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ABSTRACT

SNP-SNP interactions have been recognized to be basically important for understanding genetic causes of complex disease 
traits. Logic regression is an effective  methods for identifying SNP-SNP interactions associated with risk of complex disease. 
However, identifying SNP-SNP interactions are computationally challenging and may take hours, weeks and months to 
complete. Although parallel computing is a powerful method to accelerate computing time, it is arduous for users to 
apply this method to logic regression analyses of SNP-SNP interactions because it requires advanced programming skills 
to correctly partition and distribute data, control and monitor tasks across multi-core CPUs or several computers, and 
merge output files. In this paper, we present a novel R-library called SNPInt to automatically speed up analyses of SNP-SNP 
interactions of genome-wide association (GWA) studies using parallel computing without the advanced programming skills. 
The Crohn’s disease GWA studies dataset from the Wellcome Trust Case Control Consortium (WTCCC) that includes 4,680 
individuals with 500,000 SNPs’ genotypes was analyzed using logic regression on a computer cluster to evaluate SNPInt 
performance. The results from SNPInt with any number of CPUs are the same as the results from non-parallel approach, 
and SNPInt library quite accelerated the logic regression analysis. For instance, with two hundred genes and twenty 
permutation rounds, the computing time was continuously decreased from 7.3 days to only 0.9 day when SNPInt applied 
eight CPUs. Executing analyses of SNP-SNP interactions using the SNPInt library is an effective way to boost performance, 
and simplify the parallelization of analyses of SNP-SNP interactions.
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ABSTRAK

Interaksi SNP-SNP telah diiktiraf penting pada dasarnya untuk memahami punca genetik sifat penyakit kompleks. Regresi 
logik adalah satu kaedah yang berkesan untuk mengenal pasti interaksi SNP-SNP yang dikaitkan dengan risiko penyakit 
kompleks. Walau bagaimanapun, mengenal pasti interaksi SNP-SNP adalah mencabar secara pengkomputeran dan 
mungkin mengambil masa berjam, berminggu dan berbulan untuk diselesaikan. Walaupun pengkomputeran selari adalah 
satu kaedah berkuasa untuk mempercepatkan masa pengiraan, ia adalah sukar bagi pengguna untuk menggunakan 
kaedah ini dalam analisis regresi logik interaksi SNP-SNP kerana ia memerlukan kemahiran pengaturcaraan lanjutan 
untuk pemetakan dan pengagihan data dengan betul, mengawal dan memantau tugas pelbagai teras CPU atau beberapa 
komputer dan menggabungkan fail output. Dalam kertas ini, kami memberikan R-perpustakaan novel yang disebut 
SNPInt untuk secara automatik mempercepatkan analisis interaksi SNP-SNP kajian sekutuan genom-menyeluruh (GWA) 
menggunakan pengkomputeran selari tanpa kemahiran pengaturcaraan lanjutan. Kajian dataset penyakit Crohn GWA 
daripada Wellcome Trust Case Control Consortium (WTCCC) yang merangkumi 4,680 individu dengan 500,000 SNP 
genotip telah dianalisis menggunakan regresi logik pada kelompok komputer untuk menilai prestasi SNPInt. Hasil daripada 
SNPInt dengan apa-apa bilangan CPU adalah sama seperti hasil daripada pendekatan bebas-selari dan perpustakaan 
SNPInt mempercepatkan analisis regresi logik. Sebagai contoh, dengan dua ratus gen dan dua puluh pusingan permutasi, 
masa pengiraan berterusan menurun daripada 7.3 hari kepada 0.9 hari sahaja apabila SNPInt menggunakan lapan CPU. 
Analisis pelaksanaan interaksi SNP-SNP menggunakan perpustakaan SNPInt adalah merupakan satu cara yang berkesan 
untuk meningkatkan prestasi dan memudahkan keselarian analisis interaksi SNP-SNP. 

Kata kunci: Interaksi SNP-SNP; kajian penyakit Crohn GWA; pengiraan selari; R; regresi logik 

INTRODUCTION

Single nucleotide polymorphisms (SNPs) refer to genetic 
variations at the single nucleotide level. There are more 
than one million SNPs in the human genome. From a 
large set of SNP measurements, finding SNPs whose 

variations are associated with a disorder is an important 
analytic goal of bioinformatics. Such analyses can help 
researchers discover genes that predispose individuals to 
higher risk of the disorder. In addition, SNP analyses may 
assist researchers to explain possible heterogeneity in 
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individuals’ responses to a certain medicine (http://ghr.
nlm.nih.gov/handbook/genomicresearch/snp). Schwender 
and Ickstadt (2008) suggested that it is usually not an 
individual SNP that plays an imperative role in the risk of 
a complex disorder. Rather, it is SNP-SNP interactions (such 
as SNP1 and SNP2) that influence strongly the risk of a 
complex disorder. This suggests that SNP-SNP interactions 
may identify high risk groups (Garte 2001), to whom an 
intervention strategy for decreasing the risk or detecting 
the disorder early for treatment may be considered. Logic 
regression, developed by Ruczinski et al. (2003) is a 
flexible method of regression with Boolean combinations 
of binary covariates as explanatory variables. The strength 
of logic regression is its capacity for finding complex 
interactions between predictors. It has certain advantages 
over other analyses such as Classification and Regression 
Trees (CART) (Breiman 1984) and random forests 
(Breiman 2001), which relate only the main effects and 
simple (two to three-way at most) interactions between 
predictors. In addition, analyses of BOOST (Wan et al. 
2010) can detect interaction between only two SNPs. Logic 
regression can be employed in many various purposes, 
especially to search for multi-way SNP interactions, e.g. 
4-way interactions: such an analysis is often difficult with 
other methods including random forests, CART and Support 
Vector Machines (SVMs) (Guyon et al. 2002; Schwender 
& Ickstadt 2008). For these reasons, logic regression is 
a powerful methods for identifying SNP-SNP interactions 
associated with risk of complex disorders. R is a well-
known open source statistics programming language 
and environment (Ihaka & Gentleman 1996). With many 
useful libraries such as GenABEL (Aulchenko et al. 2007) 
and ParallABEL (Sangket et al. 2010) for Genome-
Wide Association Analyses. LogicReg is an effective R 
library for logic regression analyses implemented in R by 
Kooperberg and Ruczinski (http://cran.rproject.org/web/
packages/LogicReg/index.html). LogicReg can be used to 
successfully find SNP-SNP interactions in Crohn’s Disease 
(CD) GWAS data of the Welcome Trust Case Control 
Consortium (WTCCC 2007) and the two smaller GWASs 
from the Database of Genotype and Phenotype (dbGaP) 
(Dinu et al. 2012). Strong evidence of CD-association for 
195 genes has been found including novel susceptibility 
genes such as ISX, SLCO6A1 and TMEM183A (Dinu et al. 
2012). However, identifying SNP-SNP interactions by 
LogicReg are computationally challenging and may take 
hours, weeks or months to complete depending on how 
large the number of permutations and datasets are. For 
instance, for the gene-level SNP analysis of the Crohn’s 
disease dataset which include approximately 13,500 
genes, more than 400,000 runs of logic regressions were 
needed when SNP-SNP interactions within each gene must 
be analyzed with thirty permutations. Moreover, the 
size of the dataset is also large: For example, the WTCCC 
Crohn’s disease dataset includes 4,680 individuals with 
2,000 SNPs. Accordingly, without parallel computing, the 
logic regression analysis requires massive computing 
time, hours to months, depending on the size of the dataset 

being analyzed and computer performance. To speed up 
analyses of SNP-SNP interactions or to allow a large number 
of permutation rounds for a large dataset such as the ones 
from genome-wide association (GWA) studies, users have 
to apply parallel computing to the analysis processes. 
Nevertheless, it is very difficult and complicated for users 
to apply parallel computing to logic regression analyses 
of SNP-SNP interactions because they need advanced 
programming skills to correctly partition an distribute 
data, control and monitor tasks across the computers and 
merge outputs. For example, the analyses will be failed, 
if the users mistakenly partition the large data. Another 
example, the outputs from the computers are usually messy 
and their order is hard to track. Accordingly, it is necessary 
to create a novel R-library (parallel version of LogicReg) 
that allows parallel computation of logic regression. 
With the novel R-library, the users can execute the novel 
R-library to automatically parallelize logic regression 
analyses studies without the advanced programming skills. 
Moreover, the statistical outputs from the novel R-library 
with any number of CPUs are the same as the statistical 
outputs from non-parallel approach.
 In this paper, we propose a development of SNPInt, 
a novel R library to parallelize SNP-SNP interaction 
analyses of GWA studies using logic regression and 
parallel computing. SNPInt aims not only to accelerate 
the computation of SNP-SNP interaction analyses, but 
also simplify analysis parallelization. Moreover, with 
SNPInt, users do not need to be proficient with parallel 
programming because it will automatically partition 
and distribute data, control and monitor tasks across the 
computers and merge output files. 

MATERIALS AN METHODS

LOGIC REGRESSION ANALYSES OF GWA STUDIES

Logic regression aims to find Boolean combinations of 
the predictors. We consider that all predictors {Xi, i = 
1,…, p} are binary (0 or 1, yes or no), for identification of 
SNP associations. Specifically, the predictor Xi = 1 if the 
ith SNP has a certain genotype and Xi = 0 otherwise. Each 
Boolean combination of SNPs could use three operators, 
Λ (AND), ν (OR) and c (NOT) to form a logic expression, 
Lj, j = 1,…, t such as:

 Lj = (X1 Λ X2) ν X3
c.

This example of Boolean logic expression means:

 Lj = (SNP1 Λ SNP2) ν SNP3
c.

 Logic regression uses L’s instead of X’s in its linear 
predictor and takes the form: 

 
 f(E[Y]) = β0 + Σ βj Lj ,
  

j = 1

 

t
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where Y is a response variable; f is a link function; and 
parameters βj, j = 0,…, t are concurrently estimated with 
the search for the Boolean expressions Lj’s in the above 
equation that minimize the scoring function related with 
this model type (Ruczinski et al. 2003). The SNP-SNP 
interactions can be used as biomarkers which refer to the 
risk of the disease. For example, if the p-value of SNP1 and 
SNP2 and SNP3 is less than threshold value, people who 
have these SNPs will have the high risk. Moreover, the gene 
containing these SNPs and protein associated with disease 
can be found. Drug discovery and development would be 
possible using this information.

SOFTWARE DESIGN

The computing time of logic regression is demanding as it 
explores a large space for an optimal set of logics and needs 
a large number of permutation tests to assess signals in 
the data. Hence, parallel computing is very important as it 
decreases computing time. To parallelize a logic regression 
analysis, SNPInt running on the frontend-node partitions 
the input dataset into G subsets, where G is the number of 
genes to be analyzed. Each subset is included the SNPs of 
each gene. For instance, the first subset contained SNPs of 
the first gene. The advantage of this partitioning method 
is that the outputs of each subset will be the same as the 
outputs from non-parallel approach because the subsets of 
this method do not impact the algorithm of logic regression 
analyses. Since each gene has different number of SNPs, 
the ‘task full’ approach (Browning & Browning 2008) is 
adapted to keep load balancing when SNPInt is executing. 
Also, this approach is not sensitive to the number of CPUs 
or compute-nodes. With this approach, the frontend-node 
sends these subsets to idle CPUs on compute-nodes. The 
examples of data partitioning and distribution are shown 

in Figure 1. If there are three compute-nodes and each 
compute-node has only one CPU, SNPs of G1 – G3 (Gene1 

- Gene3) will be executed on these compute-nodes. When 
the execution of the second compute-node has finished, the 
frontend-node will send the SNPs of next gene (G4) to it as 
shown in Figure 1(a) - a cycle that proceeds until all the 
genes are sent. After all the compute-nodes has finished, 
the frontend-node will combine all the outputs as shown in 
Figure 1(b). Because the SNPInt has been designed based 
on the ‘task full’ approach, the users should optimize the 
number of CPUs suitable for computational throughput by 
setting the number of CPUs as many as they can but not over 
the number of genes. If the number of CPUs is more than 
the number of genes, some CPUs will be idle and wasteful.

SOFTWARE IMPLEMENTATION

SNPInt (Project home page: http://www.mbb.psu.ac.th/
SNPInt/index.html) performs SNPs data in LogicReg input 
format, and an example of the useful input can be seen 
in Figure 2 (https://www.ualberta.ca/~yyasui/snpGWAS/). 
The sequential workflow for a logic regression analysis 
on a single CPU/computer is shown in Figure 3(a). The 
data were analyzed by the LogicReg library, working 
under the R program. LogicReg sequentially analyzes the 
raw data and produces statistical data (e.g. p-values) as 
outputs. Since this sequential workflow generally takes 
massive computing time to conduct statistical analyses, 
we have developed a novel parallel workflow for SNPInt 
to save computing time. The novel parallel workflow in 
a logic regression analysis is shown in Figure 3(b). A 
job scheduler such as the SUN Grid Engine (http://www.
rocksclusters.org/roll-documentation/sge/5.4/using-sge.
html) distributes the data to each compute-node on a 
cluster to queue jobs and reserve a set of CPUs required 

FIGURE 1. The example of data partitioning and distribution, (a) The data is partitioned into eighteen subsets, and each subset is 
contained SNPs of a gene. G1 - G3 subsets are executed on the compute-nodes and (b) The frontend-node 

will combine all the outputs after all the compute-nodes has finished
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by a MPI (Message Passing Interface) library such as LAM/
MPI (Local Area Multicomputer/Message Passing Interface, 
http://www.lam-mpi.org/) and Open MPI (http://www.open-
mpi.org/). The MPI library has various functions called by 
Rmpi (an R library) to communicate the computers in a 
cluster using R language (http://math.acadiau.ca/ACMMaC/
Rmpi/structure.html). Rmpi library is applied for SNPInt 
to connect the computers in a cluster analyzed logic 
regression using LogicReg. Also, SNPInt can be run on 
any Operating System supporting the components for the 
parallel workflow such as Linux and Solaris. In addition, 
SNPInt partitions a job into several smaller tasks on a 
frontend-node using basic R commands, and each task is 
contained SNPs of one gene. After that, SNPInt distributes 
tasks to the reserved CPUs. These CPUs are executed the 
tasks on compute-nodes and call the LogicReg; then, the 
outputs are returned to the frontend-node and combined by 
SNPInt. The statistical data from the parallel workflow can 
be approved by comparison with the statistical data from 
the sequential workflow. Users can use SNPInt to parallelize 
logic regression function easily. An executing command 
that parallelizes logic regression on multiple CPUs is shown 
in Figure 4. To run the function, the number of CPUs can 
be specified in sun grid engine (http://www.rocksclusters.
org/roll-documentation/sge/5.4/using-sge.html). SNPInt 
can be run on not only a single CPU, but also on multi-core 
CPUs in both a single computer and a computer cluster. The 
Hanuman cluster has been used to evaluate the performance 
of SNPInt. Hanuman cluster includes five IBM servers 
XSeries 3362, which are comprised by a frontend-node and 
four compute-nodes, with two SINGLE-CORE Intel Xeon (2.8 
GHz) CPUs and four GB RAM, respectively. The frontend-

FIGURE 2. The data preparation for SNPInt. The example of SNPs data that can be executed by SNPInt is shown in “SNPIntChr1.txt” 
file. The valid input data of SNPInt contains SNP id, chromosome number, position of the SNP on chromosome and the SNPs codes 
of controls and cases (x1, x2, x3, x4, x5, x6, x7 and x8). The SNPs data file can be created from the three files including (1) the SNPs 
data file in Illumina format (“illumChr1.txt”), (2) the list of genes of each SNP file (“mappingChr1.txt”), and the list of SNPs that 
passed LD process (“LDChr1.txt”) using R script, for the SNPs codes in the output file of the script, if the genotype is AA AT TT, then 
the two ways of coding correspond to two indicators. One indicator for AA, and the other for only one “A”. For instance, if a SNP has 
AA AT TT, two variables for this SNP are created. Variable1 is 1 when AA, 0 otherwise; Variable2 is 1 when AA or AT, otherwise 0

FIGURE 3. Logic regression computing workflow, (a) Sequential 
logic regression computing workflow runs on a single CPU 
or a computer and (b) Parallel logic regression computing 
workflow runs on a multiple CPUs or a set of computers
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node of the cluster can be connected via the Internet and 
can control the compute-nodes of the cluster through an 
Ethernet switch. Also, this cluster provides Rocks Cluster 
Distribution version 4.3 (http://www.rocksclusters.org/
wordpress/) including the SUN Grid Engine version 4.3, 
LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi 
library version 0.5-6, LogicReg version 1.4.9 and SNPInt 
1.0.

RESULTS

Crohn’s disease data set from WTCCC, a chronic 
inflammatory disease data set of the intestines (Parkes et 
al. 2007; WTCCC 2007) which contains 1,745 controls and 
2,935 cases with approximately 500K SNPs, was used to 
measure the performance of SNPInt. Figure 5 shows trace 
results of logic regression analyses of GWA studies using 
SNPInt for the Crohn’s disease data on Hanuman. SNPInt 
was executed twenty permutations and iterations for each 
gene in three subsets of the data in chromosome 1, which 

are ten, one hundred and two hundred genes. There is no 
concern about the statistical quality from SNPInt because 
there is no difference between the statistical outputs from 
SNPInt and original LogicReg (non-parallel approach). 
SNPInt saved computing time for ten, one hundred and two 
hundred analyses, especially with eight CPUs. For example, 
on a single CPU, the two hundreds gene analyses on the first 
chromosome took 7.3 days using non-parallel approach, 
but only 0.9 day with eight CPUs using SNPInt. 
 If the number of available CPUs is P, the computing 
time for P CPUs is timeP and the sequential computing time 
for a CPU is time1, thus, the speedup for P CPUs is: 

 speedupP = time1 / timeP.

 The speedups of analyzing Crohn’s disease data 
using SNPInt function applying the above equation are 
shown in Figure 6. It shows that the saved time by SNPInt 
is linearly correlated to the number of CPUs. For instance, 
the executing speed of the two hundreds gene analyses on 
eight CPUs was approximately eight times faster than that 
on one CPU. This suggested that executing with more CPUs, 

FIGURE 4. An example of SNPInt usage. The example of parallel execution was used to analyze Crohn’s 
disease data when gene ids were between one and ten, and number of permutations and iterations were 

twenty. The data contained 1745 cases and 2935 controls. Besides, Users could set the 
number of CPUs in a job scheduler such as the SUN Grid Engine

FIGURE 6. The speedups of SNPInt for Crohn’s disease data. 
The speedups were extrapolated from Figure 4 applying the 
speedup equation. The speedups showed that the more CPUs, 

the more speedup were increased by SNPInt

FIGURE 5. Trace results of SNPInt for Crohn’s disease data on 
Hanuman cluster. Ten, one hundred and two hundred genes of 
Crohn’s disease data were executed with SNPInt. These genes 
were run on one CPU using non-parallel approach, and two, four 
and eight CPUs using SNPInt. Non-parallel approach and SNPInt 
were executed twenty permutations and iterations for each gene
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more computing time will be saved by SNPInt. With eight 
CPUs, SNPInt can save 6.4 days for two hundred analyses, 
whereas it can reduce 3 days for one hundred analyses and 
7.4 h for ten analyses. This also implies that the larger the 
volume/size data, the more computing time will be saved 
by SNPInt.

DISCUSSION

According to speedup equation, the overhead for P CPUs is 

 overheadP = timep-(time1 / P).

 Since SNPInt is not sensitive to the number of CPUs, 
it can be run on a larger cluster. The overhead of analyses 
with various numbers of CPUs on a large computer cluster 
can be predicted based on the overhead of eight CPUs as 
shown in Figure 6. The computing time and speedups 
on a large cluster for ten, one hundred and two hundred 
analyses extrapolated from Figure 5 applying the above 
overhead equation are shown in Figure 7, respectively. 
The time-saving rates are grown when the numbers of 
CPUs are increased until the numbers of CPUs are greater 
than number of genes. Thus, with larger datasets, the 
time-saving rates will be larger in a large computer cluster. 
Nonetheless, the user should optimize the number of CPUs 
suitable for computational throughput.

the number of CPUs. Also, if users apply more CPUs, more 
computing time will be saved by SNPInt. However, the 
number of CPUs they assigned should be less than, or equal 
to, the number of genes to avoid idle CPUs. Due to a benefit 
of MPI, SNPInt can be run not only on distributed memory 
architecture like an architecture on Hanuman but also on 
a shared memory architecture. Nevertheless, distributed 
memory architecture gives more overhead than shared 
memory architecture.

CONCLUSION

We have developed a novel R-library called SNPInt to speed 
up analyses SNP-SNP interactions using parallel computing 
components, which consist of a job scheduler, a MPI library, 
an Rmpi library and a LogicReg library. SNPInt has been 
designed to be a user-friendly library. Identification of 
SNPs associated with Crohn’s disease is used to measure 
the performance of the SNPInt function. The SNPInt library 
is an effective library used to accelerate computing time 
of logic regression on the computer cluster in application 
for SNP analyses of GWA studies and other data analyses.
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