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Power Divergence Statistics under Quasi Independence 
Model for Square Contingency Tables

(Statistik Pencapahan Kuasa Model Kuasi Ketakbersandaraan untuk Jadual Kontingensi Segi Empat Sama)

SERPIL AKTAŞ*

ABSTRACT

In incomplete contingency tables, some cells may contain structural zeros. The quasi-independence model, which is 
a generalization of the independence model, is most commonly model used to analyze incomplete contingency tables. 
Goodness of fit tests of the quasi-independence model are usually based on Pearson chi square test statistic and likelihood 
ratio test statistic. In power divergence statistics family, the selection of power divergence parameter is of interest in 
multivariate discrete data. In this study, a simulation study is conducted to evaluate the performance of the power 
divergence statistics under quasi independence model for particular power divergence parameters in terms of power values.
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ABSTRAK

Dalam jadual kontingensi tidak lengkap, sesetengah sel boleh mengandungi struktur sifar. Model kuasi ketakbersandaran 
yang merupakan suatu generalisasi daripada model ketakbersandaran adalah model yang paling biasa digunakan 
untuk menganalisis jadual kontingensi yang tidak lengkap. Ujian kebagusan penyuaian model kuasi ketakbersandaran 
biasanya berdasarkan statistik ujian khi kuasa dua Pearson dan ujian statistik nisbah kebolehjadian. Dalam keluarga 
statistik pencapahan kuasa, pemilihan parameter pencapahan kuasa adalah penting dalam data diskret multivariat. 
Dalam penyelidikan ini, suatu kajian simulasi dijalankan untuk menilai prestasi statistik pencapahan kuasa di bawah 
parameter model kuasi ketakbersandaran untuk parameter pencapahan kuasa daripada segi nilai kuasa tertentu. 

Kata kunci: Jadual kontinjensi segi empat sama; kuasa keluarga pencapahan; struktur sifar

INTRODUCTION

For the contingency tables, we are interested in whether the 
variables are independent of one another. For incomplete 
contingency tables, structural zeros occur where the cells 
are theoretically impossible to observe a value. A cell with 
a structural zero has an expected value of zero. Therefore, 
they do not contribute to the likelihood function or model 
fitting. A contingency table containing structural zeros is 
referred as an incomplete table. Therefore, the usual chi-
square tests cannot be applied directly (Bishop et al. 1975; 
Fienberg 1980; Haberman 1979). Quasi independence 
(QI) model gives better fit than ordinary independence 
model. Goodness-of-fit tests summarize the discrepancy 
between the observed values and the expected values 
under the model. The primary problem is specification 
of the most suitable test statistic when implementing the 
test. Studies indicate that none of the test statistics has a 
clear advantage over any others. The results also suggested 
that none of the test statistics completely dominate the 
other and that the choice of which test to use depends 
on the nature of the alternative hypothesis. Although all 
the members of the family of power-divergence statistics 
converge asymptotically to a chi-square distribution, 
their small-sample accuracy is not guaranteed. Read and 
Cressie (1988) presented an approach to goodness-of-

fit testing in multinomial models through the family of 
power divergences. Cressie and Read (1984) suggested 
an alternative to the Pearson-based and the likelihood 
ratio-based test statistics, in terms of both exact and 
asymptotic size and power. Despite the broad family of 
power-divergence statistics, the likelihood ratio statistic 
is treated as if the only alternative to Pearson’s X2 statistic 
for testing independence or homogeneity in analysis of 
contingency table (García-Pérez & Núñez-Antón 2009). 
	 This paper aimed to compare the power divergence 
statistics for various λ values with respect to their power 
values under the QI model in square contingency tables 
where observations are cross-classified by two variables 
with the same categories. In square contingency tables, on 
diagonal cells often lack of fit of the independence model. 
The hypothesis might be whether the rest of the table 
satisfies the independence model off diagonal cells. This 
leads to the quasi-independence model which fits much 
better than independence. A square table satisfies quasi-
independence if the row and and column variables are 
independent of each other in off-diagonal cells. We herein 
only concentrate on the QI model. We will illustrate the 
results of comparative analysis of the power of goodness-
of-fit tests on a simulation study. An illustrative example 
of unaided vision data set is analyzed as well. 
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POWER DIVERGENCE FAMILY

Cressie and Read (1984) developed a class of goodness-
of-fit test statistics referred the family of power divergence 
statistics. All members of the statistics are particular 
members of the power divergence family. The divergences 
within this family are indexed by a single parameter λ ∈ . 
Let Xi denote a random vector of counts having multinomial 
distribution;  the maximum likelihood estimator (MLE) of 
p under H0 ; n is the total number of observation. 
	 For various λ values, power divergence statistics are 
defined as: 

For λ = 1 , Pearson’s X2 :

	 PD(1) = 	 (1)
 	  
						       	
for λ = 0, Likelihood ratio, G2 :

	 PD(0) =  	 (2)

for λ = -1/2, Freeman-Tukey’s F2 :

	 PD(-1/2) =  		  (3)

for λ = -1, Neyman’s modified X2 :

	 PD(-1) = 	 (4)

for λ =-2, modified G2:

	 PD(-2) =  . 	  (5)

Lawal (1993) proposed a version of test:
 

	 T2 = 	 	  (6)

Zelterman (1987) proposed the test statistics below,

	 T2 =	 	  (7)

where, 

	 D2 = 

	 Cressie and Read (1984) claimed that λ =2/3 is a very 
good choice between X2 (λ = 1) and G2 (λ = 0) for testing 
whether the observed multinomial variables are sufficiently 
close to their null expected values.

	 PD(λ) = 2N 	 (8)

	

	 All statistics given above are distributed as chi-square 
distribution with k-1 degrees of freedom under H0. 
	 Assume that number of cells fixed, the multinomial 
probabilities π0i are completely specified (λ≠0, -1). 

	
	 2nIλ 

Writing Vi =  and expanding in a Taylor series, 

	

	 Under the model Ho.
 A similar results hold for λ=0, -1 

by a Taylor series expansion. 

	 2nIλ  + 0p(1); l∈.	

	 Thus each power divergence statistic has asymptotically 
has the Pearson chi-squared distribution with k-1 degrees 
of freedom under the null hypothesis (Cressie & Read 
1984). Although all the members of the family of power-
divergence statistics converge asymptotically to a chi-
square distribution but, their small-sample accuracy has 
not been guaranteed in the studies.

PENALIZED POWER DIVERGENCE FAMILY

In addition to the various models referred to previously, 
Basu and Basu (1998) considered the empty cell penalty 
for the family of power-divergence measures. 
	 This penalty yields a weight on the empty cells in 
contingency tables by the family of power-divergence 
measures,

	

	
	 (9)
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	 (10)

where h represents the penalty weight. 
	 The left side of the equations corresponds to the 
nonempty cells. 

 has an asymptotic chi-squared distribution with 
k-1 degrees of freedom under the null hypothesis. 

TESTING INDEPENDENCE FOR ORDINAL DATA

When the variables of interest are ordinal in nature, then 
we would better to reflect this ordinal nature of the variable 
in appropriate modeling techniques (Lawal 2003). Pearson 
and Likelihood chi-squares do not take into account any 
ordering in the classification (Bishop et al. 1975). If the 
ordering of the rows or columns in the table is interchanged, 
the value of the statistics is expected not to change. When 
rows and/or columns of classification are ordered, more 
powerful tests exist and more information can be attained 
from the data structure using these tests. Mantel-Haenszel 
chi-square is one of the alternatives for analyzing ordered 
categorical data. 

MANTEL-HAENSZEL CHI-SQUARE

Suppose a RxR contingency table having ordinal row and 
column variables. We test the null hypothesis of linear 
association such as,

	 H0: No linear association. 

	 Mantel-Haenszel chi-square, also called the Mantel-
Haenszel test for linear association or linear by linear 
association chi-square, unlike ordinary and likelihood ratio 
chi-square, is an ordinal measure of significance. Under the 
Ho is true, M2 has approximately chi-square distribution 
with one degree of freedom (Agresti 2002). 
	 Mantel-Haenszel chi-square is defined by:

				     				  
	 M2 = 	 (11) 

where LL, Σi Σjuivjnij. Expected value and variance of LL 
can be calculated as:

	 E(LL) =  	 (12)

	 Var(LL) = 
	

(13)

	 When dealing with ordinal data and when there is a 
positive or negative linear association between variables, 
M2 has power advantage over X2 and G2 can be defined as,

	 M2 = (n – 1)r2.
	
	 The formula for the linear-by-linear association 
involves the Pearson product-moment correlation 
coefficient, r and the total number of cases, n. 

	 r =   	 (14)

 is approximately distributed as N(0,1). 

QUASI-INDEPENDENCE MODEL

The QI model is a generalization of the model of 
independence for a two-dimensional contingency table 
(Goodman 1968). It states that a particular subset of cells 
satisfies the independence structure. It is often used for 
square tables in which the cells are not falling on the main 
diagonal (Goodman 1979; Ireland et al. 1965; McCullagh 
1978). The QI model is represented as log-linear form as,

	 log mij = μ + λi
X + λj

Y + δ I(i = j).	 (15)

	 I(i = j) =  

The likelihood equations,
	
	

	 	 i,j=1,…,R.

πij denoting the probability that an observation falls in 
the ith row and jth column of the table. QI hypothesis is 
written as,

	 H0: pij =αi βj .. 	 (16)

	 As a discrepancy measure from the hypothesis of 
quasi-independence, we use the likelihood ratio statistic,

					     			 
	 G2 = 2 	  (17)

where  is the MLE of the expected parameter mij.
	 Degrees of freedom for testing the null hypothesis 
of QI model would be (R-1)(R-1) - # of strucural zeros 
(Goodman 1968). We shall employ QI model for analysis 
of square contingency tables which contain structural zeros 
on the main diagonal. 
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SIMULATION STUDY

Random samples were drawn under bivariate normal 
distribution, then the random numbers were transformed 
into contingency tables with equal-interval frequency 
tables. The normal distribution parameters are assigned as: 
µ1=µ2=25 ; σ1 = σ2 = 1; ρ = 0.90. Sample sizes are set to 
N=100 ; 500 ; 1000. Dimensions of tables are assigned as 
R=3, 5 and 8. For each table, power divergence statistics, 
penalized divergence statistics and M2 were calculated. 
Power-divergence goodness-of-fit statistics were compared 
in terms of power under different index parameters under 
QI model. The power of a test which is defined as ‘the 
probability of rejecting the null hypothesis given that 
the alternative hypothesis is true’ is calculated. Note that 
the entries on the main diagonal are considered as the 
structural zeros.
	 An example of the simulated tables of size 100 and 
r≠0 is given in Table 1.

TABLE 1. An 5×5 simulated table

X/Y 1 2 3 4 5

1 26 19 1 0 7

2 2 11 5 3 4

3 0 1 6 6 0

4 0 0 0 4 1

5 1 1 0 0 2

	 Power divergence statistics for Table 1 under QI model 
are displayed in Table 2. Except Neyman’s modified chi-
square, all statistics are statistically significant. One would 
expect to reject the null hypothesis in accordance with the 
high correlation structure. 

TABLE 3. Power of tests under QI model, n=100

Dimension

Power divergence
statistics

3 5 8

λ=1 0.616699 0.693148 0.590650
λ=0 0.611792 0.649621 0.541102
λ=1a 0.553765 0.540096 0.535649
λ=1b 0.574813 0.582186 0.550867
λ=-1/2 0.369101 0.308677 0.375487
λ=-1 0.633919 0.670489 0.538411
λ=-2 0.666222 0.654866 0.607676
λ=2/3 0.549850 0.548449 0.544504
λ=1 0.749237 0.751568 0.64968
λ =2 0.727064 0.717762 0.63107

Mantel-Haenszel test

M2 0.725160 0.725440 0.684419

TABLE 2. Power divergence statistics under the QI model

The power divergence statistics df Values
Pearson’s X2 11 45.51*

Likelihood ratio, G2 11 37.18*

Freeman-Tukey’s F2 11 48.53*

Neyman’s modified X2 11 4.47

Modified G2 11 20.76*

Penalized Power Divergence 11 48.74*

Zelterman’s T2 11 55.20*

Lawal’s T2 11 52.92*

M2 1 20.28*

*p<0.05

Mantel-Haenszel test for linear association or linear by 
linear association is a good maximization of power. 
	 Power of tests under QI model of size 500 is displayed 
in Table 4. Pearson and Penalized Divergence Statistics 
test yield usually higher power for α = 0.5. 
	 Mantel Haenzsel statistic gives higher power as 
Penalized Divergence Statistics. 

TABLE 4. Power of tests under QI model, n=500

Dimension

Power divergence
statistics

3 5 8

λ =1
λ =0
λ =-1/2
λ =1a
λ =1b
λ =-1
λ =-2
λ =2/3

0.756322
0.630843
0.352873
0.480257
0.328909
0.683263
0.712969
0.649689

0.792848
0.743532
0.385308
0.633615
0.617782
0.657375
0.720398
0.663829

0.729496
0.690375
0.375381
0.623288
0.55018
0.519137
0.724523
0.671563

Penalized divergence dtatistics

λ =1
λ =2

0.751943
0.750172

0.720232
0.709503

0.741675
0.712008

Mantel-Haenszel test
M2 0.762975 0.749909 0.7589065

	 Power of test results under QI model for n=100 in Table 
3 shows that, the power is relatively highest for Penalized 
divergence statistics for λ =1, λ =2 and M2. This result also 
holds for all sample sizes. 
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TABLE 5. Power of tests under QI model, n=1000

Dimension
Power divergence

statistics

3 5 8

λ =1 0.748561 0.808799 0.813393
λ =0 0.728113 0.754047 0.723373
λ =1a 0.643914 0.689401 0.622276
λ =1b 0.640287 0.613645 0.616447
λ =-1/2 0.433711 0.416161 0.454684
λ =-1 0.639581 0.660814 0.608923

λ =-2 0.647336 0.658839 0.654328
λ =2/3 0.705241 0.714728 0.72907
Penalized divergence 

statistics
λ =1 0.826069 0.818051 0.815517
λ =2 0.803843 0.805907 0.891738
Mantel-Haenszel test
M2 0.811049 0.860078 0.825683

TABLE 6. Unaided vision data of 4746 students in Japan

Left eye grade

TotalRight eye
grade

Lowest
(1)

Second
(2)

Third
(3)

Highest
(4)

Lowest (1) 1429
1429

249
(151.19)

25
(81.56)

20
(61.25)

1723

Second (2) 185
(118.82)

660
660

124
(145.16)

64
(109.01)

1033

Third (3) 23
(68.38)

114
(154.87)

221
(221)

149
(62.74)

507

Highest (4) 22
(42.79)

40
(96.92)

130
(52.28)

1291
(1291)

1483

Total 1659 1063 500 1524 4746

TABLE 7. Power divergence statistics under various l values

The power 
divergence 
statistics

df Values
The power 
divergence 
statistics

df Values

λ=1
λ=0

λ=-1/2
λ=-1
λ=-2
λ=2/3
λ=-3/2

λ=4

5
5
5
5
5
5
5
5

507.371
475.646
481.988
504.456
611.654
490.269
545.973
1159.376

λ=5
λ=-4

λ=-1/3
M2

λ=1a
λ=1b

5
5
5
1
5
5

1817.660
1361.715
479.622
3602.305
507.270
507.270

	 Power of test for penalized divergence statistics is 
a decreasing function of λ which confirms the results of 
this study. When the sample size n=1000, power is the 
highest (Table 5).  

NUMERICAL EXAMPLE

Data in Table 6 reports the unaided vision of 4746 students 
aged 18 to about 25 including about 10% woman in 
Faculty of Science and Technology, Science University of 
Tokyo in Japan examined in April 1982 (Tomizawa 1985). 
	 We fit QI model to data and calculated Power 
Divergence Statistics for various λ values (Table 7). The 
results suggested that QI model would seem not adequate 
to represent the data.
	 Note that degrees of freedom for independence model 
is (R-1)(R-1)=3×3=9. Therefore, degrees of freedom for 
quasi-independence model would be (R-1)(R-1)- # of 
structural zeros=3×3-4=5.
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CONCLUSION

The approximation to chi-squared distribution 
of X2 and G2 can be poor for sparse tables. For smaller n and 
sparser tables, it is advisable to use X2  rather than  G2. 
G2  is usually poorly approximated by the chi-squared 
distribution when n/N < 5 (Agresti 2002). The P-values 
for G2 may be too large or too small. Asymptotic results 
may not apply in small-sample situations and the exact 
significance of a goodness-of-fit statistic may potentially 
be stated (Agresti 2002).
	 Several correction terms have been proposed 
to improve the accuracy of the asymptotic distribution by 
Cressie and Read (1984). Among the power divergence 
family members, the accuracy of the asymptotic 
distribution seems to be optimal for Pearson’s X2 statistic 
based on simulation results.
	 When the statistics corresponding to λ = 2 or 3 are 
penalized with a large penalty weight, but there is a 
substantial gain in power large positive values of λ lead to 
high power. Our results showed that penalization improves 
the power properties of ordinary power-divergence test 
statistics.   In this case λ = 1 (Pearson’s X2) results in 
optimal efficiency and large values of λ perform poorly in 
comparison. 
	 The simulated power of the Freeman-Tukey test 
statistic is generally shown to be relatively less than the 
power of all the other investigated test statistics. There 
is generally no improvement in the simulated power for 
the Power Divergence test statistic with λ=2/3 over the 
alternatives. 
	 M2 is more powerful and tends to be about the same 
size as G2 and X2 but only has df=1 rather than df=(R-1)
(R-1). Sampling distribution of the test statistics for small 
sample sizes, are better approximated for those with 
smaller df.
	 M2 detects a specific type of association and can 
summarize it in terms of df = 1 parameter. M2 is more 
powerful because it approximately has the same value as 
X2 and G2 but with only df = 1 rather than (R − 1)(R − 1), 
thus smaller p-value. For small to moderate sample size, 
the sampling distribution of M2 are better approximated 
than for X2 and G2; this in general holds for distributions 
with smaller df´s. However, it is difficult to make general 
recommendations as to the most powerful goodness-of-fit 
test statistic for the specific alternative distributions used 
in this study.
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