Geochemistry of Trace Elements as One of the Important Coal Quality Parameter: An Example from Balingian Coal, Malaysia

Say-Gee Sia* & Wan Hasiah Abdullah

ABSTRACT
Ash and sulphur are the two main variables that influence coal quality and are therefore very important contractual parameters in a coal supply agreement. Coal which is low in ash yield and sulphur content is considered as ‘cleaned coal’. Nonetheless, combustion of coal is also known to release toxic trace elements, which are known or suspected to be carcinogenic and may also cause respiratory problems, pregnancy complications, premature mortality and possibly a wide range of health problems. The two traditionally used coal quality parameters have proven to be insufficient for defining ‘cleaned coal’. This is evidenced by the low ash and low sulphur Balingian coals that is seen as relatively safe in environmental terms, but still contains high concentrations of potentially hazardous trace elements which may pose health and environmental threats during coal combustion. Therefore, a comprehensive assessment of coal quality should also include information on concentration, spatial distribution and modes of occurrence of trace elements, particularly the 15 potentially hazardous trace elements identified by the United States Clean Air Act Amendments (1990).

Keywords: Ash; coal; potentially hazardous trace elements; sulphur

INTRODUCTION
Coal combustion is known to produce large quantities of hazardous air pollutants that have the potential to cause a wide range of health and environmental problems. The four principal hazardous air pollutants associated with coal combustion which was included in the list of the hazardous air pollutants of the Clean Air Act Amendments 1990 are sulphur dioxide (SO$_2$), nitrogen oxides (NOx), particulate matter (PM) and carbon dioxide (CO$_2$). Besides the four major pollutants, combustion of coal is also known to release toxic trace elements, particularly the 15 potentially hazardous trace elements identified by the United States Clean Air Act Amendments (US Public Law 1990). The 15 potentially hazardous trace elements are arsenic, beryllium, cadmium, chlorine, chromium, cobalt, fluorine, mercury, manganese, nickel, lead, antimony, selenium, thorium and uranium. Environmental and health impacts of coal burning are generally related to the concentration, toxicity and modes of occurrence of various trace elements in the coal (Finkelman 1995). A highly toxic element is dangerous even at very low concentrations, whereas a benign element remains harmless at relatively high concentrations. Some elements, such as selenium, nickel, manganese and zinc are essential to humans at low concentrations but are toxic to humans and ecosystems at higher concentrations (Frankenberger & Engberg 1998; Fuge 2005; Miller 2011; Wang et al. 2010).

Although potentially hazardous trace elements only present in parts per million levels in coal, as a result of
coal combustion several tons of these pollutants might be released to the environment (Vejahati et al. 2010). Many coal combustion-related health problems, such as arsenism, fluorosis, selenosis, mercurialism and berylliosis (beryllium poisoning), have been reported in many developing countries (Table 1), especially where mineralized coals are used in open, unvented ovens in homes for cooking, home heating and food drying (Dai et al. 2012; Ding et al. 2001; Finkelman et al. 1999; Tang et al. 2009; Zhao et al. 2008) or where residential areas are within the range of emissions from coal-fired power plants (Fuge 2005; Keegan et al. 2006; Thornton et al. 2003). Despite of this, trace elements analysis has only been carried out in three of the fifteen coalfields in Malaysia viz. Mukah, Balingian and Merit coalfields.

THEORETICAL FRAMEWORK

The concentration of trace elements differs greatly between and within coal seams and coalfields. Though coals with unusually high concentrations of trace elements are quite rare, they have been reported in many coal basins worldwide (Dai et al. 2012). Anomalous concentrations of trace elements in coals are usually related to source rock, volcanic ash, groundwater and magmatic/hydrothermal fluids (Baruah et al. 2005; Dai et al. 2012a, 2005; Finkelman 1993; Ren et al. 1999; Sun et al. 2010; Zhang et al. 2002), which accumulated in coals from the earliest peat-accumulation stage to the latest anthracite stage (Seredin & Finkelman 2008).

The adverse health and environmental effects caused by the use of coal, especially as fuel for the coal-fired power plant, has become a focus of debate over the need of energy against the desire to maintain a healthy physical and social environment. The health and environmental threats posed by inorganic toxic elements in coal are the potential release of these elements from coal to the environment during coal combustion and their potential hazard in groundwater if they are leached from coal mining waste, or from fly ash at disposal sites. Such hazards are of great public concern (Diehl et al. 2012; Miller 2011; Schweinfurth 2003; Swaine & Goodarzi 1995; US EPA 2000; US Public Law 1990; Vejahati et al. 2010; Zheng et al. 1999). Nonetheless, the potential hazard of the inorganic toxic elements to the groundwater is beyond the scope of this study. Therefore only the potential release of these elements to the environment as HAPs during coal combustion will be discussed in detail.

BALINGIAN COALFIELD

Balingian coalfield is located in the low-lying coastal plain between the Mukah and the Balingian Rivers of Sarawak, Malaysia covering an area of approximately 410 km² (Figure 1). Accumulation of Balingian coal took place in the Liang Formation during Upper Pliocene in fresh-water ombrotrophic raised bogs (Sia & Abdullah 2012b), though fauna identified suggests a brackish-water depositional environment in the coal zone, while the sediments outside the coal zone were deposited in a very shallow, near-shore type of marine depositional environment (Lietchi et al. 1960; Wolfenden 1960).

The Liang Formation is unconformably underlain by the Upper Eocene Metah Member of the Belaga Formation in the south and by the Lower Pliocene Begrith Formation in the north (Figures 2 and 3) (Wolfenden 1960). The Belaga Formation is a highly deformed deep-water turbidity deposit of the Upper Cretaceous to the Upper Eocene age (Lietchi et al. 1960; Wolfenden 1960). The sediments consist of intensely folded thinly interbedded sandstones with shales, mudstones, argillites and slates. The Begrith Formation consists of conglomerates, conglomeratic sandstones, mudstones, shales, tuffs and also coal beds. The formation contains mixed marine and brackish-water fauna, suggesting depositional conditions that were probably predominantly littoral (Wolfenden 1960).

The unconsolidated Liang Formation is approximately 950 m thick (Figure 3) and is made up of thick and structureless clays, sands, tuffs, coal seams and gravel lenses. Accumulation of Balingian coal took place in the Liang Formation, which hosted five potentially economic coal seams, ranging in thickness from 1.40-7.38 m, with a cumulative thickness of 22.42 m. The coal is subbituminous C in rank and is characterized by high moisture, low ash yield and low sulphur content. Mining activities were initiated in the Balingian coalfield in 2007. A total of 1.2 Mt of Balingian coal were extracted annually to fuel the 270 Mw capacity mine-mouth Mukah Coal-Fired Power Station.

<table>
<thead>
<tr>
<th>Trace Elements</th>
<th>Known health effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>China – Skin Cancer ~10,000 people</td>
</tr>
<tr>
<td></td>
<td>Czechoslovakia – Impaired hearing in children</td>
</tr>
<tr>
<td>Fluorine</td>
<td>Fluorosis affects 15 Million+ in China</td>
</tr>
<tr>
<td>Selenium</td>
<td>Selenosis in China ~ 500 people</td>
</tr>
<tr>
<td></td>
<td>Fish kills – Texas, North Carolina</td>
</tr>
<tr>
<td>Mercury</td>
<td>Various health problems in pregnant women and populations eating Hg contaminated fish</td>
</tr>
<tr>
<td>Beryllium</td>
<td>Increased autoantibodies – Czechoslovakia</td>
</tr>
</tbody>
</table>
FIGURE 1. Location map of the Balingian Coalfield

FIGURE 2. The geology of the study area
The modes of occurrence of a trace element in coal may determine the cleanability potential of a trace element. Inorganically associated trace elements can be effectively removed, to a large extent, by applying physical cleaning technologies; this is not, however, applicable for organically associated trace elements (Alto 1998). Arsenic, lead and antimony are mostly organically and to a lesser extent, they are bound to discrete minerals in the form of aluminosilicates in the Balingian coal. Therefore, a major portion of the arsenic, lead and antimony cannot be easily removed by physical cleaning technologies.

The modes of occurrence of a trace element in coal can affect the way the trace element behaves during coal combustion (Tewalt et al. 2001; Vejahati et al. 2010) and thus will have different health and environmental impacts (Finkelman & Gross 1999; Finkelman et al. 1999; Huggins 2002; Tewalt et al. 2001). The organically and associated trace elements tend to be vaporized, either escaping to the atmosphere or are adsorbed on the fine fly ash particles upon combustion in the furnace. The inorganically associated elements are generally non-volatile or have very low volatility and tend to be retained in the bottom ash and in the fly ash particles upon combustion (Dai et al. 2010; Finkelman 1994; Huang et al. 2004; Liu et al. 2005, 2004; Querol et al. 1995; Spears & Zheng 1999; Vassilev & Braekman-Danheux 1999; Vejahati et al. 2010), though partitioning of trace elements also depends on the natural volatility of these elements (Clarke & Sloss 1992; Miller 2011; Querol et al. 1995; Suárez-Ruiz & Ward 2008; Vejahati et al. 2010).

CONCLUSION

Though low ash yield and low total sulphur content in the Balingian coal are seen as relatively safe in environmental terms, nonetheless, Balingian coal is highly enriched in arsenic, lead and antimony compared with their respective Clarke values which may pose health and environmental threats during coal combustion. These elements are mostly organically bound and hence cannot be effectively removed by physically cleaning technologies. Analytical results indicated that a substantial portion of the organically associated arsenic, lead and antimony in the Balingian coal vaporize and are released into the atmosphere during coal combustion in the power plant; as such, coal-fired power plants burning similar coal may pose health and environmental risks if they are not fitted with appropriate emission control devices. Therefore, to ensure an environmental friendly use of coal, it is important to understand the quality of the coal without limiting to the two traditional coal quality parameters (ash and sulphur) but also the potentially hazardous trace elements. It is crucial that potentially hazardous trace elements are reduced to safe levels through selective mining, coal cleaning or emission control measures.
ACKNOWLEDGEMENTS

The study received financial support from the University of Malaya IPPP research Grant No. FP042-2013A. The authors wish to thank Mr. Jaithish John, Principal Geoscience Officer of the Minerals and Geoscience Department Malaysia, for various forms of assistance provided.

REFERENCES


