures are also apply to the lower tail 
distribution (negative extreme returns) because the non-
negative return can be obtained by a simple sign change.

Empirical application: the Malaysian
stock exchange return distribution

Preliminary analysis

Table 1 summarises the descriptive statistics for all the 
return series as well as two simulated normal and student-t 
distributions. It is evidenced that all the returns series 
have nearly zero mean and standard deviation around 
1.50. Excess kurtosis clearly indicates across the market 
indices with the maximum of 43.32 (CI) and minimum 
5.63 (IND), respectively. The joint tests of skewness 
(0 for normal distribution) and kurtosis (3 for normal 
distribution) in Jacque-Bera statistics indicate all the 
indices are significantly violate from a normal distribution. 

Figure 1. Flow chart
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	 The flow chart in Figure 1 summarises the work-flow 
and the formal procedures are illustrate as follows: 
	 Let r(min) = r(1) ≤ r(2) ≤ … ≤ r(n) represents a subset of 
n order statistic of the R observations with the threshold, 
r(min): 
 
Step 1:Initiate the model fitting with T observations 
using the non-negative order statistics The sample size 
initialisation can be obtained by using the number of 
observations (outliers) that exceed Q3+3IQR (where Q3 
and IQR are the upper quartile and interquartile range 
respectively).

Step 2: Evaluate the estimates of the Pareto’s parameters 
using the Hill’s estimator.
The tail behaviour can be estimated using the Hill’s 
estimator (Hill 1975) with the underlying Pareto type or 
approximate to Pareto distribution. The log likelihood 
function can be expressed as l(α, r(1)) = nlnα + nαlnr(1) – 
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In addition, the slow decaying tails can be observed through 
the kernel density estimates. In Figure 2, the kernel density 

is estimates by , where T is the total
 

number of observations, h is the bandwidth and φ(·) 
function of standard normal distribution.

 

 Empirical analysis of KLCI

For illustration purposes, only the KLCI index is shown, 
while the other indices are analyze in a similar manner. 
There are total of 4855 observations starting from year 6th 
Jan 1987 to 31st Dec 2007. The empirical analysis explains 
the step-by-step procedures as follows:

Step 1:Initiate the model fitting with N observations using 
the non-negative order statistics 
The estimated upper quartile and lower quartile are 
0.6028 and -0.5367 respectively with approximately 50 
observations exceed Q3+3IQR. Therefore, the initial 
sample size starts with N=50. One may start the calculation 
bases on the simple rule of thumb method where firstly, 
the 0.5% of n/R is approximately 242 and secondly, the 
R0.6 is around 162 for the n. 

Step 2: Evaluate the estimates of the Pareto’s parameters 
using the Hill’s estimator.
Under the maximum likelihood estimation, the following 
parameters estimates with standard errors quote in the 
squared brackets

	
which are both significant at 5% level of significance.

Step 3:Use quantile-quantile plot and goodness-of-fit tests 
to diagnose the fitted distribution.
Firstly, the Q-Q plot in Figure 3 indicates both the series 
lie on a straight line. Under the null hypothesis where both 
the empirical distribution and specified Pareto distribution 
are identical, the following results are obtained:
	 Statistically, both the goodness-of-fit statistics fail to 
reject the null hypothesis.
	
Step 4: Determine the threshold, n
Says, we has selected p-value = pthreshold ~0.100. Since the 
p-values are above the pthreshold, the computation is proceeds 
to Step 1 with 50+1 data in the following estimation.

KLCI FIN IND NORMAL STUDENT-t (4)

Mean 0.0346 0.0411 0.1474 0.0333 -0.0086

Median 0.0429 0.0313 0.2195 0.0390 -0.0247

Maximum 20.817 22.627 5.6437 4.8986 13.390

Minimum -24.153 -24.835 -5.0989 -5.0477 -8.7924

Std. Dev. 1.4829 1.7386 1.4386 1.4728 1.4013

Skewness 0.2872 0.4803 -0.0978 -0.0014 0.4963

Kurtosis 43.3266 36.6967 5.6316 2.9896 10.0374

Jarque-Bera 329041* 229882* 81.1712* 0.0234 10218*

Table 1. Statistics summary

Note: * denotes the 5% significance level.

Figure 2. Kernel density plots for KLCI, FIN and IND return series

	 (a)	 (b)
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	 A summary of the threshold, n selection in the Hill’s 
estimator is shown in Figure 4. The plot depicts the 
outcomes of both the W2 and U2 statistics for the KLCI 
index associate with the Hill’s estimations. The measure 
of discrepancy indicated consistent growth in both the test 
statistics after the threshold, n exceeded 270. However, 
the choice of the threshold is bases on the pthreshold, which 
falls at the 273th descending order statistics. As show in 
Table 3, the threshold, n is selects as 273 since both the 
test statistics indicate nearest to pthreshold.
	 Base on the extreme outliers observations, Table 4 
shows that the estimated shape parameters (αs) which 
are all exceed 2 for both the upper and lower tails and 
indicate the presence of finite means and variances whereas 
the moments of order higher than 2 are unbounded. 
According to Loretan and Phillips (1994), not necessary 
all the moment higher than 2, such as kurtosis is finite. The 
positive estimated α implies that the tails on both tails of 
the innovation distributions are heavy.
	 For thickness comparison of upper and lower tails, 
three indices (KLCI, FIN and IND) indicate slightly heavier 
tails at the upper tails where the smaller the shape 
parameter (α), the heavier the density mass of the tail. The 
asymmetric distributed tails provide useful information to 
the market participants who involve in portfolio investment 
or risk management analysis. For example in market risk 

Figure 3. QQ plot between KLCI return series 
against Pareto distribution

Note: the dotted line indicates one of the test statistic (W2 and U2) exceeds pthreshold 
= 0.100

Table 2. Goodness-of-fit test

Method Test statistic p-value
W2 0.0499 0.7288
U2 0.0396 0.7688

Threshold, n Method Test statistic p-value r(min) α

273 W2 0.1496 0.1463 1.8483 (0.0031) 2.2103 (0.1355)

U2 0.0955 0.2186

274 W2 0.1838 0.0872 1.837556 (0.0031) 2.1902(0.1340)

U2 0.1138 0.1424
	

Table 3. Threshold selection for KLCI

Note: The value in the parenthesis denotes the standard error.

Figure 4. goodness-of-fit statistics (W2 and U2) versus value of threshold (n) for KLCI
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determination bases on Value-at-Risk (Jorion 2002), the 
FIN market suggests that short trading (upper tail) might 
encounter higher risk as compare to long trading (lower 
tail) investments for all the indices. 

Conclusion

This study proposes an objective method for fitting the 
power-law distribution to extreme variations in Malaysian 
stock indices. This methodology empirically shows that 
the goodness-of-fit statistics (W2 and U2) can be used 
to determine the optimal threshold parameter more 
subjectively than the simple rule of thumb method. From 
economic viewpoint, the estimated Pareto’s tail index of 
return distribution is expects to help the investors in market 
risk determination where large amount of money can be 
lost due to failure of underestimating the market risks.
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