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Numerical Algorithm of Block Method for General Second 
Order ODEs using Variable Step Size

(Algoritma Berangka Kaedah Blok bagi ODE Umum Peringkat Kedua 
Menggunakan Pemboleh Ubah Saiz Langkah)
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ABSTRACT

This paper outlines an alternative algorithm for solving general second order ordinary differential equations (ODEs). 
Normally, the numerical method was designed for solving higher order ODEs by converting it into an n-dimensional first 
order equations with implementation of constant step length. Nevertheless, this involved a lot of computational complexity 
which led to consumption a lot of time. Consequently, a direct block multistep method with utilization of variable step 
size strategy is proposed. This method was developed for computing the solution at four points simultaneously and the 
derivation based on numerical integration as well as using interpolation approach. The convergence of the proposed 
method is justified under suitable conditions of stability and consistency. Five numerical examples are considered and some 
comparisons are made with the existing methods for demonstrating the validity and reliability of the proposed algorithm.
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ABSTRAK

Kertas ini menggariskan satu algoritma alternatif untuk menyelesaikan persamaan pembezaan biasa (ODE) umum 
peringkat kedua. Kebiasaannya, kaedah berangka untuk menyelesaikan ODE peringkat tinggi direka dengan menukarkan 
ia ke dalam n-dimensi persamaan peringkat pertama dengan perlaksanaan panjang langkah kekal. Walau bagaimanapun, 
ini melibatkan kerumitan pengiraan yang membawa kepada penggunaan masa yang banyak. Oleh yang demikian, satu 
kaedah langsung pelbagai langkah blok dengan penggunaan strategi saiz langkah berubah dicadangkan. Kaedah ini 
dibangunkan bagi menghitung penyelesaian pada empat titik secara serentak dan terbitannya berdasarkan integrasi 
berangka serta menggunakan pendekatan interpolasi. Penumpuan kaedah yang dicadangkan dijustifikasi mengikut syarat 
kestabilan dan tekal yang sesuai. Terdapat lima contoh berangka dipertimbangkan dan beberapa perbandingan telah 
dibuat dengan kaedah yang sedia ada untuk menunjukkan kesahan dan kebolehpercayaan algoritma yang dicadangkan.

Kata kunci: Kaedah blok; persamaan pembezaan biasa umum peringkat kedua; saiz langkah berubah 

INTRODUCTION

In modern work of engineering, physics, applied maths 
and science, second order equations arise very frequently. 
To date, these equations have been extensively studied 
and books have been composed along the mathematical 
methods available for such equations. Generally, an 
ODE is classified into initial value problems (IVPs) and 
boundary value problems (BVPs). Hence, second order 
non-stiff IVPs of the form as (1) will be considered and 
solved directly. 

 
 . (1)

 In literature, a various type of numerical methods 
have been developed in treating such problems as (1). 
Usually, the problems were solved by reducing the higher 
order ODE into a system of first order ODEs and solved 
them using the numerous methods available. However, a 
number of researchers have attempted the solution of (1) 
directly without reduction to systems of first order ODEs  

(Kayode 2008; Majid & Mohamed 2006; Waeleh et al. 
2011a).  This is an alternative way to save some of the 
computational time.
 In this study, a numerical method based on concurrent 
computation was developed. The method was designed 
for generating a set of solutions concurrently, which was 
referred to the ‘block’ term (Rosser 1967). The concept 
of block method was first proposed by Milne (1953), 
who used block method only as a tool for calculating the 
starting values for predictor corrector algorithm. Cash 
(1983) had studied block method based upon Runge-
Kutta method for the numerical solution of non-stiff 
IVPs whereas Fatunla (1991) developed block method 
for solving special second order ODEs. The block method 
based on Adams type formula for solving higher order 
ODEs directly was developed by Omar and Suleiman 
(2005). However, the authors designed the explicit 
method for computing solutions only at two points 
simultaneously using constant step size.
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 An implementation of fixed step size is the most 
commonly used in deriving numerical method (Anakira et 
al. 2013; Jator 2012; Jikantoro et al. 2015; Pandey 2014). 
However, the utilization of variable step size strategy 
in the numerical method had been adopted by several 
researchers such as Cash and Girdlestone (2006), Majid 
and Suleiman (2006), Majid et al. (2012) and Waeleh 
et al. (2011b). Majid and Suleiman (2006) introduced 
implicit method for solving higher order ODEs directly. 
The researchers presented the method in the simple form 
of the Adams Moulton method with the implementation 
variable step size. The application of the block method 
with the implementation of varying the step size has 
been developed by Waeleh et al. (2011b) and the method 
proposed was designed for the numerical solutions of ODEs 
up to order six. Taken together, this research is an extension 
of the work in Waeleh et al. (2011b) in which the solution 
is computed at three points concurrently.

METHODS

In the 4-point multistep block method, the closed finite 
interval [a, b] is partitioned into a series of blocks and 
each block contains four equal subintervals. According 
to Figure 1, four equally distant points of the numerical 
solution will be generated simultaneously.

same back values with step size rh and qh. The formulae of 
4-point multistep block method are derived by integrating  
twice as follows:

Let xn+v = xn + vh, where v = 1,2,3 and 4.

 .
(2)

 The derivation proceeds by replacing the function 
f (x, y, yʹ) in (2) by the interpolating function which 
is generated from Lagrange polynomial. Furthermore, 
the set of interpolation points involved in deriving the 
corrector formulae are {(xn–4, fn–4), …, (xn+4, fn+4)} and 
for predictor are  {(xn–7, fn–7), …, (xn, fn)} thus the order 
of predictor is one order less than corrector. Equation 
(2) will be integrated over the corresponding interval 
and consequently produces the corrector and predictor 
formulae.
 The step size will be set to be constant, doubled and 
halved with the value of step size ratios are ((r = 1, q = 
1), (r =1, q = 2), (r = 1, q = 0.5)), (r = 0.5, q = 0.5) and 
(r = 2, q =2), respectively. This strategy can reduce the 
number of formulae to be stored in the code and as a 
result, it will save the amount of storage. The coefficients 
of the corrector formulae for r = 1 will then be tabulated 
in Tables 1 to 4. To simplify, the general formulae for 
the 4-point multistep block method can be written in a 
compact form as follows:

  , (3)

where  stands for the coefficients of the formulae; d is 
the order of problem; g is the number of times which (1) is 
integrated; and k is the number of term when the equation is 
integrated. For the corrector formulae of 4-point multistep 
block method, the value of s = 4, t = 4 and for predictor 
s = 7, t = 0.
 The formulae of 4-point multistep block method in the 
form of discrete methods for first point corrector formulae 
when r = 1, are shown as (4) and (5).

Integrate once:

 (4)

Integrate twice: 

(5)

FIGURE 1. 4-point multistep block method

 The numerical solution at the point xn+1, xn+2, xn+3 and  
xn+4 in the computed block will be obtained by consuming 
the solutions at the previous block which involved the 
points xn–4, xn–3, xn–2, xn–1 and xn. After completing the 
calculation of the numerical solutions in the current 
block, the process will proceed for the subsequent i-th 
block where the points xn, xn+1 xn+2, xn+3 and xn+4 in the 
(i – 1)-th block will be assigned as xn–4, xn–3, xn–2, xn–1 and 
xn, respectively. This 4-point multistep block method will 
take the form as Adams method and will approximate the 
numerical solution using variable step size mode. Noting 
that h is the step size in the computed block whereas rh 
and qh are the step size in the previous blocks where r and 
q are the step size ratio.
 Numerical integration and the Lagrange interpolation 
polynomial will be utilized as a step in deriving the formulae 
of 4-point multistep block method. This suggested method 
will be performed by simultaneously generating four 
approximate solutions yn+1, yn+2, yn+3  and yn+4 with step size 
h at the points xn+1, xn+2, xn+3 and xn+4, respectively. These 
four solutions will be computed simultaneously using the 
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TABLE 1. Coefficients of first point corrector formulae for 4-point 
multistep block method when r = 1

r = 1

g = 1

g = 2

r = 1

g = 1

g = 2

TABLE 2. Coefficients of second point corrector formulae for 4-point multistep block method when r = 1

r = 1

g = 1

g = 2

r = 1

g = 1

g = 2

TABLE 3. Coefficients of third point corrector formulae for 4-point multistep block method when r = 1

r = 1

g = 1

g = 2

r = 1

g = 1

g = 2



820 

CONVERGENCE AND STABILITY OF THE METHOD

The order of the 4-point multistep block method is 
calculated in a block form with the formulae of the 
proposed method written in a matrix differentiation 
equation:

 , (6)

where α,  β and λ are the coefficients of the method. Thus, 
the order and error constant of the method are calculated 
using the following formulae:

  (7)

 Applying the formulae (7) into (4) and (5) verified that 
the 4-point multistep block method is of order nine with 
error constants, 

 

 According to definition in Lambert (1973), the 
proposed method is consistent since it was of order nine 
which is greater than one.

 In the context of ODEs, an essential, practical criterion 
for a good functional method is to have a region of 
absolute stability or simply the stability region. The test 
equation y˝  = f = θyʹ + λy is substituted into the formulae 
of 4-point multistep block method. Consequently, having 
written in the matrix form and solving the determinant of 
At2 – (B + Ch + Eh2)t – (Dh + Fh2)  will give the stability 
polynomials, where A, B, C, D, E, F are the matrices. The 
stability polynomial obtained was solved for t and it can 
be seen that the roots were found to be zero and one.

For r = 1, 

 Stability polynomial :  (8)

 t = 0, t = 0, t = 0, t = 0, t = 0, t = 0, t = 0, t = 0, t = 0, 
t = 0, t = 0, t = 0, t = 0, t = 1, t = 1.
 
 Hence, the 4-point multistep block method is a zero 
stable method by Definition 3.2 in Hairer et al. (1987). 
Since the 4-point multistep block method has established 
the consistency and zero stability of the method, therefore 
the method is convergent according to the definition in 
Lambert (1973).
 In summary, the stability regions for the 4-point 
multistep block method are displayed in Figures 2, 3 and 
4. The region lies within the boundary of the dotted lines 
which is the shaded area. Notice that the stability region 
is largest when the step size is half (r = 2) and the smallest 
stability region determined by a double step size (r = 0.5). 
Looking at these stability regions obtained, the size of the 
stability regions increases as the step size becomes smaller 
hence indicates that the smaller step size will give better 
accuracy in the numerical approximations.

IMPLEMENTATION

The step of computing the numerical solution begins by 
calculating the initial step size and finds four initial values 

TABLE 4. Coefficients of fourth point corrector formulae for 4-point 
multistep block method when r = 1

r = 1

g = 1
9232

14175

g = 2

r = 1

g = 1

g = 2
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in the starting block using Euler method. Subsequently, 
the 4-point multistep block method can be employed 
until the end of the interval. In order to gain an efficient 
and reliable numerical approximation, predictor corrector 
mode was applied as . Pk–1 and Ck stands for 
an application of the predictor and corrector with different 
order k, as well as E indicates the evaluation of function 
f with m iteration. 
 For validating the current step, local truncation 
error (LTE) will be calculated by comparing the corrector 
formulae at the current iteration step with previous 
iteration. If the LTE is less than the specified tolerance, then 
the successful step achieved and the next step size will be 
calculated using the formula as follows:

  (9)

where δ is a safety factor and the value of δ is fixed at 
0.5. The step size for the current and previous block are 
denoted as hnew and hold, respectively, while k is the order of 
the corrector formulae. As has been remarked before, this 
method was designed with the implementation of varying 
the step size. For successful step, the next step size will be 
set to be repeated or doubled by the step size controller. 
However, for failure step, the step size is set to be halved 
and the end of the interval for each successive step will be 
checked using the test provided. 
 In order to simplify the description, the algorithm of 
4-point multistep block method is developed. The approach 
proceeds following the steps outlined below.
Step 1:  Set tolerance and calculate initial step size
Step 2:  Compute the initial value in the starting block 

using Euler method in PE(CE)m mode 
Step 3:  Predict the values of  and fp using 4-point 

multistep block method, where p = 8, 9, 10 and 
11 

Step 4: Correct the values of  and fp in Step 3 and iterate 

until it is converge using  
Step 5: Calculate LTE, if LTE < TOL  then the step success. 

Else halving the step size with hnew = 0.5 × hold  
and continue Step 3

Step 6: Calculate error of the computed solution,  Ep for 
p = 8, 9, 10 and 11

Step 7:  Compute maximum error of the computed block, 
 

Step 8:  Calculate hnew using the step size increment 
formula as (9)

Step 9:  If hnew > 2 × hold then hnew = 2 × hold. Else hnew = 
hold. Continue Step 3 

Step 10:  If  x11 + (4 × hnew) > b then hlast =    
Step 11:  Reset the values of seven back points with hlast 
Step 12:  Do Step 3 and Step 4 for the last block
Step 13: Exit the program and execute the results

NUMERICAL RESULTS

In order to assess the proposed method, five test problems 
were tested and run at a difference value of tolerance with 
the results obtained are summarized in Tables 5 to 9. A 
system as well as single equation of second order ODE are 
considered with the purpose of showing the competency 
of the developed method. The following numerical results 
have shown the comparison between 4-point multistep 
block method with the method in Abdelrahim and Omar 
(2016) and Yap and Ismail (2016). In Problems 2 to 5, the 
numerical results will be examined in terms of total steps 
taken as well as the value of maximum error. While for 

FIGURE 2. Stability region when r = 1

FIGURE 3. Stability region when r = 2

FIGURE 4. Stability region when r = 1
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TABLE 5. Numerical results for solving Problem 1

Abdelrahim and Omar (2016) 4-point multistep block method
MAXE TOL TS MAXE

1.6085(-5) 10-2 18 5.9286(-12)
10-4 25  6.0546(-15)
10-6 32  3.1096(-15)
10-8 38  1.6084(-15)
10-10 45 9.3702(-16)

TABLE 6. Numerical results for solving Problem 2

Abdelrahim and Omar (2016) 4-point multistep block method
TS MAXE TOL TS MAXE

100 5.4296(-6) 10-2 18 7.5088(-12)
10-4 25  2.8555(-12)
10-6 32 1.1597(-11)
10-8 38 5.2300(-12)
10-10 45 6.5093(-13)

TABLE 7. Numerical results for solving Problem 3

Abdelrahim and Omar (2016) 4-point multistep block method
TS MAXE TOL TS MAXE

100 1.8627(-9) 10-2 18 5.6512(-12)
10-4 25 6.2099(-15)
10-6 32  4.6563(-14)
10-8 38 1.4920(-14)
10-10 45 8.6494(-15)

TABLE 8. Numerical results for solving Problem 4

Yap and Ismail (2016) 4-point multistep block method
TS MAXE TOL TS MAXE

120 1.1848(-2) 10-3 73 1.5796(-3)
240 2.5053(-5) 10-6 128 3.6920(-6)
480 4.9288(-8) 10-9 230 5.5238(-9)
960 9.6155(-11) 10-12 423 1.1025(-11)

10-15 797 9.1186(-13)

TABLE 9. Numerical results for solving Problem 5

Abdelrahim and Omar (2016) Yap and Ismail (2016) 4-point multistep block method
TS MAXE TS MAXE TOL TS MAXE

30 1.2927(-12) 10 4.4482(-10) 10-3 22 1.4733(-8)
20 1.9583(-12) 10-6 32  6.7300(-10)
40 6.1062(-15) 10-9 43 2.2749(-11)
80 5.2181(-15) 10-12 52 1.3804(-12)

10-15 66  6.0099(-15)
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problem 1, only the accuracy will be considered as the 
number of steps taken is not given in Abdelrahim & Omar 
(2016). The notations used are as follows: TOL: Tolerance; 
TS: Total steps taken; MAXE: Magnitude of maximum error 
of the computed solution.

Problem 1 

  = 1 – cos x + sin( ) + cos( ),  y1(0) = 1, (0) = 0,   

 x ∈ [0,1],        y2(0) = 0, (0) = π.
 

Theoretical solution: y1 = cos x, y2 = πx. 

Problem 2 
 
  = –e–xy2,    y1(0) = 1,    (0) = 0,    x ∈ [0,1],

  = 2ex ,     y2(0) = 1,    (0) = 1.

Theoretical solution: y1 = cos x,  y2 = ex cos x.

Problem 3 

     y1(0) = 1,    (0) = 0,    x ∈ [0,1],

 
                       y2(0) = 0,    (0) = 1.

Theoretical solution: y1 = cos x,  y2 = sin x. 

Problem 4 

 y˝ + y = 0.001eix,   y(0) = 1,   yʹ(0) = 0.9995i, 

 x ∈ [0,40π],

which is equivalent to

 u˝ + u = 0.001 cos x,    u(0) = 1,    uʹ(0) = 0,

 v˝ + v = 0.001 sin x,     v(0) = 0,    vʹ(0) = 0.9995.

Theoretical solution: y = u(x) + iv(x) 
 
 u(x) = cos x + 0.0005x sin x

 v(x) = sin x – 0.0005x cos x.

Problem 5 

 y˝ = x(yʹ)2,  y(0) = 1,  yʹ(0) = ,  x ∈ [0,1].
 
Theoretical solution: y = 1 + ln .

DISCUSSION AND CONCLUSION

This study set out with the aim of assessing the accuracy 
and efficiency of the developed method with other direct 
block methods whose employed a constant step size. The 
data in Tables 5 to 7 show that the 4-point multistep block 
method is significantly outperformed Abdelrahim and 
Omar (2016) in terms of accuracy as well as steps taken for 
all tolerance. A similar pattern of performance is observed 
for Problem 4 with 4-point multistep block method 
manages to reduce the total step taken, approximately 
by half. 
 As can be seen from Table 9, numerical result for this 
proposed method has less two decimal accuracy compared 
to Abdelrahim and Omar (2016) with equivalent number 
of steps. Nevertheless, the proposed method reports 
comparable outcome with the method in Yap and Ismail 
(2016) and give a good result for all tolerances. The authors 
believe the efficiency of the proposed method could be 
clearly shown if the range of x increases.  Taken together, 
these results indicate that the proposed algorithm manages 
to solve system and single equation of second order ODEs 
directly. 
 To sum up, the accuracy obtained by this developed 
method is better and comparable with the method proposed 
in Abdelrahim and Omar (2016) and Yap and Ismail 
(2016). An implication of implementing variable step size 
is highlighted in the reduction of steps taken, therefore the 
efficiency of the method is marked. Thus, these findings 
offer crucial evidence that implementing variable steps 
size in the block methods could improve its efficiency as 
well as preserve the accuracy.
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