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Functional Relationship Model
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ABSTRACT

Missing value problem is common when analysing quantitative data. With the rapid growth of computing capabilities, 
advanced methods in particular those based on maximum likelihood estimation has been suggested to best handle 
the missing values problem. In this paper, two modern imputing approaches namely expectation-maximization (EM) 
and expectation-maximization with bootstrapping (EMB) are proposed in this paper for two kinds of linear functional 
relationship (LFRM) models, namely LFRM1 for full model and LFRM2 for linear functional relationship model when slope 
parameter is estimated using a nonparametric approach. The performance of EM and EMB are measured using mean 
absolute error, root-mean-square error and estimated bias. The results of the simulation study suggested that both EM 
and EMB methods are applicable to the LFRM with EMB algorithm outperforms the standard EM algorithm. Illustration 
using a practical example and a real data set is provided.
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ABSTRAK

Data lenyap sering terjadi dalam analisis data kuantitatif. Dengan berkembangnya keupayaan pengiraan, kaedah 
terkini iaitu kaedah kebolehjadian maksimum merupakan antara cara yang terbaik untuk menguruskan masalah data 
lenyap. Di dalam kertas ini, dua kaedah gantian moden diperkenalkan iaitu jangkaan pemaksimuman (EM) dan jangkaan 
pemaksimum bootstrap (EMB) untuk digunakan di dalam model linear hubungan fungsian (LFRM) iaitu LFRM1 bagi 
model penuh dan LFRM2 bagi model linear hubungan fungsian apabila parameter kecerunan dianggarkan menggunakan 
kaedah bukan berparameter. Prestasi EM dan EMB diukur berdasarkan purata ralat mutlak, punca purata kuasa dua 
ralat, dan anggaran terpincang. Melalui simulasi, kami dapati EM dan EMB kedua-duanya boleh digunakan oleh LFRM 
dan keputusan menunjukkan bahawa algoritma EMB adalah lebih baik daripada algoritma EM. Kajian ini disertakan 
dengan contoh data set yang sebenar.

Kata kunci: Bootsrap; data lenyap; jangkaan pemaksimum; model linear hubungan fungsian

INTRODUCTION

The presence of missing value is unavoidable in all fields 
of quantitative research, such as in the field of economics 
(Takahashi & Ito 2013), medical (Dziura et al. 2013), 
environmental (Razak et al. 2014; Zainuri et al. 2015), life 
sciences (George et al. 2015) and social sciences (Acock 
2005; Schafer & Graham 2002). It has been established 
that ignoring missing values may result in biased estimates 
and invalid conclusions (Guan & Yusoff 2011). In short, 
inadequate approach of handling missing data in a 
statistical analysis will lead to erroneous estimates and 
incorrect inferences.
 In general terms, techniques to deal with missing 
values can be categorised as traditional or modern 
approach. Some commonly used traditional ways are 
listwise deletion and pairwise deletion. As for imputation 
methods, mean imputation, hot-deck imputation, and 
stochastic imputation are among the commonly used 
(George et al. 2015). On the other hand, the modern 
approaches include those based on maximum likelihood 

and multiple imputations (Acock 2005). EM algorithm is 
an example of maximum likelihood and some examples of 
multiple imputations include Markov Chain Monte Carlo 
(MCMC), Fully Conditional Specification (FCS) and EMB 
algorithm (Baraldi & Enders 2010; Barzi & Woodward 
2004; Gold & Bentler 2000; Little & Rubin 1987). 
 Studies on handling missing values are largely for 
univariate or regression model data. In this paper, we 
investigate the application of the EM and EMB methods in 
dealing with missing values for a type of model called the 
linear functional relationship model (LRFM). EM algorithm 
has become popular in handling missing data because of 
its simplicity and its wide applicability (Dempster et al. 
1977). However, a major drawback of using EM is its slow 
convergence rate (Couvreur 1996). In order to improvise 
the existing EM method, we propose a bootstrap version 
of EM, known as the EMB. As EMB involves multiple 
imputation, we anticipate it will make the estimation less 
bias and will increase its efficiency when dealing with 
the missing data. A LRFM is employed to compare two 
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sets of data with both observable errors. The parameter 
estimates of LRFM can be obtained by maximum likelihood 
estimates, which we refer the full model LFRM with the 
acronym LFRM1 and when the slope parameter is estimated 
using nonparametric approach, which we refer it with the 
acronym LFRM2. 
 Thus, in this study, we aimed to investigate the 
performance of two modern approaches in dealing with 
missing data namely the EM and EMB for data sets that 
can be modelled by the LFRM1 and LFRM2. Simulation 
studies are done to investigate this study and illustration 
is provided using a practical example.

THE MODEL AND EXPECTATION 
MAXIMIZATION TECHNIQUES

LINEAR FUNCTIONAL RELATIONSHIP MODEL FOR FULL MODEL

Linear Functional Relationship Model can be expressed by: 
 
 Y = α + β X, (1)

where both variables X and Y are linearly related but 
observed with error. Parameter α  is the intercept value, 
and β is the slope parameter. For any fixed Xi  we observe 
xi and yi from continuous linear variable subject to errors 
δi  and εi respectively, i.e.
       
 xi = Xi + δi  and  yi = Yi + εi,   (2)

where the error terms δi  and εi are assumed to be mutually 
independent and normally distributed random variables, i.e. 
        
 δi ~ N(0, ) and  εi ~ N(0, ).    (3)

 To avoid an unbounded problem in our equation, we 
assume an additional constraint  = λ , where λ is known 
(Sprent 1969). Therefore, the log likelihood function can 
be given by:
  
 log L(α,β, , X1, …, Xn; λ, x1, …, xn, y1, …, yn) = 

 -n log(2π) –  log λ–n log  –   

  . (4)

 There are  (n + 3) parameters to be estimated, 
namely  α, β,  and Xi, …, Xn, the incidental parameters 
respectively. Differentiating  with respect to parameters α, 
β,   and Xi, we can obtain   and  given by:

 

 ,

 

 and  

        
 where   

Sxx = ∑(xi – )2, Syy =  ∑(yi – )2,  and 

Sxy = ∑(xi – )(yi – ).     (5)

 Further details of the parameter estimation can be 
found in the literature (Al-Nasser 2005; Kendall & Stuart 
1973). 

LINEAR FUNCTIONAL RELATIONSHIP MODEL WITH 
ASSUMED KNOWN SLOPE

From (4), by differentiating  log L with respect to 
parameters  α, β,  and Xi we can obtain  and 

 as given in (5). Alternatively, the parameter  can be 
obtained first using nonparametric estimation (Ghapor et 
al. 2015). The steps involved in finding the slope using the 
nonparametric method are as follows:

Step 1: Arrange the observations in ascending order, based 
on  x value, i.e., x(1) ≤ x(2) ≤ … ≤ x(n). The associated values 
of  which may not be in ascending order are taken, i.e., y[1], 
y[2], …, y[n]. The new pairs will be (x(i), y[i]).

Step 2: All the data are divided into m - subsamples. These 
subsamples contains r elements, such that m × r = n. The 
samples are then arranged in the following form: 
 

 
,

 

where m is the maximum divisor of n, such that m ≤ r; as 
an example, if n = 50, then m = 5 and r = 10 respectively. 

Step 3: Find all the possible paired slopes.

Step 4: Repeat Steps 1 to 3 by interchanging y and x to get 
another possible paired slopes of by(k)ij.
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Step 5: Find the median of all these slopes. 

  
  
 Hence, by assuming known slope as given by the , 
we may have a robust estimate of the parameters in linear 
functional relationship model and denoted by LFRM2. 

EXPECTATION-MAXIMIZATION ALGORITHM

EM algorithm is one example of imputation method 
using maximum likelihood, where it finds the maximum 
likelihood estimates through an iterative algorithm when 
there are missing values in the dataset (Little & Rubin 
1987). In short, EM will ‘fill in’ the Ymis, which are the 
missing data, based on an initial estimate of θ (whereby 
the estimate of θ is found by using only the data that are 
observed). Then,  θ is re-estimated based on Yobs, which 
are the data that we observe and the filled-in Ymis  and this 
process is iterated until the estimates converge (Howell 
2008). In order to elaborate, EM comprises of two steps 
namely the expectation or E-Step and the maximization 
or M-Step. In the E-step, we impute the missing values by 
replacing Ymis with the expected value of  E(Ymis|Yobs, θ), by 
assuming θ = θ(t). Next, in the M-step, the expected value 
that we obtained from E-step will be maximised. These 
two steps will be done iteratively until it converges to a 
local maximum of the likelihood function (Schafer 1997). 
A detailed explanation on the convergence properties of EM 
algorithm can be found in some literature, as an example 
by Wu (1983). 
 EM algorithm has become popular because of its 
simplicity, the generality of its theory and because of its 
wide application (Dempster et al. 1977). Several examples 
of the applicability of EM include handling missing data in 
air pollutants studies (Schafer 1997), in linear regression 
model (Junger & de Leon 2015) and also in survival model 
(Wang & Miao 2009).

EXPECTATION-MAXIMIZATION WITH 
BOOTSTRAPPING ALGORITHM

The emerging expectat ion-maximizat ion with 
bootstrapping (EMB) algorithm is similar to the regular 
expectation-maximization (EM) algorithm. However, it 
involves multiple nonparametric bootstrap samples of the 
original incomplete data. The EMB algorithm performs 
multiple imputations that ‘fills in’ the missing values in 
the incomplete data set. Multiple imputations are less 
biased and its efficiency is higher than the listwise deletion 
(Honaker et al. 2013; Rancoita et al. 2015). Applying 
multiple imputations can be quite challenging as the 
nature of its algorithm can be quite complicated, but with 
the available of high performance computing, it can help 
perform the multiple imputations in a much advanced way 
(Honaker et al. 2013).

PERFORMANCE INDICATORS

In order to measure the performance of our imputation 
using EM and EMB algorithm, we use several measurements 
namely the mean absolute error (MAE), root-mean-square 
error (RMSE) and estimated bias (EB). MAE is the average 
of the difference between the predicted and actual data 
points (Junnninen et al. 2004) and is given by
        
 MAE = ,   (6)

where N is the number of imputations, Pi are the imputed 
values; and Oi are the observed data values. Values of MAE 
can be from 0 to infinity in which a value of zero is an 
indicative of a perfect fit.
 RMSE measures the differences between the predicted 
and actual data points and is given by:

 RMSE =  (7)

with N is the number of imputations Pi  and Oi  are the 
imputed and observed data points, respectively (Lindley 
1947). A small value of RMSE suggests a good fit and large 
value otherwise. 
 Mean of estimated biased (EB) of a parameter on the 
other hand is defined by the mean of the absolute difference 
of the estimated value of the parameters obtained from the 
observed data and the estimated value of the parameters 
obtained from the data after imputing the missing values. 
A small EB is indicative of a reliable performance estimator 
(Lindley 1947).

SIMULATION STUDY

A simulation study is conducted to investigate the 
performance of these two imputation methods namely 
the EM and EMB. For the first simulation study, we use 
the LFRM1 as in (1), where without any loss of generality, 
the parameters are set to α = 1,  β = 1,   = 0.1, λ = 1 
with sample sizes, n = 50 and 100, respectively. For the 
simulation study, we assume the missing data are missing 
at random (MAR) and are inserted randomly at 5, 10, 20 
and 30% levels, respectively (Howell 2008). We conducted 
this simulation for 5000 trials and the MAE, RMSE and EB 
of these two imputation methods, namely EM and EMB 
were analysed.
 From Tables 1 and 2, we observe that both methods 
perform well, with small MAE and small RMSE at each  
n. EMB has significantly smaller MAE and RMSE values 
compared to EM for n = 50 and 100, respectively. For 
each level of percentage missing namely at 5, 10, 20 and 
30%, respectively, the EMB consistently gives smaller MAE 
and RMSE values as compared to the EM. Looking at the 
RMSE for n = 50, at 5% missing values, the EMB values 
are different at only two decimal points from EM. It is 
worthwhile to note that the percentage change from EM 
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to EMB shows a significant difference of about 8.99% of 
improvement in the RMSE values. Another example, for the 
20% missing value at n = 50, the difference is significant 
with 15.23% improvement from EM to EMB. This proves 
that even though the difference of RSME is at two decimal 
places, it shows a huge improvement of EM to EMB. We note 
that as the sample size increase from n = 50 to n = 100 , 
the RMSE values of EMB decrease at all levels of percentage 
of missingness. This suggest that at a higher n, it leads to 
a smaller RMSE and bias.
 From Tables 3 and 4, we observe that using EM 
and EMB, both methods give small value for the mean 
of the estimated bias for all the parameters α, β, and . 
Imputation using EMB, however gives better precision with 
consistently even smaller bias values for all parameters as 
compared to the EM. Looking at the standard error of each 
parameter in the parenthesis, it shows that at each level 
of missingness, the EMB outperforms the EM by having 
smaller values of standard error. These observations clearly 
indicate the superiority of EMB in comparison to the EM. 
 The study is also replicated for the LFRM2, in which 
the slope parameter β is estimated using a nonparametric 
method. From the results as presented in Tables 5 and 6, 
both methods of imputations are good, but EMB algorithm 
shows consistently smaller MAE and RMSE as compared to 

the EM algorithm for both n = 50 and 100. We note that, as 
the percentage of missing data increases, EMB outperforms 
EM in terms of smaller MAE and RMSE values. Similar to 
LFRM1, the RMSE values of EM and EMB differs at only 
two decimal places but if we look at the percentage of 
improvement from EM to EMB, the change is significant. 
Again, the superiority of EMB applies for the LFRM2. 
Likewise, as n increases from 50 to 100, both MAE and 
RMSE suggest a better precision for the LFRM2.
 For the measure of estimated bias as given in Tables 
7 and 8, both methods give small values for the mean 
of the estimated bias for all the parameters α, β, and  
Imputation using EMB, however gives better precision 
with smaller bias values for all parameters as compared 
to the EM. From the standard error of each parameter in 
the parenthesis, it shows that at each level of missing data, 
the EMB outperforms the EM by having smaller values of 
standard error. These observations clearly indicate the 
superiority of EMB in comparison to the EM.
 In summary, the results of simulation studies suggested 
that imputing missing values using both EM and EMB are 
good, with EMB outperforms EM for models of the linear 
functional relationship type as they give smaller values of 
MAE, RMSE and smaller values of the standard error of the 
estimated bias in the parameters. 

TABLE 1. MAE and RMSE for LFRM1 using two imputation methods for n =50

Percentage of 
missing (%)

 Performance
 indicator 

Methods 
MAE Percentage change of 

MAE (%) RMSE Percentage change 
of RMSE (%)

5%
EM 3.7530

25.13
5.4943

8.99
EMB 2.8100 5.0003

10%
EM 6.2616

19.82
5.1894

6.62
EMB 5.0210 4.8457

20%
EM 5.3612

17.85
4.9344

15.23
EMB 4.4042 4.1827

30%
EM 5.2312

13.21
5.4744

11.31
EMB 4.5404 4.8550

TABLE 2. MAE and RMSE for LFRM1 using two imputation methods for n =100
 

Percentage of 
missing (%)

 Performance
 indicator 

Methods 
MAE Percentage change of 

MAE (%) RMSE Percentage change 
of RMSE (%)

5%
EM 4.6860

30.04
5.6699

32.43
EMB 3.2781 3.8314

10%
EM 5.2109

31.64
4.7434

16.36
EMB 3.5623 3.9672

20%
EM 5.6734 

49.06
6.1135

26.60
EMB 2.8900 4.4872

30%
EM 4.4952

25.22
5.5477

17.99
EMB 3.3617 4.5497
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TABLE 3. Mean of estimated bias and (standard error) of the parameters for LFRM1 
using two imputation methods for n =50

Percentage of 
missing (%)

 Parameters
 Methods α β

5%

EM
3.621E-02 6.600E-03 5.101E-04

(3.001E-02) (5.321E-03) (4.231E-04)

EMB
3.024E-02 6.071E-03 4.403E-04

(1.503E-02) (2.952E-03) (3.395E-04)

10%

EM
2.986E-02 5.643E-03 8.028E-04

(2.228E-02) (4.225E-03) (7.220E-04)

EMB
2.865E-02 5.510E-03 6.829E-04

(2.208E-02) (4.217E-03) (5.599E-04)

20%

EM
3.086E-02 5.613E-03 1.147E-03

(2.291E-02) (4.193E-03) (1.010E-03)

EMB
2.939E-02 5.496E-03 9.250E-04

(2.176E-02) (4.076E-03) (7.372E-04)

30%

EM
2.144E-02 3.915E-03 7.425E-04

(1.619E-02) (2.942E-03) (6.027E-04)

EMB
2.079E-02 3.895E-03 5.904E-04

(1.552E-02) (2.909E-03) (4.477E-04)

TABLE 4. Mean of estimated bias and (standard error) of the parameters for LFRM1 
using two imputation methods for n =100

Percentage of 
missing (%)

 Parameters
 Methods α β

5%

EM
2.012E-02 3.909E-03 3.837E-04

(1.538E-02) (2.983E-03) (3.437E-04)

EMB
2.000E-02 3.907E-03 3.157E-04

(1.485E-02) (2.899E-03) (2.456E-04)

10%

EM
2.064E-02 3.944E-03 5.340E-04

(1.545E-02) (2.960E-03) (4.489E-04)

EMB
1.989E-02 3.827E-03 4.301E-04

(1.514E-02) (2.894E-03) (3.375E-04)

20%

EM
2.132E-02 3.892E-03 7.952E-04

(1.616E-02) (2.974E-03) (6.492E-04)

EMB
2.053E-02 3.847E-03 6.271E-04

(1.567E-02) (2.915E-03) (4.905E-04)

30%

EM
2.244E-02 3.923E-03 9.732E-04

(1.675E-02) (2.956E-03) (7.761E-04)

EMB
2.093E-02 3.835E-03 7.636E-04

(1.612E-02) (2.921E-03) (5.913E-04)
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TABLE 5. MAE and RMSE for the LFRM2 by using two imputation methods for n =50

Percentage of 
missing (%)

 Performance
 indicator

Method 
MAE Percentage change 

of MAE (%) RMSE Percentage change 
of RMSE (%)

5%
EM 7.3911

27.67
9.0257

39.02
EMB 5.3460 5.5041

10%
EM 5.6922

48.60
7.3679

15.72
EMB 2.9257 6.2096

20%
EM 5.3877

4.52
5.7500

7.44
EMB 5.1443 5.3224

30%
EM 3.4405

6.86
4.8878

10.43
EMB 3.2045 4.3782

TABLE 6. MAE and RMSE for the LFRM2 by using two imputation methods for n =100

Percentage of 
missing (%)

 Performance
 indicator

Method 
MAE Percentage change 

of MAE (%) RMSE Percentage change 
of RMSE (%)

5%
EM 6.0935

36.73
5.4978

2.60
EMB 3.8556 5.3549

10%
EM 5.1017

53.49
5.2083

-0.67
EMB 2.3729 5.2433

20%
EM 3.7023

6.07
5.4531

25.83
EMB 3.4775 4.0445

30%
EM 3.9048

18.18
4.3791

4.73
EMB 3.1950 4.1721

TABLE 7. Mean of estimated bias and (standard error) of the parameters 
for LFRM2 using two imputation methods for n =50

Percentage of 
missing (%)

 Parameters
Methods α β 

5%

EM
3.069E-02 5.944E-03 4.899E-04

(2.329E-02) (4.511E-03) (4.812E-04)

EMB
3.032E-02 5.915E-03 4.320E-04

(2.280E-02) (4.451E-03) (3.857E-04)

10%

EM
3.125E-02 5.930E-03 7.795E-04

(2.407E-02) (4.588E-03) (7.035E-04)

EMB
3.027E-02 5.828E-03 6.445E-04

(2.294E-02) (4.432E-03) (5.249E-04)

20%

EM
3.258E-02 6.007E-03 1.153E-03

(2.436E-02) (4.523E-03) (9.966E-04)

EMB
3.169E-02 5.976E-03 9.235E-04

(2.404E-02) (4.489E-03) (7.311E-04)

30%

EM
3.390E-02 5.968E-03 1.449E-03

(2.543E-02) (4.511E-03) (1.225E-03)

EMB
3.292E-02 6.081E-03 1.190E-03

(2.451E-02) (4.498E-03) (9.659E-04)
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 The EM algorithm has largely been used in solving 
maximum-likelihood parameter estimation problems 
(Bilmes 1998; Bock & Murray 1981; Dempster et al. 
1977). It has also become popular in handling missing data 
because of its simplicity, in spite of its slow convergence 
rate (Couvreur 1996). Nevertheless, EM has wide 
application in addressing missing data in medical (Dziura 
et al. 2013) and environmental data (Razak et al. 2014; 
Zainuri et al. 2015).
 In this paper, we improved the EM algorithm by 
integrating bootstrap in the EM procedure. Simulation 
studies indicate the superiority of EMB in both LFRM1 and 
LFRM2 models. The re-sampling method of EMB made the 
estimator improved by creating a multiply-imputed values 
for each missing data. As a result, the average value of the 
imputed dataset contributes towards making the estimates 
more accurate with smaller standard errors.

APPLICATION TO REAL DATA

In order to illustrate with a practical example, we consider 
a data set which consists of 96 observations which are 
free from any outliers (Goran et al. 1996). The study 
was to examine the accuracy of some widely used body-
composition techniques for children, using the dual-energy 
X-ray absorptiometry (DXA). The sample comprises 
of children ages from four to ten years. They assessed 
children’s body fat by using two variables, namely the 
skinfold thickness (ST) and bioelectrical resistance (BR). 
We assume that the measurement error can take place in 

either variable of this experiment and the relationship 
between these two variables can be expressed in a LFRM 
as given in (1).
 In the interest of measuring the performance of 
EM algorithm and EMB algorithm, we randomly make 
the dependent variable missing at 5, 10, 20 and 30%, 
respectively. Both LFRM1 and LFRM2 models are applied 
in this experiment.
 Table 9 shows the values of MAE and RMSE for LFRM1, 
using both imputation methods of EM and EMB. We observe 
that there is a consistency in the results whereby the EMB 
algorithm has smaller MAE and RMSE values as compared 
to using the EM algorithm. Similar conclusion can be made 
for the results in Table 10, in which the values of bias using 
EMB are smaller in comparison to the EM.
 As mentioned earlier, we also consider the LFRM 
model where the slope parameter is estimated using a 
nonparametric method, namely LFRM2. Table 11 indicates 
the MAE and RMSE values of the slope for LFRM2 while 
Table 12 illustrates the EB of the parameters of the slope 
for LFRM2. From both Tables 11 and 12, we note that, EMB 
algorithm proves to be better with smaller values of EB, 
MAE and RMSE.
 It can be inferred that from this practical application, 
both methods of imputations namely EM and EMB 
demonstrate good results based on the EB, MAE and RMSE 
values. It is shown that imputing missing values using EMB 
gives a better approach than the EM in handling missing 
values for data that can be modelled by the linear functional 
relationship formulation. In this practical example, it 

TABLE 8. Mean of estimated bias and (standard error) of the parameters 
for LFRM2 using two imputation methods for n =100

Percentage of 
missing (%)

 Parameters
 

Methods
α β 

5%

EM
5.895E-02 1.165E-02 9.344E-04

(4.489E-02) (8.898E-03) (1.128E-03)

EMB
5.889E-02 1.163E-02 8.523E-04

(4.353E-02) (8.614E-03) (1.055E-03)

10%

EM
2.283E-02 4.389E-03 5.323E-04

(1.721E-02) (3.285E-03) (4.367E-04)

EMB
2.240E-02 4.366E-03 4.339E-04

(1.690E-02) (3.265E-03) (3.334E-04)

20%

EM
2.365E-02 4.391E-03 8.042E-04

(1.771E-02) (3.303E-03) (6.577E-04)

EMB
2.258E-02 4.299E-03 6.466E-04

(1.712E-02) (3.244E-03) (4.948E-04)

30%

EM
2.432E-02 4.377E-03 1.064E-03

(1.880E-02) (3.344E-03) (8.295E-04)

EMB
2.337E-02 4.358E-03 8.284E-04

(1.738E-02) (3.255E-03) (6.307E-04)
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TABLE 9. MAE and RMSE for LFRM1 for real data using two imputation methods

Percentage of 
missing (%)

 Performance
 indicator

Method 
MAE Percentage change 

of MAE (%) RMSE Percentage change 
of RMSE (%)

5% EM
EMB

5.2256
4.6521 10.97 4.6518

3.3400 28.20

10% EM
EMB

5.5593
4.0135 27.81 5.3013

4.9756 6.14

20% EM
EMB

4.9928
3.6883 26.13 4.9781

4.7166 5.25

30% EM
EMB

5.1355
4.0946 20.27 5.5337

5.2044 5.95

TABLE 10. Estimated bias of parameters using LFRM1 for real data

Percentage of 
missing (%)

 Parameters
 

Methods
α β 

5% EM
EMB

0.4926
0.3975

0.0997
0.0997

0.0782
0.0573

10% EM
EMB

0.6098
0.4895

0.0997
0.0997

0.1821
0.1036

20% EM
EMB

0.5243
0.4366

0.0997
0.0997

0.1625
0.0772

30% EM
EMB

0.6315
0.6236

0.0997
0.0997

0.1017
0.0524

TABLE 11. MAE and RMSE for LFRM2 for real data using two imputation methods

Percentage of 
missing (%)

 Performance
 indicator

Method 
MAE Percentage change 

of MAE (%) RMSE Percentage change 
of RMSE (%)

5% EM
EMB

3.6671
2.2190 39.49 5.5610

3.3070 40.53

10% EM
EMB

2.7472
2.3959 12.79 3.7241

3.5494 4.69

20% EM
EMB

2.6680
1.6978 36.36 5.2740

4.4424 15.77

30% EM
EMB

3.2698
2.6744 18.21 3.8403

2.8568 25.61

TABLE 12. Estimated bias of parameters for LFRM2 for real data

Percentage of 
missing (%)

 Parameters
 

Methods
α β 

5% EM
EMB

0.0236
0.0067

0.0080
0.0080

0.0963
0.0128

10% EM
EMB

0.0508
0.0406

0.0080
0.0080

0.1865
0.0196

20% EM
EMB

0.1538
0.0373

0.0080
0.0080

0.1775
0.1194

30% EM
EMB

0.1950
0.1543

0.0080
0.0080

0.2707
0.1381
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is proven that EMB has improved the precision in the 
algorithm and this is reflected by its superior performance. 

CONCLUSION

In this paper, we have investigated two modern approaches 
of handling missing values namely EM and EMB for 
datasets that can be modelled by the linear functional 
relationship model. The results from simulation study 
suggested both methods of imputation can be applied 
for two forms of the linear functional relationship model. 
Even in the presence of high percentage of missing values 
(to as high as 30%), both methods adequately handle the 
problem. These can be seen with small bias measure of 
parameter and small MAE and RMSE. When comparing the 
two imputation methods, EMB is superior to EM. Again, 
this is evidenced by the MAE and RMSE values. EMB has 
several advantages where it can be easily applied to LFRM, 
the computing time is much faster as compared to the EM 
and the bootstrapping method gives better precision to 
the parameter estimates. 
 We have illustrated using a real data set that compares 
the relationship between two variables measurements. 
The results obtained showed that if in the case when the 
real data set has missing values for a percentage to as 
high as 30%, both methods of imputation are suitable for 
handling missing values with EMB being superior than EM. 
 Nowadays, modern techniques are increasingly more 
popular with recent computing capabilities that perform 
at very high speed and have very good precision in the 
algorithm. Both EM and EMB provide practical approaches 
in handling missing data sets that is of the linear 
functional relationship model with better performance 
for EMB.
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