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Hardy’s Inequality for Functions of Several Complex Variables
(Ketidaksamaan Hardy untuk Fungsi Beberapa Pemboleh Ubah Kompleks)

VANSAK SAM & KAMTHORN CHAILUEK*

ABSTRACT

We obtain a generalization of Hardy’s inequality for functions in the Hardy space H1 (Bd), where Bd is the unit ball 
{z = (z1, …, zd) ∈   In particular, we construct a function φ on the set of d –dimensional multi-indices 

{n = (n1, …, nd) | ni ∈   {0}} and prove that if f(z) = Σ anz
n is a function in H1 (Bd), then   ≤   

Moreover, our proof shows that this inequality is also valid for functions in Hardy space on the polydisk H1 (Bd).

Keywords: Hardy’s inequality; Hardy space and Hilbert’s inequality

ABSTRAK

Kami memperoleh generalisasi ketidakseimbangan Hardy’s untuk fungsi dalam ruang Hardy H1 (Bd), dengan Bd 

adalah unit bola {z = (z1, …, zd) ∈   Secara khususnya, kami membina fungsi φ pada set indeks pelbagai 
d –dimensi {n = (n1, …, nd) | ni ∈   {0}} dan membuktikan bahawa jika f(z) = Σ anz

n  adalah fungsi di H1 (Bd), 

kemudian   ≤  Selain itu, bukti kami menunjukkan bahawa ketidakseimbangan ini juga adalah sah 

untuk fungsi dalam ruang Hardy ke atas polidisk H1 (Bd).

Kata kunci: Ketidaksamaan Hardy; Ruang Hardy dan ketidaksamaan Hilbert

INTRODUCTION

For z = (z1, …, zd) in the d –dimensional complex Euclidean 

space d, we define  = . Let Bd denote the open 

unit ball containing z ∈ dsuch that  < 1. A function
 f : Bd →  is holomorphic if for each i = 1, …, d and 
each fixed z1, …, zi–1, zi+1, …, zd, the function fi :  (z1, 
…, zi–1, ξ, zi+1, …, zd) is holomorphic as a function of one 
variable. For 0 < p < ∞, the Hardy space Hp(Bd) consists 
of all holomorphic functions f defined Bd on satisfying

 

where Sd is the boundary of Bd and dσ is the normalized 
surface measure. Note that one can also define Hardy space 
of functions defined on the polydisk Bd

 = B × … × B as the 
space of holomorphic functions f  satisfying:

 

where eiθ = (eiθ1, …, eiθd) and dθ = dθ1 … dθd.

 For the case p = 1, Hardy’s inequality for functions of 
one variable defined on the unit ball in  is well-known. 

It states that if f(z) =  anz
n ∈ H1, then

  

see Duren (1970). 
 There are some connections between Hardy’s 
inequality and inequalities in other Hilbert spaces. For 
example, Zhu (2004) translated this Hardy’s inequality 

to the inequality  

for functions   in the Bergman space .

 Sometimes, Hardy’s inequality appears in an integral 
form. In Sababheh (2008a, 2008b), the author proved 
Hardy-type inequalities concerning the integral of the 
Fourier transform  of a function f with certain properties. 
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That is, for   with   when 

ξ < 0 and α > 2, the inequality   holds.

 There is also a generalization on the multiplier   

in the summation of Hardy’s inequality. Paulsen and Singh 

(2015) replaced the term    in  by a larger 

class of sequences. They proved that there is a constant A 
therefore if (cn) is a sequence in some specific sequence 
space, then for any f in Hardy space H1, the inequality  holds 

. This generalization is for a function  f 

of one variable.
 To generalize Hardy’s inequality to functions f of 
several complex variables, we need to concern whether 
our functions are defined on the unit ball Bd or the polydisk 
Bd. Basically, we cannot apply iterated integrals (d –times) 
to a function in Hp (Bd )

 as we usually do to functions in
Hp (Bd

 ).
 In this paper, we will show that we can adjust to the 
proof in Duren (1970) to obtain Hardy’s inequality that is 
valid for functions in either Hp (Bd ) or Hp (Bd

 ). A difficulty 
in the case of functions of several complex variables is 
that a holomorphic function f is represented by f(z) = Σanz

n 
where n = (n1, …, nd) is a multi-index. However, we will 
show that the set of multi-indices can be totally ordered in 
the way which enables us to prove a generalized Hardy’s 
inequality.

MAIN THEOREMS

For multi-indices n = (n1, …, nd) and m = (m1, …, md) 
in   where N0 = {0, 1, 2, 3, …}, we define  
n! = n1! … nd! and n ± m = (n1 ± m1, …, nd ± md). For 
z = (z1, …, zd) ∈ d, we also define zn =  With this 
notation and for a given k ∈ N0, there are  terms of 
anz

n when |n| = k. 
 First we consider a lemma by Peter Duren which 
defines a bilinear form on vectors x = (xn) and y = (yn) in 


N and prove that it is bounded. We then generalize this 
result to the case where n are multi-indices. This result 
plays an important role in proving the Hilbert’s inequality 
in Lemma 3 and Hardy’s inequality in Theorem 2.

Lemma 1. Let ψ ∈ L∞ ([0, 2π]) and λn = ψ(t) dt, 
n = 0, 1, 2, …. Let x = (x1, …, xN) and y = (y1, …, yN) be 
vectors in N. Define

 AN (x, y) =  

Then

 |AN (x, y)| ≤ ||ψ||∞|| ||x|| ||y||.

Proof. This proof is due to Duren (1970), 

|AN(x, x)|

 
 

 

 
 

 

 

Now, we obtain,

(1)

Note that,

 
 
if k ≠ 0. Therefore,

 
 (2)

This bilinear form also satisfies the polarization identity

 AN(x, y) =  AN (x + y, x + y) –  AN (x – y, x – y).
 
Then by the parallelogram law,

 ||x + y||2 + ||x – y||2 = 2||x||2 + 2||y||2,

we obtain
 
 |AN(x, y)| =  |AN(x + y, x + y) – AN(x – y, x – y)|

 ≤  (|AN(x + y, x + y)|  +  |AN(x – y, x – y)|)

 =  ||(ψ||∞ (||x + y||2 + ||x – y||2) =  ||ψ||∞(||x||2 + ||y||2).
 
We can see that when ||x|| = ||y|| = 1, |AN(x, y) | ≤ ||ψ||∞.

Hence |AN (x, y) | ≤ ||ψ||∞||x|| ||y||.    
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 To generalize this inequality to the case of multi-
indices n = (n1, …, nd), we need a new formula for λn. 
Then, if we can find an upper bound of |AN(x, x)| in terms 
of ||x||, we automatically obtain an upper bound of |AN(x, y)|. 
The reason is that the rest of this proof depends only on 
properties of the norm.
 Now, let x = (xn) be a vector where n is a multi-index 
with |n| = 0, 1, …, N. For example, if N = 3 and d = 2, then 
a vector (xn) could be (x00, x01, x10, x11, x20, x12, x21, x30, x03). 
Note that we can consider (xn)

 when 0 ≤ |n| ≤ N as a finite 
sequence with  terms. We also define ||x|| to be 

 

 Now, when n is a multi-index, the term e–int in the 
formula for λn is invalid. For the first try, one may replace 

n by |n| and let  . Unfortunately, the 

map | . | : n  |n| is not injective. There exist multi-indices 
r, s such that r ≠ s but |r| = |s|, for example

 |(1, 0, 0, …, 0)| = |(0, 1, …, 0)|.

Therefore,

 

and hence

 

 Thus we will not obtain an analogue of inequality (2). 
However, it suggests that if we have an injective function 
φ(n) on the set of multi-indices and let 

 

then the proof of Lemma 1 will also be valid for the case 
where n is a multi-index. This will lead to Lemma 2 below.
 Before we state Lemma 2, let us discuss the existence 
of φ. We know from the Zermelo’s well-ordering theorem 
that every set can be well-ordered (and hence totally 
ordered) which implies the existence of an injective 
function φ from any set to the set . However, the proof of 
the Zermelo’s well-ordering theorem is non-constructive. 
Below, we s` give an explicit construction of an injective 
function φ from the set of all multi-indices to the set .
 The following Lemma 2 and Lemma 3 hold for an 
arbitrary injective function φ. However Theorem 1 requires 
that φ has to be independent of the order N of a multi-index  
n. This is because, in the proof of Theorem 1, we find an 
upper bound of the summation  in the following 

Inequality (3). Then we take N → ∞ to obtain an upper 
bound of  This strategy suggests that λn must 
be independent of N. 
 We first look for a function φ defined on the set of 
multi-indices which is independent of N. Consider the 
relation ≤ for multi-index notation. We say that n ≤ m if ni 
≤ mi for all i. This relation is merely partially ordered and, 
for example, we cannot compare (1, 0, 1) and (0, 1, 0). 
Now, for n ≠ m, we denote n  m if, 

 1. |n| < |m|  or

 2. |n| = |m| with 

  n1 n2 … nd|n| + 1 < m1 m2 … md|n| +1,
 
where n1n2 … nd|n| + 1 is the representation of a number in 
base |n| + 1. 

Precisely,

 n1n2 … nd|n| + 1 =  
 
 Now, the relation  is totally ordered. Since the relation 
  is totally ordered, we can construct an injective function 

φ defined according  to as follows.
 For example, when d = 3, we have (0, 0, 0)  (0, 0, 1) 
 (0, 1, 0)  (1, 0, 0)  (0, 0, 2)  (0, 1, 1)  (0, 2, 0)  

(1, 0, 1)  (1, 1, 0)  (2, 0, 0)  (0, 0, 3)  … . 
 It is easy to see that we arrange the multi-indices n  
according to their order |n|. Then, among multi-indices with 
the same order, we arrange them according to their values 
in base |n| + 1, each of which is a unique representation.
 Then we define φ(n) according to the arrangement of 
n via the relation .  As in this example, we obtain φ((0, 
0, 0)) = 0, φ((0, 0, 1)) = 1, φ((0, 1, 0) = 2, φ((1, 0, 0)) = 3, 
φ((0, 0, 2) = 4, …. We note that φ is injective. When d = 
1, we also have φ(n) = n. We now generalize Lemma 1 to 
the following lemma for vectors (xn) and (yn) where n is a 
multi-index.

Lemma 2. Let  ψ ∈ L∞ ([0, 2π]), N ∈ , N = { n = (n1, 
…, nd) : 0 ≤ |n| ≤ N, and φ be an injective function from 
N to . Let

  

n = (n1, …, nd) ∈   and AN(x, y) =  λn+mxnym.Then 
|AN(x, y)| ≤ ||ψ||∞||x ||y||.

Proof.   The proof of this lemma is analogous to that of 
Lemma 1. 

 In the previous lemmas, the function ψ is an arbitrary 
function in L∞([0, 2π]) and Lemma 2 is valid for any 
injective function φ. Next, in Lemma 3 (and also later 
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in Theorem 2), we will choose a specific function ψ, i.e. 
we will use ψ(t) = ie–it(π – t). This will fix ||ψ||

∞
 and thus 

a constant in the equality. With this specific choice of ψ 
together with an injective function φ, we define λn+m and 
compute |λn+m|, as well as ||ψ||∞. Applying this result to 
the inequality in Lemma 2, we obtain another version of 
Hilbert’s inequality.

Lemma 3. Let N ∈ ,

N = {n = (n1, …, nd) : 0 ≤ |n| ≤ N}, and φ be an injective 
function from N to . Then

 

Proof.  Choose ψ(t) = ie–it(π – t). By Lemma 2, we have λn+m

 

 

 

 
By the Euler formula

 eix = cos x + i sin x,

the first integral can be eliminated and the second integral 
can be decomposed as

 

Using integration by parts, we also obtain

 

However,

 

 
Therefore, |λn+m| =  Consider |ψ(t)| = |ie–it(π – t)| =

|π – t)| ≤ π, for all t. Therefore, ||ψ|∞ ≤ π. Then, by Lemma 2,

 

 Now we shall consider a function f ∈ H1 (Bd). Suppose 
that the Taylor expansion of f is of the form f(z) = Σ anz

n. 
Then, by orthogonality of {zn} as functions in H2, we can 

compute the norm of f in terms of the sum of the square 
of the Taylor coefficients Σ |an|

2. The next theorem shows 
a relation between a weighted sum of coefficients in the 
Taylor expansion of f ∈ H1 and the norm || f ||1.
 
Theorem 1. Let 

f(z) =  anz
n ∈ H1 and λn ≥ 0. Then .

Proof.  Since f ∈ H1, there exist g and h in the same H2 

such that f = gh and  =  = || f ||1 . We can also write 
g and h as g(z) =  bnz

n and h(z) =  cnz
n. Consider,

 f(z) = Σ anz
n = (Σbnz

n)(Σcnz
n).

 For the case d = 1, it is easy to verify that an =  
bkcn–k. For d ≥ 1, the product bkz

kcsz
s is of the form

 

Therefore, to obtain

 

we need all possible choices of  k = (k1, …, kd) and s = (s1, 
…, sd) such that s = n – k, which is the same as in the case 
d = 1. Therefore, we also obtain an = Σ0≤k≤n bkcn–k. However, 
we should note that, for the case d = 1, there are n + 1 terms 
in an = Σk=0 bkcn–k whereas there are (n1 + 1). (n2 + 1) … 
(nd + 1)  terms in an = Σ0≤k≤n bkcn–k for the case d ≥ 1. Then, 
by the triangle inequality, we have

 

 .

The summation Σ0≤k≤n |bk| |Cn – k| depends on n. Therefore,

 

 The last inequality is a consequence of Lemma 2. 
Since ||g||2 ||h||2 = ||f||1, we obtain

   (3) 

for any N. By letting N → ∞, we obtain 
 Next, we will show that the Hardy’s inequality for 
functions of several complex variables can be easily proved 
by using Theorem 1 together with the function ψ defined 
in Lemma 3.
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Theorem 2. If f(z) =  anz
n ∈ H1 and φ is an injective 

function from the set of multi-indices to the set , then 

 
∞

 (4)

Proof.  Let f be any function in H1 and ψ(t) = ie–it (π – t) 
for 0≤ t ≤ 2π. Then ||ψ||∞ ≤ π. As in the proof of Lemma 
3, we obtain |λn| =  Then Inequality (4) follows from 
Theorem 1. We shall also call Inequality (4) Hardy’s 
inequality.    

DISCUSSION

Our Hardy’s inequality (4) comes directly from Inequality 
(3) in Theorem 1. With our specific choice of function ψ, 
we have ||ψ||∞ ≤ π and |λn| =  The latter holds for any 
injective function φ which is independent of f. The proof 
of Theorem 1 involves only the coefficients of the Taylor 
expansion of f, regardless of where f is defined. Therefore, 
Hardy’s inequality (Inequality (4)) holds for all functions 
f in Hardy space H1(Bd) as well as functions f in H1(Bd). 
 Let us note that Lemmas 2 and 3 are true for any 
injective function φ defined on the set of multi-indices 
n  when 0 ≤ |n| ≤ N and they do not require that φ has 
to be N –independent. For example, let us consider 
a function Φ defined by 

 Φ(n1, n2, …, nd)) = n1n2 … ndN+1, 

which is also injective but less complicated than the 
function ϕ we constructed earlier. The proof of Lemma 3 
is also true for this function Φ. However, we cannot use 
this Φ in Theorem 1 because the formula for Φ depends 
on N which will cause a problem when we take N → ∞. 
 The proof of Theorem 2 is valid for any injective 
function from the set of multi-indices to the set . Our 

specific example φ (constructed before Lemma 2) has 
a property that φ(n) = n when d = 1. Thus Inequality 
(4) reduces to Hardy’s inequality   when d = 1. 
Suppose that  φ is another injective function such that 
when d = 1, the value φ(n) is not necessarily equal to n. 
Then, Inequality (4) will yield another version of Hardy’s 
inequality for d = 1, where the denominators n +1 of the 
summation   in the standard Hardy’s inequality will 
be replaced by a sequence of distinct integers greater than 
1. Therefore, not only that Inequality (4) generalizes the 
standard Hardy’s inequality to the case d > 1, it also gives 
a generalization in the case d = 1.
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