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The HARX-GJR-GARCH skewed-t multipower realized 
volatility modelling for S&P 500

(Pemodelan Kemeruapan Terealisasi Pelbagai-Kuasa HARX-GJR-GARCH terpencong-t untuk S&P 500)

CHIN WEN CHEONG*, LEE MIN CHERNG, NADIRA MOHAMED ISA & POO KUAN HOONG

ABSTRACT

The heterogeneous autoregressive (HAR) models are used in modeling high frequency multipower realized volatility of the 
S&P 500 index. Extended from the standard realized volatility, the multipower realized volatility representations have 
the advantage of handling the possible abrupt jumps by smoothing the consecutive volatility. In order to accommodate 
clustering volatility and asymmetric of multipower realized volatility, the HAR model is extended by the threshold 
autoregressive conditional heteroscedastic (GJR-GARCH) component. In addition, the innovations of the multipower realized 
volatility are characterized by the skewed student-t distributions. The extended model provides the best performing in-
sample and out-of-sample forecast evaluations. 
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ABSTRAK

Model autoregresi heterogen (HAR) digunakan dalam pemodelan kemeruapan  terealisasi pelbagai-kuasa untuk indeks 
S&P500. Lanjutan daripada kemeruapan terealisasi piawai, kemeruapan pelbagai-kuasa mempunyai kelebihan 
menangani kemungkinan perubahan mendadak dengan pelicinan kemeruapan berturutan. Untuk permodelan kemeruapan  
kelompok dan tak simetri, model HAR dilanjutkan dengan komponen autoregresi heteroskedastik bersyarat ambang (GJR-
GARCH). Selain itu, inovasi kemeruapan terealisasi dicirikan dengan taburan student-t terpencong. Model lanjutan HAR 
memberi prestasi terbaik dalam penilaian penganggaran dan ramalan. 

Kata kunci: GARCH; HAR; kemeruapan terealisasi

INTRODUCTION

Integrated volatility estimation based on high frequency 
data is one of the famous model-free measures of latent 
volatility, which normally cannot be directly observed 
from the raw daily financial data. The usage of high 
frequency daily data (Cervello et al. 2015; Cheong et 
al. 2016a, 2016b;  Degiannakis & Floros 2013; Inkaya 
& Oku 2014; Wang et al. 2015; Zu & Obswijk 2014) 
provides volatility estimates that have direct impact to the 
accuracy of portfolio investment and risk management. 
From the academician point of view, the presence of 
predictable volatility gives additional information in the 
efficiency market hypothesis analysis. One of the early 
high frequency data analyses in financial market was 
introduced by Andersen and Bollerslev (1998). They 
approximate the high frequency realized volatility (RV) to 
latent volatility which is related to the theory of quadratic 
variation and integrated variance. Consider a stochastic 
volatility process for logarithmic prices of a financial 
asset, dp(t) = μ(t)dt + σ(t) dw(t), where μ(t),  σ(t) and W(t) 
are the drift, volatility and standard Brownian motion, 
respectively. The μ(t) and  σ(t) may be time-varying but are 
assumed to be independent of dW(t). Alternately, pt = p0 + 

 The quadratic variation process for 
a sequence of partitions when m approaches ∞ is equivalent 
to the integrated variance (pτi+1

 – pτp
)2 = (t)

dt.  In other words, the quadratic variation and hence the 
integrated variance can be consistently estimated by the 
sum of squares returns. 
 In most of the finance applications, the continuously 
compounded intraday returns of day T with sampling 
frequency N can be written as τt,j = 100 (ln Pt,j – ln Pt,j –1), 
with j = 1, …, N and t = 1, …, T. Thus, a full trading day 
for S&P500 with six and a half hours consists of 78 5 
min data. Andersen and Bollerslev (1998) aggregated the 
squared intraday returns and forms the realized volatility 
(RV),  As the sampling frequency of intraday 
returns approaches infinity, the RV converges uniformly 
in probability (Barndorff-Nielsen & Shephard 2002) to 

 It is noted that in the presence of abrupt 
jumps in the series, the RV is no longer consistent estimate 
for integrated variance. Thus, a more robust estimator which 
immunes to jump is needed to overcome this inconsistency 
issue. In order to capture high volatile financial markets 
with possible jumps, a general realized multipower (p) 
variation estimator (Barndorff-Nielsen & Shephard 2002) 
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for latent volatility of the corresponding integrated power 
of the volatility is proposed as,

 MPVt(i, p) =   (1)

where n and p are positive integers with the relationship 
n > p/2 with a finite sample correction of  The term 
i normally sets the window size of return blocks and 
p indicates the desired power variation. For i.i.d price 
changes, μp/i = [p/i + 1)/2]/Γ[1/2]. If all the adjacent 
returns are i.i.d normally distributed, Barndorff-Nielsen et 
al. (2006) claimed that each term of the MPV delivers an 
unbiased estimate for the power of volatility. The power 
of the estimator can be altered by using specific values of 
n and p, for example when n=1 and p=2, the estimator is 
referring to realized volatility proposed by Andersen et al. 
(2001) as RVt = MPV1,t(i = 1, p = 2) =  Other 
variation of estimators are such as Bipower variation 
volatility (Barndorff-Nielsen & Shephard 2004), BVt = 

MPV2,t(i = 2, p = 2) = , Tripower variation 

volatility (Andersen et al. 2006), TVt = MPV3,t(i = 3, p = 

2) =   and Quadpower variation 

volatility (Barndorff-Nielsen & Shephard 2004), QVt = 

MPV4,t(i = 4, p = 2) =   In 

general, the higher power variations smoothen the abrupt 
jumps by averaging to its adjacent(s) return(s). 
 The heterogeneous autoregressive (HAR) model 
(Corsi 2009; Corsi et al. 2008) is one of the famous high 
frequency models in finance applications. The HAR model 
specification is based on the concept of heterogeneous 
market hypothesis (Dacorogna et al. 2001; Muller et 
al. 1993). This hypothesis complements the traditional 
efficient market hypothesis (Fama 1998; Malkiel 
2003) which assumes that the market participants are 
homogeneous in terms of market information and their 
ways of reacting to new market news. However, in the 
real situations, market participants interpreted the same 

market information differently according to their trading 
preferences and opportunities. In a more general way, 
their investment periods (Figure 1) can be categorized as 
short, medium and long where each of these different time 
horizon trading activities will create a unique volatility 
under the fluctuating price movements. These cascading 
volatilities are believed to generate long memory volatility 
in financial markets. Another popular counterpart namely 
the fractionally integrated (Andersen et al. 2006) ARMA 
models are not included in this study due to its finance 
interpretation issue.
 In this present study, a HARX model is extended 
to accommodate for asymmetry volatility clustering as 
well as asymmetric relation between RV and volatility 
of RV. Besides the commonly used RV, we also include 
other alternative RVs which are robust to jumps such as 
bipower, tripower and quadpower variation volatility in 
the HAR models. In addition, the RV’s errors are considered 
as leptokurtic and asymmetrically distributed which 
follow a skewed student-t distribution. The extended new 
model framework is named as HARX (MPV)-GJR-GARCH 
skewed-t model and is applied on the S&P 500 index. As 
a comparison with the original models, the new model 
specification provides better in-sample as well as out-of-
sample forecast evaluations. Therefore, the higher power 
jump-robust volatilities should be taken into account in 
the volatility model specification. To complete this study, 
we illustrate a one-day-ahead value-at-risk determination 
using the forecasted results. 
 The remaining of this manuscript is organized as 
follows: Next, we provides the description of multipower 
variation of volatility estimators, ARFIMA and HAR models; 
After that, we discusses the empirical data and results and 
finally, we concludes the findings of the study.

METHODS

THE HARX (MPV)-GJR-GARCH SKEWED-T MODEL

The basic HAR model proposed by Corsi (2009) constructed 
an additive hierarchical structure of various frequency 
realized volatilities according to daily, weekly and monthly 

Heterogeneous
market volatility

FIGURE 1. Structure of heterogeneous market’s volatility
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volatility. In this study, we extended the HAR by including 
various power realized volatility under the specification of 
Barndorff-Nielsen and Shephard (2004). In addition, the 
innovations of the realized volatility are assumed to be 
leptokurtically and asymmetrically following a skewed 
student-t distribution. Specifically, the HARX(MPV)-GJR-
GARCH(1,1)-skewed-t model can be written as:

 
 

 
 (2)

where MPV represents the type of realized volatility with 
 and  The 

term α2, captures the asymmetric behavior of realized 
volatility and It(.) is an identity function. For instance, 
when α2 > 0, negative (positive) news contribute to greater 
(smaller) magnitude of MPV. The GJR threshold (Glosten 
et al. 1993) specification is originally meant for capturing 
leverage effect in finance under the conditional mean and 
conditional volatility modelling. However, in this study, 
this specification is to explore the relationship between 
various realized volatility and its volatility. Next, the X 
indicates whether the risk-premium (risk-return tradeoff) 
exists in the studied time series. The returns are expected to 
be positively correlated to the intensity of market volatility 
or risk. In other words, higher risk asset should offered 
higher returns in order investor to hold it. 
 For leptokurtic and asymmetrically distributed error 
series (Lambert & Laurent 2001), εi,t⎪Ωt–1~skew – t(0,1; 
v, k), the density function is

  

 

(3)

with v and k are the tail and asymmetry parameters, 

respectively, where  s =  and m = 

 Overall, the vector parameters to be 

estimated are (θ, α, v, k) where θ = (θ0, θ1, θd, θw, θm) and 
α = (α0, α1, α2, α3)   Using the Ox-G@RCH, the estimations 
are conducted using the simulated annealing maximum 
likelihood (MaxSA) due to possibility of more than one 
local extrema which are also may not be smoothen. 
 The out-of-sample forecast evaluations are based on 
a rolling fixed sample size of T=1246 for h = 1, 2, …, 

H where H is fixed as 100. The various one-day-ahead 
logarithmic realized volatility forecasts are computed as 
follows:

 

 

 

 

 
(4)

where  and   ln 

. Thus, the vector  (t)(θ(t), α(t), v(t), k(t)) is re-estimated 
every day for t = h, h+1, …, h+T-1 days. For out-of-sample 
forecast evaluations, four measurements namely the 

mean squared error (MSE = ) and its 

corresponding heteroscedasticity adjusted statistic HMSE 

(HMSE = ), mean absolute error (MAE 

= ) and its corresponding HMAE 

(HMAE = ) are selected for this study. 

For HMSE and HMAE, both are able to accommodate the 
heteroscedasticity (Bollerslev & Ghysels 1996) in the 
forecast errors. In this study, we focus on these four basic 
measurements which based directly on the deviation 
between forecasts and realizations. The robustness of the 
forecast evaluations is based on the definition by Patton 
(2011) where the model ranking should be consistent no 
matter what types of proxies are being used in the forecast 
evaluations. 

EMPIRICAL STUDY FOR S&P 500

The S&P 500 index which serves as a barometer for U.S. 
economic has been selected for this study. Due to the 
high speculated market conditions during the sub-prime 
mortgage crisis, this index provides a good testbed for high 
volatile market analysis. The collected high frequency data 
from Bloomberg database consists of 1246 (1st Feb 2008 
until 31st January 2013) intraday observations whereas 
intraday data starts from 1st Feb 2013 to 30th Jul 2013 are 
reserved for out-of-sample forecast evaluations. Figure 2 
illustrates high intensity volatility compared to the others 
during the period from year 2008 to year 2009 with a 
continuously plunge ended in February 2009. Table 1 
shows a quick glance on the descriptive statistics of all 
the logarithm power realized volatilities. 
 All the kurtosis and skewness are deviated from three 
and greater than zero, which indicates that the presence of 
non-gaussianity properties in all the series. Graphically, the 
non-gaussianity can also be observed from their density 
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plots in Figure 3 with slightly skewed to right especially 
for BV, TV and QV. Under the null hypothesis of a normal 
distribution, the Jacque-Bera statistics rejected all the 
series at the 5% significance level. Using the quantile-
quantile plots with normal distribution versus logarithmic 
series, the positive skewness is indicated in all series. To 
summarize, the multipower variation volatility series have 
slightly higher peak (leptokurtic) and positively skewed 
when comparing to a normal distribution. Thus, one 
should include these distribution behaviors in the model 
specifications for in-sample and out-of-sample analyses. 

IN-SAMPLE FORECAST EVALUATIONS

Tables 2 and 3 reports the overall 8 HAR-GJR-GARCH 
normal and HAR-GARCH(GJR) skewed-t models under 
the 4 multipower variation volatility representations. 

Due to the leptokurtic and positive skewed volatility, the 
constructions of normal distributed models are for the 
purpose of comparisons. The in-sample forecasts of HAR-
GJR-GARCH skewed-t models shows that the heterogeneous 
autoregressive components (θday, θweek and θmonth) for daily, 
weekly and monthly volatilities are all significantly different 
from zero at 5% level of significance. In other words, this 
findings support the presence of heterogeneous market 
hypothesis where the markets consist of non-homogeneous 
market participants with different time horizon investments 
preferences. For the risk premium (risk-return tradeoff) 
coefficient, θ1, all of them indicated positive correlation 
between the volatility and the negatively expected return 
(since the logarithmic volatility is in negative values). This 
shows that the higher risk market should offered higher 
return in order for the investors to hold it. For negatively 

FIGURE 2. Index level and return series for S&P 500

TABLE 1. Descriptive statistics for logarithm multipower variation of realized volatility

Ln(RV) Ln(BV) Ln(TV) Ln(QV)
 Mean
 Median
 Maximum
 Minimum
 Std. Dev.
 Skewness
 Kurtosis

-9.179536
-9.293311
-4.788000
-12.10241
 1.165273
 0.559742
 3.300867

-9.548012
-9.652443
-5.233757
-12.33713
 1.125177
 0.698988
 3.516373

-9.624427
-9.739006
-5.177746
-12.49701
 1.139515
 0.709102
 3.587237

-9.663881
-9.786752
-5.188110
-12.68837
 1.150303
 0.695196
 3.568282

 Jarque-Bera  69.70793*  115.2134*  122.2253*  117.0370*

* indicate 5% level of significance 
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FIGURE 3. Density plots for all volatility logarithmic series

FIGURE 4. Quantile-quantile plots for all volatility series 
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TABLE 3. The maximum likelihood estimation –normal

σ2
t (RV) σ2

t (BV) σ2
t (TV) σ2

t (QV)
θ0 -1.404214**(0.2244) -0.924779** (0.2381) -0.914593** (0.2479) -0.908398 ** (0.2601) 
θ1 (risk premium) -20.996265**(2.2535) -11.845286** (2.0760) -9.942112** (1.9545) -9.731292 ** (2.0460)
θday, t-1 0.131880**(0.0368) 0.288744** (0.0387) 0.329304** (0.0351) 0.335515 ** (0.0361)
θweek, t-1 0.484890**(0.0753) 0.639780 **(0.0598) 0.692556** (0.0566) 0.676587 ** (0.0582)
θmonth, t-1 0.241310**(0.0538) 0.270983**(0.0631) 0.218729** (0.0596 ) 0.235818 ** (0.0620) 
α0 0.024759**(0.0182) 0.013406 (0.0094) 0.016369 (0.0123) 0.018116 (0.0147)

α1 0.107518** (0.0411) 0.065717** (0.0248) 0.065536** (0.0263) 0.061370 ** (0.0262)
α2 (asymmetry) 0.011312**(0.0564) -0.060505** (0.0287) -0.065597*(0.0378) -0.067333 ** (0.0399)

α3 0.834785**(0.0639) 0.908179** (0.0484) 0.897987** (0.0568) 0.898567 ** (0.0633)
Model selection
 AIC

 SIC

 HIC

1.937123
1.937020
1.974161

1.414698
1.414595
1.451736

1.414587
1.414483
1.451625

1.455772
1.455669
1.492810

Diagnostic
, LB (10)
, LB (10)

ARCH (10)

20.6345 [0.0237]*
3.41750 [0.9054]
0.33780 [0.9709]

11.6767 [0.2321]
7.38367 [0.4958]
0.71385 [0.7121]

10.8156 [0.2885]
7.59401 [0.4740]
0.69935 [0.7258]

11.4944 [0.2433]
6.24982 [0.6192]
0.57928 [0.8319]

Standard errors and p-values are reported in round and square parentheses.
** and * indicate 1% and 5% level of significance, respectively

TABLE 2. The maximum likelihood estimation –skewed-t

σ2
t (RV) σ2

t (BV) σ2
t (TV) σ2

t (QV)
θ0 -1.237847** (0.2014) -0.801015** (0.21898) -0.401417** (0.00007) -0.767258** (0.2359)
θ1 (risk premium) -20.388240** (2.3781) -11.407904**(1.9759) -5.099477** (0.00014) -9.246969** (1.9689)
θday,t-1 0.115569** (0.0347) 0.287488** (0.0360) 0.457625** (0.00011) 0.352058** (0.0358)
θweek,t-1 0.521662** (0.0586) 0.676784** (0.0567) 0.446479** (0.00012) 0.631021** (0.0618)
θmonth, t-1 0.239185** (0.0499) 0.246643** (0.0583) 0.517134** (0.00016) 0.296063** (0.0632)
α0 0.035660* (0.0214) 0.015005** (0.0073) 0.089316** (0.00003) 0.019526 (0.0127)

α1 0.160797** (0.0435) 0.077164** (0.0227) 0.081433** (0.00025) 0.069964** (0.0246)
α2 (asymmetry) -0.037417 (0.0424) -0.071589** (0.0283) -0.125841** (0.00025) -0.073159** (0.0415)
α3 0.780368** (0.0777) 0.895601** (0.0369) 0.612849** (0.00005) 0.887540** (0.0517)
k (Skewed) 0.267734** (0.0496) 0.102430**(0.0438) 0.146072** (0.04021) 0.119745** (0.0418)
v (Heavy tail) 14.025081** (6.5877) 12.402808**4.0643) 8.573086** (3.2731) 8.454018** (1.9025)
Model selection
 AIC

 SIC

 HIC

1.875761 
1.875607
1.921029 

1.397890 
1.397736
1.443159 

1.385101 
1.384947
1.430370 

1.425864 
1.425710
1.471132 

Diagnostic
,  LB (10)
, LB (10)

ARCH (10)

17.9314* [0.0561]
2.63523 [0.9551]
0.25471 [0.9901]

11.4637 [0.2452]
6.89709 [0.5477]
0.66481 [0.7579]

10.1493 [0.3385]
7.44431 [0.4895]
0.68532 [0.7389]

11.2453 [0.2592]
6.19657 [0.6252]
0.57340 [0.8367]

Standard errors and p-values are reported in round and square parentheses.
** and * indicate 1% and 5% level of significance respectively.
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asymmetric volatility for realized volatility, the coefficients 
α2, are all significant at 5% level of significance. Therefore, 
it is necessary to consider the GJR-GARCH modeling for 
volatility of multipower variation volatility. For skewness 
of the multipower variation volatility innovations, the 
coefficient ks are all positively skewed. For the peakness 
of the innovations, all the tail parameters, vs exhibited 
fatter tails than normal distribution. In other words, the 
innovations are leptokurtic and positively skewed than a 
standardized normal distribution. 
 For the diagnostic section, all the models failed to 
reject the Ljung-Box serial correlations for standardized 
and squared standardized innovations under the null 
hypothesis of serially uncorrelated series. However, 
only the RV-model for both HAR-GJR-GARCH normal and 
skewed-t are rejected at 10% and 5% level of significance, 
respectively, for standardized innovations. This indicated 
that the RV representation does not fully statistically fit 
well in the introduced models. The misspecification may 
cause by the noisy data. On the other hand, the BV, TV 
and QV models fit well in the model specification tests 
under the multipower variation volatility specification. 
For model selection, overall the HAR-GJR-GARCH skewed-t 
models are outperforming the normally distributed models 
for the same volatility representation. There is a great 
improvement in terms of information criteria (AIC, BIC 
and SIC) when shifted from RV to BV, TV and QV. In short, 
the jump-robust realized volatility representations are 
out-performing the standard realized volatility in the in-

sample forecast evaluations. However, good out-of-sample 
forecasts (Hong et al. 2004) are affected by factors such 
as over-parameterization issue and unforeseen structural 
changes in the series. 

OUT-OF-SAMPLE FORECAST EVALUATIONS

In order to provide an objective out-of-sample forecasts 
evaluation, the latent volatility is alternately represented 
by RV, BV, TV and QV. Overall there are four models 
under the model specifications of HAR (MPV)-GJR-GARCH 
skewed-t are evaluated by MSE, MAE, HMSE and HMAE, 
respectively. The out-of-sample 100 one-ahead forecasts 
are based on a rolling sample of 1246 trading days. 
Each estimated parameter vector (t)(θ(t), α(t), v(t), k(t)) is 
re-estimated every day for 100 one-day-ahead forecasts. 
A simple scoring approach is used by granting 4 points 
for the best model and 1 point for the worst model. The 
score under the four different volatility proxies will be 
added to a final score for the ranking purposes. Table 4 
and Figure 5 reports the forecast evaluations and plots 
for all the MPV models.
 Overall, the higher power variation volatilities (BV, 
TV and QV) have shown better scores except when the RV 
acted as the proxy for latent volatility. This is an expected 
outcome because the RV series has much more noises 
than BV, TV and QV where an averaging process has been 
implemented on the accumulated consecutive returns. 
This can also be observed from the higher standard 

TABLE 4. Forecast evaluations

Actual
HAR(MPV)-GJR-GARCH skewed-t model

MPV: RV score BV score TV score QV score
RV
BV
TV
QV

MSE
MSE
MSE
MSE
Rank

0.47430
0.45173
0.49255
0.54280
(4)

4
1
1
1
7

0.64908
0.37223
0.34551
0.37056
(2)

3
4
2
1
10

0.70417
0.37337
0.32659
0.34552
(1)

2
3
4
4
13

0.75028
0.38664
0.33034
0.34568
(3)

1
2
3
2
8

RV
BV
TV
QV

MAE
MAE
MAE
MAE
Rank

0.52950
0.54231
0.58042
0.61350
(4)

4
1
1
1
7

0.64381
0.48244
0.46486
0.48887
(2)

3
3
2
2
10

0.66754
0.47401
0.44900
0.46648
(1)

2
4
4
3
13

0.69297
0.48342
0.45441
0.46526
(2)

1
2
3
4
10

RV
BV
TV
QV

HMSE
HMSE
HMSE
HMSE
Rank

0.00466
0.00443
0.00481
0.00530
(4)

4
1
1
1
7

0.00591
0.00339
0.00315
0.00338
(2)

3
3
2
2
10

0.00629
0.00333
0.00291
0.00308
(1)

2
4
4
3
13

0.00666
0.00342
0.00292
0.00306
(2)

1
2
3
4
10

RV
BV
TV
QV

HMAE
HMAE
HMAE
HMAE
Rank

0.05243
0.05353
0.05722
0.06050
(4)

4
1
1
1
7

0.06143
0.04597
0.04425
0.04656
(3)

3
2
2
2
9

0.06308
0.04470
0.04230
0.04396
(1)

2
4
4
3
13

0.06520
0.04541
0.04265
0.04366
(2)

1
3
3
4
11

Note: The highest and lowest score are 4 and 1 respectively
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deviation of RV in Table 1 descriptive statistics. The TV 
has outperformed other models, followed by BV, QV and 
lastly the RV in all the forecast evaluation measurements. 
The ranking for MSE, MAE and HMSE are consistent for 
the four models, with TV ranked-1st, BV and QV as 2nd 
and 3rd and the 4th is RV. This consistency is similar to 
the definition of robustness by Patton (2011) where the 
ranking is consistent no matter what type of proxies are 
used in the evaluations. 
 To conclude this study, we have conducted a value-
at-risk measurement (Jorion 2006) for a one-day horizon 
forecast using the tripower variation (TV) volatility 
specification. In order to determine the VaR, one needs 
the forecasted return and the parametric distribution 
assumption of the return. For this illustration, we have fitted 
normal and student-t distributions (degree of freedom v = 
5.704675) to the return series. Based on the HARX(TV)-GJR-
GARCH skewed-t model, the long position single market q% 
quantile VaR of one-day horizon is VaRstudent–t(1) = capital 

×  , where tv and  represent the p-th 

quantile of a student-t distribution with tail parameter v, and 

the forecasted volatility for tripower variation, respectively. 
For long position investors, they buy a stock, hold it 
while it appreciates and eventually sell it for profit. They 
encounter risk when the price of the stock decreases. Thus, 
long financial position investor concerns about the left tail 
distribution of the asset return. For comparison, we also 
computed the normally distributed VaR with the similar 
derivation VaRNORMAL,t(1) = capital ×   
For example, suppose that an investor holds a long position 
of S&P 500 with a capital of $1 million. The 1% quantile 
for one-day ahead for both the normal and skewed-t 
distributed return series are as computed as follows: 
 

 

 

 It is understood that the negative sign signifies a loss 
which located at the left tail distribution. For normally 

FIGURE 5. 100 one-day-ahead Forecasts for multipower variation volatility
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distributed returns, the VaR with probability 0.01 is 
0.010256 × $1,000,000 = $9531 whereas the VaR for 
student-t return recorded a loss of $13727. These results 
showed that with probability 99%, the potential loss of 
holding this position for the next day (1 day horizon) is 
$9531 and $13727 for both the series. It can also be found 
that the assumption of normally distributed returns has 
encountered the issue of underestimating VaR.

CONCLUSION

This study introduced HARX-GJR-GARCH skewed-t model in 
estimating and forecasting multipower realized volatility 
for the S&P 500 index. The multipower realized volatility, 
namely the Bipower, Tripower and Quadpower realized 
volatility are robust to abrupt-jump in the financial 
time-series. In the in-sample forecast, the negative 
relationship between various realized volatility and its 
volatility are captured by the GJR-GARCH specification. 
It is also been shown that the various realized volatility 
are heavy tailed and slightly skewed to the right under 
the skewed student-t distribution fitting. The empirical 
findings found that there is a significant improvement 
under the three information criteria model selections for 
the BV, TV and QV specifications. Similar in out-of-sample 
forecasts evaluations, the BV, TV and QV is superior to 
the RV specification in four error measurements. As a 
conclusion, this study provides an alternative approach 
to deal with high volatile market’s volatility forecast as 
well as market risk determination. In addition, the usage 
of various realized volatility in this analysis can provides 
better accuracy in the market risk and portfolio hedging 
determination for single or multi-assets investment. 
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