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Influence the Accuracy of Landslide Susceptibility Maps

(Mempersembahkan Tanah Runtuh dalam Bentuk Poligon (Luas) atau Titik? Bagaimana Jenis Data Berbeza 
Mempengaruhi Ketepatan Peta Kecenderungan Tanah Runtuh)
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ABSTRACT

In the literatures, discussions on the accuracy of different models for landslide analysis have been discussed widely. 
However, to date, arguments on the type of input data (landslides in the form of point or polygon) and how they affect 
the accuracy of these models can hardly be found. This study assesses how different types of data (point or polygon) 
applied to the same model influence the accuracy of the model in determining areas susceptible to landsliding. A total 
of 137 landslides was digitised as polygon (areal) units and then transformed into points; forming two separate datasets 
both representing the same landslides within the study area. These datasets were later separated into training and 
validation datasets. The polygon unit dataset uses the area density technique reported as percentage, while the point 
data uses the landslide density technique, as means of assigning weighting to landslide factor maps to generate the 
landslide susceptibility map that is based on the analytical hierarchy process (AHP) model. Both data groups show striking 
differences in terms of mapping accuracy for both training and validation datasets. The final landslide susceptibility 
map using area density (polygon) as input only has 48% (training) and 35% (validation) accuracy. The accuracy for 
the susceptibility map using the landslide density as input data achieved 89% and 82% for both training and validation 
datasets, respectively. This result showed that the selection of the type of data for landslide analysis can be critical in 
producing an acceptable level of accuracy for the landslide susceptibility map. The authors hope that the finding of this 
research will assist landslide investigators to determine the appropriateness of the type of landslide data because it will 
influence the accuracy of the final landslide potential map.
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ABSTRAK

Kajian lepas telah banyak membincangkan kejituan model tanah runtuh yang berlainan. Walau bagaimanapun, 
sehingga sekarang, perbincangan mengenai jenis data (tanah runtuh dalam bentuk titik atau poligon) dan bagaimana 
jenis data ini mempengaruhi kejituan model-model tanah runtuh ini agak sukar untuk ditemui. Kajian ini menilai 
bagaimana pelbagai jenis data (titik atau poligon) mempengaruhi ketepatan model dalam menentukan kawasan-
kawasan yang cenderung untuk mengalami tanah runtuh. Sebanyak 137 tanah runtuh telah didigitkan sebagai unit 
poligon (keluasan) dan data yang sama ini kemudiannya diubah kepada data titik; membentuk dua set data yang 
berasingan dengan kedua-duanya mewakili tanah runtuh yang sama dalam kawasan kajian. Set data ini kemudiannya 
dibahagikan kepada set latihan dan set  penentusahan. Unit data poligon menggunakan teknik ketumpatan keluasan 
dan dilaporkan dalam bentuk peratusan, manakala data titik menggunakan teknik ketumpatan tanah  runtuh 
(frekuensi) sebagai kaedah untuk  menentukan pemberat dalam peta faktor tanah runtuh yang kemudiannya digunakan 
untuk menjana peta kecenderungan tanah runtuh berasaskan model Proses Analisis Hierarki (AHP). Kedua-dua 
kumpulan data ini menunjukkan perbezaan yang ketara daripada segi ketepatan pemetaan untuk set data latihan 
dan  penentusahan. Peta kecenderungan tanah runtuh yang menggunakan ketumpatan kawasan (poligon) sebagai 
input hanya mempunyai ketepatan 48% dan 35% masing-masing untuk set data latihan dan pengesahan. Manakala 
ketepatan peta kecenderungan yang menggunakan ketumpatan tanah runtuh (titik) sebagai data input mencapai 89% 
dan 82% untuk kedua-dua set data latihan dan  penentusahan. Keputusan ini menunjukkan bahawa pemilihan jenis 
data untuk analisis tanah runtuh adalah kritikal dalam menghasilkan peta kecenderungan tanah runtuh pada tahap 
ketepatan yang boleh diterima. Penulis berharap hasil kajian ini dapat membantu para pengkaji tanah runtuh untuk 
memastikan kesesuaian jenis data yang digunakan kerana pemilihan jenis input data tersebut akan mempengaruhi 
hasil akhir peta potensi tanah runtuh yang dihasilkan.

Kata kunci: AHP; ketumpatan tanah runtuh; peta kecenderungan tanah runtuh; Sistem Maklumat Geografi (GIS); 
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tanah runtuh

INTRODUCTION

Either point or polygon (area) representations are 
most appropriate for landslide susceptibility mapping 
has not been discussed in the past literatures. Often, 
discussions on landslide analysis focus more on the 
material behaviours of slope, type of models (e.g. statistic, 
heuristic and deterministic) and the benefits of using GIS 
for landslide studies (Budetta et al. 2008; Gahgah et al. 
2009; Goh et al. 2014, 2011; Jaiswal et al. 2010; JTC-1 
2008; Komac 2006; Lin et al. 2010; Matthew et al. 2007; 
Melchiorre et al. 2008; Poudyal et al. 2010; Rafek et al. 
2012; Yalcin 2008; Yang & Yeh 2015). Each model has 
its own approach and therefore, it is difficult to compare 
the extent to which model differences affect success. 
 However, for a given model, it is possible to compare 
the influence of different input factors and their manner of 
representation on model output. This study analyses how 
the representation of landslides as either points or polygon 
(areal) units applied within the same model may affect 
the ability of the model to identify susceptible areas. The 
principal hypothesis is that the way in which input data is 
represented affects mapping accuracy. To date, this issue 
has been given little attention in the literature concerning 
landslide modelling using Geographic Information 
System (GIS).

DESCRIPTION OF THE STUDY AREA

The study area is located in the west coast region of 
Sabah, Malaysia. The study area includes the state capital 

of Sabah (Kota Kinabalu) and several smaller towns such 
as Menggatal, Telipok and Tuaran. It covers an area of 
387 km2 involving four adjacent 1:50,000 topographic 
maps (Figure 1).
 The Crocker Formation which formes the Crocker 
Range is a substantial formation that consists of shale, 
thick sandstone and interbedded sandstone-shale units 
(Roslee et al. 2006). The sandstone unit is characterised by 
angular to sub-rounded quartz grains and has a thickness 
ranging from a few centimeters to several meters (Faisal et 
al. 1999; Tongkul 2007). The shale, on the other hand, is a 
fine grained rock usually grey in colour but red shale can be 
observed in certain locations (Tongkul 2007). The Crocker 
Formation has experienced intense deformation that results 
in tight folds and thrust faults and the argillaceous layers 
commonly show sign of shearing, fracturing and jointing 
(Faisal et al. 1999; Tongkul 2007). 

METHODS

LANDSLIDE INVENTORY MAP

A landslide inventory was created from a set of 1: 10,000 
aerial photographs taken in 2010. The landslide inventory 
is used to store the information on the landslides, in 
particular the location and areal extent of each landslide. 
It was also used to generate and assess the accuracy of the 
final landslide susceptibility maps produced in this study. 
Landslides from aerial photographs were identified based 
on the criteria for landslide identification provided by Ho et 
al. (2010), Rib and Ta (1978) and van Westen and Soeters 
(1996). A total of 137 landslides that are clearly visible 
were identified from the aerial photographs.

FIGURE 1. Study area. Inset map shows the location of the study area 
on the west coast of Sabah
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TYPES OF DATA INPUT: AREA DENSITY AND 
LANDSLIDE DENSITY

The landslide data used for the modelling is of two types: 
areal units and points. The landslides obtained from the 
landslide inventory were originally digitised as areal 
features. These landslide features were later transformed 
into points using the area based technique. In the process of 
developing a susceptibility model, the degree of association 
between landslide location (represented either by point or 
area) and various landslide factors is determined. Landslide 
factors are represented by classes; e.g., slope classes are 
defined by slope angle such as < 15, 15-25 26-35 and > 
35 degrees. The method for assigning weights to each 
landslide factor class is different for each data type. In the 
case of landslides represented as areal units, weighting is 
determined by intersecting the landslide with the classes 
of each landslide factor. The landslide area that occupies 
each factor class is divided by the area of that class. This 
will result in landslide area density for that particular class, 
reported as a percentage. The calculation technique for the 
area density is shown in (1). 

Area density = (Landslide area/area occupied 
 by the factor class) × 100.  (1)

 For landslides represented as points, calculation of 
landslide density for a particular landslide factor class 
follows the technique designed by Hufschmidt and Crozier 
(2008). The number of landslides in each factor class 
is divided by the area occupied by the factor class. The 
calculation technique is shown in (2).

Landslide density = Number of landslides/
 area occupied by the 
 factor class.  (2)

 Both of the landslide datasets (point and area) were 
separated into two groups. This separation was done 
before transforming the landslide area to point to ensure 
both datasets have the same numbers and locations of 
landslides. The first group is known as the training dataset 
and the second as validation dataset. Both datasets were 
randomly separated using the geostatistical tool in ArcGIS 
9.3. The training dataset is used to generate the landslide 
susceptibility map and the validation dataset is used to 
measure the performance of the landslide susceptibility 
model. The ratio of both datasets is around 50:50 with 69 
and 68 landslides in the training and validation datasets, 
respectively.

SELECTION OF DATA LAYERS

The data layers in this study were generated from aerial 
photographs, satellite images and topographic maps. The 
landslide inventory map serves a fundamental role in this 
study where it is used with the landslide factors to generate 
the landslide susceptibility map as well as for accuracy 
assessment. There were 6 landslide factors used for this 
study, these factors were slope angle, slope aspect, lithology, 
road density, lineament density and elevation. These are all 
factors that have been shown in the literature to influence 
the spatial occurrence of landslides (Dai et al. 2002; Dhakal 
et al. 1999; Eyles et al. 1978; Lee & Talib 2005).

FIGURE 2. Lithology of the study area
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THE ANALYTICAL HIERARCHY PROCESS MODEL (AHP)

Analytical Hierarchy Process (AHP) is a multi-criteria 
decision making approach, where factors are arranged in 
a hierarchical structure (Saaty 1994). AHP is a method of 
obtaining the degree of importance of factors in a decision 
making process through pairwise comparison (Saaty 2008). 
The AHP technique uses a scale of 1 to 9 to compare the 
degree of influence by different factors toward an event. 
Comparison between factors involves a pariwise matrix 
where the degree of two factors can be compared. The 
degree of importance for each factor is indicated by an 
eigen value obtained from the pairwise comparison. 
However, one should note that the consistency ratio of 
a pairwise matrix must not exceed 0.1 or otherwise the 
matrix must be revised (Guidi et al. 2009; Komac 2006). 
Based on the AHP equation (Saaty 1994), the equation to 
construct the landslide susceptibility map is

Landslide 
susceptibility Map 

=
  

B1m1 + B2m2 +
  B3m3 +…+. Bnmn,

 (3)

where B is the eigen value obtained from the pairwise 
matrix and m represents the landslide factor.

ACCURACY ASSESSMENT TECHNIQUE

This study uses the degree of fit technique to measure the 
accuracy of the landslide susceptibility map. This technique 
measures the percentage of landslides that fall into each 
susceptibility category (Fernandez et al. 2003; Peralvarez 
et al. 2009). The higher the percentage of landslides found 
in the ‘high’ to ‘very high’ susceptibility categories, the 
higher the accuracy of the landslide susceptibility map 
(Fernandez et al. 2003). 

RESULT AND DISCUSSION

PAIRWISE MATRIX

The pairwise matrix for the AHP model is given in Table 1. 
From the pairwise matrix, the eigen value for each factor 
was calculated. From the eigen value, it is indicated that 
the road density is the most important landslide inducing 
factor followed by slope angle, elevation, lithology, slope 
aspect and lineament density.

 The equation to generate the landslide susceptibility 
using the eigen value for each landslide factor is presented 
as:

Landslide   0.2673*road density + 
Susceptibility Map 

 =
 0.2585*slope angle + 

  0.1711* elevation + 
  0.1707*lithology + 
  0.0837*slope aspect + 
  0.0487* lineament density. 

WEIGHTING OF LANDSLIDE FACTOR CLASSES

The weighting for each of the landslide factor class for 
each data type (points or area) was calculated based on 
the area and landslide density techniques. The level of 
susceptibility for each landslide factor’s class is given 
in Table 2. These weighting is used together with the 
eigen value from the pairwise matrix to generate the final 
landslide susceptibility map.

LANDSLIDE SUSCEPTIBILITY MAP

The landslide susceptibility maps generated based on the 
AHP model for both area density (AHP_Area) and landslide 
density (AHP_Ld) is shown in Figure 3. A comparison of the 
two maps shows that the pattern of susceptibility classes is 
clearly different. As shown in Figure 3, high susceptibility 
class in the AHP_area is concentrated in the southwest, 
centre and eastern parts of the study area. These areas are 
lowland areas with less mountainous landscape, except 
in the eastern part. In contrast to the AHP_area map, the 
AHP_Ld map indicates the southwest and centre areas as 
low susceptibility areas. The high susceptibility class is 
mostly distributed in mountainous terrain. The percentage 
of area covered by each susceptibility class for both maps 
is shown in Figure 4.
 Both maps showed similar pattern in terms of the 
distribution of susceptibility areas from low to high. 
However, the AHP_Ld indicates that the study area has 
more high susceptibility area than the AHP_area’s map. 
The moderate susceptibility class also covers a larger area 
in the AHP_Ld map compared to the AHP_area map. This 
demonstrates that the AHP_Ld indicates that the study 
area has a greater area susceptible to landsliding and the 
AHP_area was unable to identify these locations.

TABLE 1. Pairwise matrix for the AHP landslide susceptibility model

Factor SAng Sh Sa Lith Line Rd Eigen value

SAng
Elev
Sa
Lith
Line
Rd

1
1/3
1/3
1

1/4
1

3
1

1/3
1

1/3
1

3
3
1
3

1/3
3

1
1

1/3
1

1/3
3

4
3
3
3
1
5

1
1

1/3
1/3
1/5
1

0.2637
0.2585
0.1711
0.1707
0.0837
0.0487

Notes:   Slope angle (SAng), elevation (elev), slope aspect (Sa), lithology (Lith), lineament density (Line), road density (Rd) 
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TABLE 2. Landslide factors and weighting for each factor’s class based on the area and landslide density techniques

Landslide factors Class Landslide 
frequency

Landslide area 
(m2)

Total area for 
classes (×106m2

Area density 
(%)

Landslide 
density

Slope angle (°) <15
15-25
25-35
>35

16
33
19
1

27247
53605
25207
2263

236.92
99.46
44.69
6.53

7
34
36
22

0.07
0.33
0.43
0.15

Elevation (m) <30
30-60
60-90
>90

24
23
5
17

15449
36253
11673
44947

174.67
47.43
27.93
138.76

6
48
26
20

0.14
0.48
0.18
0.12

Slope aspect Flat (F)
N

NE
E

SE
S

SW
W

NW

16
6
7
5
4
8
9
4
10

22583
12175
6128
3599
4862
15815
19646
6942
16572

209.62
22.59
19.03
19.93
18.99
19.33
22.30
28.60
28.25

3
14
8
5
7
21
22
6
15

0.08
0.27
0.37
0.25
0.21
0.41
0.40
0.14
0.35

Lithology Alluvium
Interbedded 
sandstone-shale
Sandstone
Shale

2

29
31
7

2035

69140
33002
4144

109.65

92.09
147.58
39.32

2

68
20
10

0.02

0.31
0.21
0.18

Lineament density 
(m/40,000m2)

<50
50-150
>150

54
8
7

73497
19567
15257

311.43
30.12
47.09

20
54
27

0.17
0.27
0.15

Road density 
(m/40,000m2)

<50
50-150
>150

16
8
45

39102
24614
123566

218.90
32.38
137.36

10
41
49

0.07
0.25
0.33

FIGURE 3. Landslide susceptibility maps for AHP_area (left) and AHP_Ld (right)

MAP ACCURACY

The results of the accuracy assessment is separated into 
two components: Training and validation datasets. As 
mentioned earlier, the training dataset is used to create 
both the AHP_area and AHP_Ld landslide susceptibility 
maps and the validation dataset is used to test the accuracy 

of both maps. The accuracy of both maps for the training 
and validation datasets are given in Figure 5.
 The training and validation dataset showed that the 
AHP_Ld has higher accuracy than the AHP_area. The 
AHP_Ld is capable of classifying 89% of the landslides 
in the training dataset into its high susceptibility class as 
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opposed to only 48% by the AHP_area. In terms of the 
validation dataset, 82% of landslides were classified in 
the high susceptibility class by AHP_Ld and only 35% 
by the AHP_area. The reason that the AHP_Ld model is 
more effective in mapping landslides than the AHP_area 
model is because it narrows down the area considered as 
highly susceptible to landslides. Although it has more area 
classified as highly susceptible to landslides compared 

to the AHP_area, it identifies the affected area correctly. 
If the high susceptibility class of the AHP_Ld model is 
intersected with the landslides area, the AHP_Ld model 
correctly categorised a higher landslide area than the 
AHP_area model (Table 3). 
 Looking at the pattern of landslide areas classified in 
each of the models’ classes, the AHP_area classified most 
the areas actually affected by landslides in the validation 
dataset into the moderate susceptibility class and less in the 
high susceptibility class. The AHP_Ld however, captured 
higher actual landslide areas in its high susceptibility 
class and fewer in the moderate and low susceptibility 
classes. The result shown in Table 3 indicates that the 
AHP_Ld model performed better than the AHP_area 
model in capturing correctly the landslide area. Although 
the AHP_Ld has more high susceptibility area than the 
AHP_area model, the difference of area is only 18 km2, 
which is relatively small. 
 This study found that several reasons contributed to 
the higher accuracy of the landslide density technique. 
First, conversion from raster to vector can remove smaller 
landslides from the analysis when using an area based 
technique. The landslide analysis was in raster based in 
this study using a 30 × 30 m cell size. This means that any 
landslide smaller than 30 × 30 m will disappear during the 
conversion process. In contrast, the number of landslides 
represented as points remain constant when the data are 
converted to raster. In this study, 15 landslides areas were 
automatically removed when the digitised landslide layer 
was converted to raster due to their small size. The cell size 
limitation is related to the medium scale map (1:50,000) 
used for this study.

FIGURE 4. Area for each landslide susceptibility class for the 
AHP_area and AHP_Ld landslide susceptibility maps

FIGURE 5. Accuracy result for the AHP_area and AHP_Ld models (a) Accuracy of the susceptibility map based on the training 
dataset, (b) accuracy of the susceptibility map based on the validation dataset
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 Second, when a landslide area is converted to raster, 
the shape of the area will change resulting in additional 
inaccuracies. The raster layer is heavily related to the cell 
size and where the landslide does not fill the majority of 
the cell, its area is reduced to the cells where is in the 
majority. This means that for some landslide the area is 
reduced. When intersected with the landslide factors, 
the reduced landslide area will provide inaccurate 
information on the level of susceptibility in certain factor 
classes. This may under-represent the influence of some 
potentially important landslide factors. This inaccurate 
representation of the landslide area will greatly impact 
the accuracy of the final landslide susceptibility map. 
However, in some cases, such as in this study, conversion 
of the landslide areas to raster format is necessary due to 
comparison with the mainly raster based landslide factors 
maps (e.g. slope).
 Due to the errors mentioned, this study suggested 
that using the landslide density is a suitable approach 
when analysing landslides in a low to medium resolution 
mapping with map scale smaller than 1: 50,000. As 
demonstrated in this study, representing landslides as 
points can minimize loss of information due to data 
conversion from vector to raster. However, one limitation 
of using points to represent landslide locations and for 
analysis is that it excludes the landslide area completely. 

CONCLUSION

This study successfully demonstrates that one of the 
major factors that control the accuracy of a model is the 
selection of data type, namely, areal or point. As evident 
in this study, the choice of data input greatly influences 
the accuracy of a model in producing a good landslide 
susceptibility map. A higher accuracy of landslide 
susceptibility mapping was achieved when using points 
as the data input (AHP_Ld) compared to the area type 
data (AHP_area). 
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