The Convergence Clubs of Regional Comprehensive Economic Partnership (RCEP) Countries: A wise choice?
(Kelab Penumpuan Bagi Perkongsian Ekonomi Komprehensif Negara-negara Serantau (RCEP): Satu pilihan yg tepat?)

DAYANG AFFIZAH AWANG MARIKAN
MD.MAHBUBUR RAHMAN
NOR AFIZA ABU BAKAR
TING MEE SING
University Malaysia Sarawak

ABSTRACT
This investigation used the non-linear approach on the income convergence issues of the Regional Comprehensive Economic Partnership (RCEP) countries to evaluate empirically the income convergence during the period 1997-2015. Alternatively, if two or more nations have shown to some degree of income convergence, it can be useful to identify the uniformity of economic performance. Because of the excessive output inequalities between members and between regions, a full aggregate convergence failed to be established yet the study further facilitates the endogenous decision of clubs convergence (sub groups). Evidence from income convergence indicates that a group of developed nations, particularly Singapore, Japan, New Zealand and Brunei comprised of the core clubs, Malaysia, China, Thailand and Indonesia, known as newly industrialized economies (NIES’s) clustered into a group. Finally, the remaining countries, converging towards each other forming another club. Seven clubs convergence implies that the RCEP members experience weak convergence between them which illustrate relatively substantial dissimilarity in its structure of the economy as a whole. Despite the dissimilarity, the speed of convergence indicates that possible catching up within the members countries, in converging towards a similar transition path of economics growth. Thus indicating further realisation of economic corporation and stronger integration among the RCEP members now and in the future.

Key words: RCEP; ASEAN; GDP per capita; Convergence.

INTRODUCTION
The concept of economic convergence can be defined as, where by domestic economies display growing similarities in the patterns of their performance. The hypothesis of convergence specifies that in comparison with developed countries,
impoverished nations with comparatively initially lower per capita, GDP grow quicker so that income levels converge across nations over time. For policy direction among Regional Comprehensive Economic Partnership (RCEP) economies to be an exclusive advantage, it is essential to be some sort of “convergence” among the participant nations. Economics convergence can be in many form for example in term of GDP per capita, banking, financial, trade, to show some level of similarity in its performance as an indication of possible policy union. In other words, by having some degree of convergence in its economies, it shall indicate on how such economy will move towards a similar path if being exposed to economic shocks. Even though there are variations in the initial situation (income), developing and developed economies in term of their economic growth rates, ultimately, these countries will converge, which is stated by the income convergence hypothesis. Asian economies faced many challenges during the 1990s. In the East Asian region, the speedy regional economic progress and a lot of global trends have turned the country’s target to integrated towards economic and financial. The universe has expanded the inspiration for cooperation and contributed to the region a spirit of collective objective because of the threat of regional integration in different regions. Due to the foundation of the North American Free Trade Area (NAFTA) in 1994; the Asian financial crisis in 1997; the appropriation of a common currency called Euro in the European Union (EU) in 1999, the East Asian economies have become extremely vulnerable to trade policies and protectionism in the advanced nations. The incidence of the Asian financial crisis demonstrated the extreme susceptibility of the region to external influences particularly the fluctuations of exchange rate, because of the expanded protectionism as a result of the formation of EU and NAFTA. In an attempt to deal with such external challenges, the East Asian economies have followed to establish their own regional association. Having to look into the possible convergence path among the members will introduce potential prospects for enhancing economic collaboration and integration between the Asian economies and specifically members of RCEP for their sustainable economic growth in the long-run.

The Regional Comprehensive Economic Partnership Agreement (RCEP) is an economic agreement between ASEAN and 6 other FTAs, such as Australia, China, India, Japan, Republic of Korea and New Zealand, which is as well a comprehensive, high-quality and mutually beneficial economic partnership. During the East Asian Summit in 2012, RCEP was introduced formally. With a total 3.5 billion people, five major drivers market growth that include China, Japan, Republic of Korea, India and ASEAN, the globe’s largest free trade association will be formed by RCEP. The core objectives of RCEP to produce balanced economic growth and deeper integration between its participants beyond the traditional Free Trade Agreements within ASEAN. The RCEP is accounted for approximately half of the global population, an associated GDP of USD22.4 trillion or 30.6% of global GDP, overall trade amount for USD11.9 trillion and overall inflows of FDI amounting to USD329.6 billion. According to Leal-Areas (2013) and Das (2014), RCEP is aiming to reinforce the ASEAN hub for further Asia-Pacific regional framework by strengthening on going engagement that has already been obtained within ASEAN and its Free Trade Agreement participants. Lewis (1956) stated that, leading to industrialization, a country need to concentrate on the (domestic) transforms its economy as it passing through critical cycle or ‘stages which is the structural transformation (or ‘stage of development’) models. Moreover, as a consequence of gradual reform strategy, a nonlinear economic growth can as well be determined. To strengthen growth and to liberalize so-called ‘financially repressed economy’, financial transform has been formulated by the government in these economies (Habibullah & Smith, 1997). In fact, the GDP per capita of the East Asian economies data generating process are nonlinear (Liew & Lim, 2005; Liew & Ahmad, 2007). The role of technological progress in growth is another nonlinear growth model that is heavily emphasized. Lucas (2000) stated that the model concentrates on technologically developed countries embrace of technology to developing nations. Generally, without any obstacle to the technological diffusion, developed and developing nations would progressively converge in income per capita. The speed of adoptions of different countries in RCEP is distinct which will lead to nonlinear paths of growth (Fiaschi & Lavezzi, 2003). By applying such approaches, the fundamental concentration is to assess the circumstances under which developing nation’s income catch up with developed countries or miss to achieve that. Having to look into the possible convergence path among the members will indicates promising prospects for deepening economic cooperation and integration among the Asian economies and specifically members of RCEP for their long-run sustainable economic growth.

Thus to provide powerful outcomes, this investigation focuses to consider the presence of income convergence or divergence of ASEAN + 6FTAs by applying the recent methodology of non-linear method. Phillips and Sul (2007b) stated that by using standard panel stationarity tests, the investigation of either growth convergence or growth determinants, within technological heterogeneity is invalid. Firstly, when multiple equilibria occur, these experiments ignore to identify convergence. There are theoretical and empirical evidence in the growth literature to confirm convergence club. Hobijn and Frances (2000) as well as Durlauf and Johnson (1995) contribute empirical confirmation of club convergence. Secondly, co-integration and unit-root tests may not ‘capture’ the convergence, if the applicable data come from a transitional dynamics period of time. Thirdly, using co-integration and unit-roots analyses may contribute to misleading outcomes, if the investigator combines steady-state and transitional data assuming that two nations appear to converge to the same steady state and that they are likewise near the steady state. Thirdly, growth is a non-linear, which has been revealed in the economic growth literature. In that sense, accepting and considering per capita GDP as a linear may lead to miss-specification error and false policy implications. As Asian economies experience various phases of advancement, the transition path in economic achievement may be remarkably varied across countries. Hence, to identify convergence in transitional dynamic economies by using the standard time series framework may not be convenient. Our investigation recommends that an essential character process of the growth is non-linear. This is a vital point to mention, as the
in investigating either growth convergence or determinants of growth under technological heterogeneity, by standard panel stationarity tests is not accurate. Durlauf et al. (2005) contended, in a magnificent survey that growth econometrics is yet in its inception and it is required to establish modern econometric techniques for investigating the convergence hypothesis that can evaluate the transitional dynamics of growth paths as well as the long run convergence across countries. In line with this consideration, for the investigation of convergence, contributed by Nahar and Inder (2002) and Phillips and Sul (2007a) is a resolution to the requirement of unit root and co-integration. The technique is powerful to the series stationarity properties within investigation, for instance, it does not depend on any specific expectations regarding trend stationarity or stochastic non-stationarity. Particularly by mechanisms of a straightforward empirical algorithm, depend on a relatively simple formation of a non-linear time varying factor model, countries can combine into clusters. Therefore, not identifying convergence may not simply illustrate an overall divergence, it could contribute to club convergence.

Although in compare with ASEAN, the economies of ASEAN+6 FTAs have been shown to produce the most trade gain, a vital issue that requires to be focused on is whether these nations are possibly remain to be appropriate member of the RCEP. Though there can be many criteria in determining the appropriateness of possible member for a regional bloc trade, looking into its GDP per capita is one of main elements. Therefore, the objective of the present investigation is to provide comprehensive view on income (per capita GDP) convergence of RCEP countries. Alternatively, it can be favourable to establish an economic union, if two or more nations have reached a satisfactory degree of income convergence. Thus the specific objectives of this study, 1. Identify any proof of convergence corresponding to the “log t” test (if the rejection of null hypothesis is not arisen), 2. Detect convergence clubs (if the rejection of null hypothesis is arisen. The main objective is to analyse the existence of club convergence in the RCEP. By doing so, the study is able to find each particular countries that share the same economic characteristics that enable them to probably share the same impact of asymmetric economic shocks. With that, the government can designed the economic policy accordingly.

LITERATURE REVIEW

In the convergence literature, the most utilized conceptions are: beta-convergence and sigma-convergence. Beta convergence states that the impoverished nations supposed to expand quicker than developed countries whereas, sigma convergence expects a decline in income disparity between impoverished and developed countries. Relative convergence state that, countries advance in steady state at the same percentage and the full convergence entails the identical steady-state income level. Evans and Karras (1996), Evans (1998), Kutan and Yigit (2005), Guetat and Serranito (2007), Siklos (2010), Lopez and Papell (2012) performed chronological sequence analyses of unit root and co-integration. Phillips and Sul (2003) contend that as countries may produce transitional divergence on their path toward a universal steady state so that cross-sectional divergence is likely a transitory circumstance. Moon (2006), did not find any confirmation of β-convergence of GDP per capita between 10 East Asian nations namely, China, Hong Kong, Indonesia, Japan, Malaysia, Singapore, South Korea, Taiwan, Thailand, and the Philippines, however, evidence of σ-convergence has been determined which indicated that the disparity tendency was overturned after 1988 when most of the East Asian developing nations turned to catch up with Japan. The author applied two traditional methods: σ-convergence and β-convergence during the period 1960 and 2000. By employing data from 1967-2005 Jayanthakumaran and Lee (2013) found ASEAN-5 nation’s relative per capita income series were persistent with stochastic convergence and beta-convergence. The authors investigated income per capita disparity across ASEAN-5 founding nations by an analysis of time-series for stochastic convergence with unit-root tests in the existence of two endogenously-controlled structural breaks, and β-convergence.

Bernard and Durlauf (1996), explored two types of convergence testing which are the cross-section and time-series procedures. The cross-section procedure test the correlation between primary levels of GDP per capita with growth rates of a country grouping. Convergence is suggested to appear if a negative correlation is formed between the average growth rate and the introductory income. Based on Galton’s fallacy, the cross-country growth has been condemned by Quah (1993). Alternatively, the time series properties investigate the variations in GDP per capita between nations. Convergence in the time-series structure indicate that variations in income are consistently transitory and that the variations between any combination of countries converges to zero as the long-run forecast expands infinitely. In a time-series aspect corresponding to Bernard and Durlauf (1995), the so-called stochastic convergence asks whether permanent moving of one nation’s income per capita are accompanied with stable moving of another nation’s income, that is, it studies, whether common stochastic factors means, and how steady the variations across nations are. Therefore, stochastic convergence suggests that variations in income across nations cannot consist of unit roots. In this regard, Bernard and Durlauf (1995, 1996) recommended an analysis for convergence that relies on the assumption of unit root and co-integration in time-series.

By applying a one-sided log t-test, convergence of null hypothesis against the no convergence of alternatives hypothesis and convergence of club, between the period 1870 and 2001 to study inequality in per capita GDP, Phillips and Sul (2009) utilize three varies samples, such as, data from 48 U.S states, 18 western OECD nations, 152 nations published in the Penn World Tables. The outcomes for 48 U.S states point out that the paths of transition for every state show to converge, in terms of income per capita, the OECD sample showed divergence until World War II however, the paths of transition of per capita income turn out to converge around 1950. By applying the same method between the period 1970
and 2003 for 152 PWT nations, four clubs convergence and one divergence group were established by these nations but no proof of overall convergence as well. By applying Phillips and Sul (2007) methodology for studying convergence of per capita real output across 14 European nations between the period 1980 and 2004, Apergis, Panopoulou, and Tsoumas (2010), discovered no proof of convergence of GDP per capita between these periods; nevertheless, the authors formed two clubs convergence. This was because of a considerable heterogeneity in the underlying growth influences. By using Phillips and Sul (2007a) and utilizing data from 1952-2008, Herreries and Ordonez (2012) analyses convergence in per capita income in China’s eight groups of provinces and found convergence in income per capita in five groups of provinces in China. Nevertheless, because of their various levels of labour productivity and capital intensity, three provinces, constituted a sub-group divergent. Similarly, Ghosh et al. (2013), performed per capita income convergence across 15 of India’s major states both at the aggregate and sectoral levels during the period 1968–2008 and both at aggregate and sectoral levels, the authors found substantial divergence. However, three clubs in the industrial level and both the agriculture and services sectors, two clubs convergence were presented by the authors. Vu (2015) determined, three clubs convergence between APEC member countries by analysing inter country output inequalities from 1990-2011. The authors applied the Phillips-Sul’s technique and discovered that the countries’ per capita GDP tended to diverge at aggregate level.

Zhang (2003) applying the model for assessment club convergence suggested by Chatterji and Dewhurst (1996), to investigate, “whether East Asian economies can catch-up with Japan?” for the period of 1960-1997. The author found the presence of multiple convergence equilibria with strong and robust evidence between the ASEAN5 and China, Korea, Hong Kong and Taiwan. Between two convergence clubs, the strong club including Japan, Hong Kong, Singapore, Malaysia, Taiwan and the Philippines and weak club consists of China, Indonesia, Korea and Thailand. By applying data from 1977-2004 and panel unit root method, Carmignani (2007) identified that the ASEAN5 nations diverge from the regional mean. At the same time, Alavi and Ramadan (2008) failed to identify convergence in income per capita across any of the ASEAN 10 participant nations The authors applied the Johansen multivariate co-integration test for the period of 1970-2003. By applying both linear and non-linear unit root experiments, A.M. Dyg-Affizah (2011), examined the income convergence hypothesis. With two powerful experiments in which stationarity is not required in the data generating process recommended by Nahar and Inder (2002) and newly introduced by Phillips and Sul (2007a), further analysis was undertaken applying tests for convergence. Within the Asian economies with Japan (except for Singapore), her outcomes from the Nahar-Inder test showed divergence, nevertheless, all other Asian countries converge towards Japan was found from the Phillips-Sul test. The author concluded that the Phillips-Sul test for convergence is more convenient for such transition economies, since the Asian economies are in different phases of development. Therefore, utilizing the unit root and co-integration test for transitional dynamics in the sample may be inappropriate for convergence analysing. In another study, Dyg-Affizah (2011), attempts to bridge the gap between the macroeconomic and micro economic matter. The dissertation examined structural convergence at macro issues at the overall level of productivity convergence and at micro issues of the industry level convergence. Substantial divergence at the aggregate level, in income convergence was found from the investigation and four clubs were shown by the clustering. For robustness, the application considers particularly productivity, labour shares and value added structural convergence. Divergence was found on productivity and value added shares from the tests of convergence which contributes to possible formation of club convergence. Moreover, in three sectors namely, manufacturing, mining and construction, convergence in aggregate was achieved by the labor share. As well the study found, within the manufacturing sector in Asian, strong sectoral club convergence, but for services, agriculture, and construction also as for mining is comparatively poor convergence club. Finally, the author concluded regarding the candidates appropriateness for the AEC (Asian Economic Community) Japan, Korea, India, Taiwan, Hong Kong, and ASEAN is yet a controversial matter though the integration process is steadily regulated in Asian.

METHODOLOGY

In this investigation, the prospect of the ASEAN+6 FTAs nations to establish RCEP is investigated applying the innovative method recommended by Phillips and Sul (2007a, 2007b, 2007c). Based from many elements that can be concluded for the success of an economic union, one of it is to ensure there are some degree of similar economic path and performance among the member countries. As to whether the participant nations of ASEAN+6 FTAs are the proper candidates for the RCEP, by assuring that there exists income (per capita GDP) convergence within the sample among participant nations, the income convergence will appear, and therefore shocks will be symmetrical between the participant members participated. The methodology by Phillips and Sul (2007a), which is on the basis of a general nonlinear time-varying factor model permits to identify convergence even in situation of transitional heterogeneity or transitional divergence, where alternative mechanisms such as stationary tests fail. The particular choice for this investigation was accustomed by the uniqueness’s of the applied region. In our study, we examined the clubs convergence for RCEP countries, in which some of the counties in transition. Thus with individual heterogeneity and probable time path (components of countries in transition), the most convenient approach for this situation is the method of Phillips and Sul (2007) which a regression commencing from a convergence test. This technique is preferred due to the following purposes (i) no exact expectations regarding the involved variable’s stationarity and/or the presence of common factors are required although this analysis of
convergence could be explained as an asymptotic co-integration analysis that does not rely on the inadequate sample issues of unit root and co-integration testing. (ii) This technique is on the basis of on a relatively common type of a nonlinear time varying factor model which has taken into account that nations experience transitional dynamics, while it withholds from the homogenous technological progress hypothesis, an expectation broadly applied in the majority of growth investigation (Apergis, Panopoulou, and Tsoumas 2010).

THE NON-LINEAR FACTOR MODEL

As Model Factor analysis provides the series decomposing into common and country-specific factors in a particularly frugal manner, it is an essential mechanism for investigating data sets with considerable time series and cross-section measurements. Panel data are usually decomposed by:

\[X_{it} = \gamma_{it} + \alpha_{it} \tag{1} \]

In equation (1), \(X_{it} \) defined as log income per capita for nation \(I \) and at time \(t \), where \(i=1, \ldots, N \) and \(t=1, \ldots, T \). It is common that \(X_{it} \) can be decomposed as systematic, \(\gamma_{it} \) and transitory, \(\alpha_{it} \) into two components. In equation (1), \(\gamma_{it} \) and \(\alpha_{it} \) may contain both common and idiosyncratic factors

\[X_{it} = \left(\frac{\delta_{it} + \epsilon_{it}}{\mu_{it}} \right) \mu_{it} = \delta_{it} \mu_{it} \quad \text{for all country, i and time, t} \tag{2} \]

By using Equation (2), the common and idiosyncratic factors in the panel can be separated by Phillips and Sul through factorising the common stochastic trend component. Equation (2) specifies that two time varying components; common, \(\mu_{it} \) and idiosyncratic \(\delta_{it} \) is created by decomposing \(X_{it} \). Between \(X_{it} \) and the common component, \(\mu_{it} \), the factor \(\delta_{it} \) represents a measurement of distance by which the error term and the unit specific component is dissolves and hence serves as the idiosyncratic component which is changing over time. \(\mu_{it} \) represents as common trend component in panel and considered to possess various deterministic or stochastic trend attitude that influences the transitory element \(\alpha_{it} \) as \(t \to \infty \).

The non-stationary transitional nature of factor loadings is suggested in semi parametric form for specifying the null hypothesis of convergence wherein every coefficient converges to some factor of certain constant;

\[\delta_{it} = \delta_{i} + \frac{\delta_{it}}{L(t)} \tag{3} \]

Where \(\delta_{i} \) is fixed, across I. \(\xi_{it} \) is iid \((1, 0)\), idiosyncratic scale parameters is denoted by \(\sigma_{it} \), slowly varying function is represented by \(L(t) \), and \(L(t) = \log t \) that is why \(L(t) \to \infty \) as \(t \to \infty \).

The rate at which the cross-sectional differences decaying to 0 is denoted by the parameter \(\alpha \). For all \(\alpha \geq 0 \), \(\delta_{it} \) converges to \(\delta \) which is ensured from the formulation above.

THE TRANSITION PATH

Since the time-varying factor loadings \(\delta_{it} \), estimation provide fact about transition behaviour of specific panel units so that it is a necessary concern of the strategy recommended by Phillips and Sul (2007).

By applying its corresponding form, a smooth and effective method to obtain fact about \(\delta \) it is as regard:

\[h_{it} = \frac{x_{it}}{\sum_{j=1}^{T} x_{ij}} = \frac{\delta_{it}}{\sum_{j=1}^{T} \delta_{ij}} \tag{4} \]

The loading coefficient \(\delta_{it} \) is measured from equation (4), which is in association to the panel average. For the economy i, alike \(\delta_{it} \), \(h_{it} \) even traces out transition path though presently produces one is in association to panel average. Over time, corresponding to the average, a particular path for every i is traced by variable \(h_{it} \) for this reason it is denominated as path of transition. Together, from the common steady state growth path \(\mu_{it} \) of country i’s relevant deviation is as well measured by \(h_{it} \).

Therefore, path of transition \(h_{it} \) reflect divergences from \(\mu_{it} \) by forming, the average of cross-section of the corresponding path of transition of economy i equalize unity (Figure 1 Transition Path of per capita GDP). Moreover, the corresponding transition path, \(h_{it} \) converges to unity and the cross-sectional variation (\(H_{t} \)) of the corresponding transition path converges to zero, if panel units converge and all the factor loading \(\delta_{it} \) approximate to a fixed \(\delta \). Which is as follows:

\[H_{t} = N^{-1} \sum_{i=1}^{N} (h_{it} - 1)^2 \to 0 \quad \text{and} \quad t \to \infty \tag{5} \]
When testing convergence approaches, it suggests that the application is according with long run behavior in the macroeconomic phenomena. Thus, it is usually desirable to eliminate business cycle factor using smoothing technique to obtain \(h_t \) from \(x_{it} \). Accordingly, by incorporating a business cycle influence \(k_t \) equation (2) can be written as:

\[
x_{it} = \delta_i \mu_t + k_{it} \tag{6}
\]

Due to the adaptability and the point that Hodrick and Prescott (1997) smoothing filter quest simply the addition of smoothing technique to obtain \(h_t \) from \(x_{it} \). Accordingly, by incorporating a business cycle influence \(k_t \) equation (2) can be written as:

\[
\hat{h}_t = \frac{x_{it}}{\sum_{i=0}^{N} x_{it}} \tag{7}
\]

Where \(\hat{x}_{it} \) are the filtered income per capita series. Within the expectation, in small samples, the panel average \(N^{-1} \sum_{i=1}^{N} x_{it} \) is positive also asymptotical that is performed for many related economic time series for instance, prices, GDP or different gross.

THE LOG T-TEST

By taking into consideration the time varying factor statement from equation (2) and depending on the log t convergence test that depend on a simplistic time series regression, Phillips and Sul (2007a, 2007b, 2007c) proposed a unique convergence test and clustering algorithm. The null and alternative hypothesis can presently be established.

Null hypothesis, \(H_0: \delta_i = \delta \), where, for all \(i \), \(\alpha \geq 0 \), which indicates convergence for all nations.

Alternative hypothesis \(H_a: \delta \neq \delta \) here, for some \(i \) and/or \(\alpha < .0 \) indicating that no convergence for some nation.

After estimating transition path, the variation ratio of cross section \(H / H_t \) is to be computed by acknowledging \(H_t \) as:

\[
H_t = \frac{1}{N} \sum_{i=1}^{N} (\hat{h}_{it} - 1)^2 \tag{8}
\]

The transition distance \(H_t \) has a limiting form which is showed by Phillips and Sul (2007):

\[
H_t \sim \frac{A}{L(t)^2 \tau^{2\alpha}} \text{ as } t \to \infty \tag{9}
\]

Where, positive constant is denoted by \(A \), slowly varying function is explained by \(L(t) = \log(t + 1) \), and the speed of convergence is \(\alpha \). Usually, after removing a fraction \(r \) of the sample, equation (10) is run. Phillips and Sul suggest at some point, \(t \) become \((rT) \) ,where \((rT) \) represents the integer part of \(rT \), and \(r = 0.3 \).

For examining the convergence null hypothesis discussed above, log t test is carried out as regards:

\[
\log (H_t/H_0) - 2\log L(t) = \hat{\beta} + \hat{b} \log t + \hat{\mu}_t \tag{10}
\]

Here, variation of cross-section is \(H_0 \), at the beginning of the sample, variation ratio of cross-section is explained by \(H_t/H_0 \), over the corresponding difference for each stage of period \(t \), \(H_t \) (i.e. \(H_t \) at \(t = 1 \)), which means, \(H_t \) (t,...,T), from the common limit the distance of the panel is measured by \(H_t/H_0 \).

At the same time, \(L(t) = \log(t) \) and \(r > 0 \). The regression presented in equation (10) is regarded as log t regression due to the log t regressor.

By applying the traditional t-statistic, if, \(t_b < -1.65 \), we reject the \(H_0 \) of convergence. It can be concluded panel convergence, when the t-statistic, \(t_b \) recommends that \(\hat{b} \) is else positive otherwise equals to 0.

On another side, we reject the \(H_0 \) of convergence, when t-statistic, \(t_b \) recommends that \(\hat{b} \) is negative and significant.

Data

In this investigation, we concentrate on ASEAN+6 FTAs nations, namely; Brunei, Cambodia Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore and Thailand, Vietnam and six FTAs of ASEAN community including Australia, India, Japan, China, South Korea, New Zealand. Data for per capita GDP for each country are collected from the World Development Indicator (World Bank). In this application, we applied annual data from 1997 to 2015, as in 1997, Association of Southeast Asian Nations and the three leading economies, particularly, China, Japan and South Korea established ASEAN + 3 grouping and when the ASEAN Australia-New Zealand Free Trade Agreement (AANZFTA) in
2010, the ASEAN-India FTA took place, a step further to foster closer economic collaboration and promote the economic integration process within ASEAN. All variables were transformed into logarithm for investigation.

EMPIRICAL RESULTS AND DISCUSSIONS

The empirical findings of this study will be presented in this section. To decide whether there is income convergence for the RCEP participant nations in the investigation, the convergence test is executed for per capita GDP. To suggest that there prevails structural convergence in the RCEP nations, per capita income should converge. In the existence of structural convergence exhibit that nations adopt identical development stages and that nations may converge to a structural ‘steady state’ in which the sectoral production process develops into similar within nations, which is represented by the up’s and down of similar sorts of sectors as income grows. The presence of structural convergence among the country groupings would likewise recommend that economies at the domestic and regional/industrial level are approximately identical and synchronized.

FULL PANEL CONVERGENCE

Initially, the overall convergence test on the aggregate level is executed on the RCEP countries per capita income by applying the log t test. In Table 1 and Table 2, Panels A and B present the outcomes of the panel convergence for two main analyses in the investigation. For the absolute test of convergence in the period of sampling of 1997 to 2015, with \(t_b = 2.900239 \), the per capita income appears divergence. Based on time series data, empirical regression of log t test ignored the data (Phillips & Sul, 2007a: 2007b: 2007c). Therefore, arrangement of data concentrates on the following portion of the sample data. In terms of both sizes and power, \(r = 0.311 \) is set apart as a suitable option (Phillips & Sul, 2007a). For the RCEP countries, period of 2003-2015, rejection of null hypothesis occurred for absolute convergence. The outcome supports prior conclusions that present divergence between wide groups of nations consisting of both advanced and emerging nations (Aldy 2006; Nguyen-Van 2005; Stegman & McKibbin 2005).

Panel A: Per capita GDP (Income convergence)

<table>
<thead>
<tr>
<th>Country</th>
<th>(b)</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCEP member countries (Full)</td>
<td>-2.900239*</td>
<td>Divergence</td>
</tr>
</tbody>
</table>

Rejection of null hypothesis for the complete sample of convergence does not indicate, in the sub-group of the RCEP countries, there is no indication of convergence. In investigating the behaviour of per capita income of nation \(i \) related to the average of the panel, Figure 1, illustrates the relevant transition path of each nation’s GDP per capita. Path of Transition \(h_n \) occupies the growth course for each nation, related to the average of the sample, indicate the related nation’s GDP per capita is above cross sectional average and contrarily, if the \(h_n \) line is above one. The relevant path of transition leads to unity for all nations, within the convergence assumption of the entire panel of nations. Furthermore, the slope of each curve can be represented as the rate of growth of per capita GDP for the related nation, corresponding to the cross sectional average. From Figure-1, the overall panel appeared to divergence across the participant nations, hence there is no tendency to unity of the transition paths. However, the opportunity of the presence of convergence clusters around the separate stages of equilibria or steady state as can be determined from Figure 1. By indicated that the overall convergence test for GDP shows divergence, the subsequent object to consider is the country clustering. Find out the core countries, number of clusters in the selected RCEP countries per capita income and are there any economies that diverge from the remaining of the groups? Alternatively, each member in the group is allowed to converge to a particular equilibrium or even diverge independently from the rest of the participant nations. Under the assumption of the convergence club in which members in the investigation is allowed to converge in particular equilibrium, the comparative transitional paths of each club shall converge to a particular constants.
From the log t regressions, Table 2 comprise of all related t-statistics. The test of convergence on per capita GDP has appeared in seven clubs convergence (Table 2). A group of rich countries, namely Singapore, Japan, New Zealand and Brunei comprised of the core club. These nations are the industrialized countries. Malaysia, China, Thailand and Indonesia as the newly industrialized countries clustered into a group. Finally, Vietnam, Laos, India, Myanmar and Cambodia, these developing countries form another group, converging to each other’s. Seven convergence clubs implies that the RCEP economies in the investigation yet indicate weak convergence among them which illustrate relatively substantial dissimilarity in its economic framework as an entity. The path of transition (Figure 1) likewise confirms the occurrence of the formation of seven clubs convergence. We can summarize that as RCEP economies experiences different development stages, the transition path in economic behavior may be remarkably dissimilar among the participant nations. Therefore, analysing for convergence applying the non-linear structure is convenient to identify convergence in transitional dynamic economies such as the RCEP nations.

Panel B: Club Convergence

<table>
<thead>
<tr>
<th>Rank</th>
<th>Member</th>
<th>Step1</th>
<th>Step2</th>
<th>Step3</th>
<th>Step4</th>
<th>Step5</th>
<th>Step6</th>
<th>Step7</th>
<th>Club</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AUS</td>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Diverge</td>
</tr>
<tr>
<td>2</td>
<td>SGD</td>
<td>-7.5</td>
<td>Base</td>
<td>Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Converge</td>
</tr>
<tr>
<td>3</td>
<td>JPN</td>
<td>-0.6</td>
<td></td>
<td>Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Converge</td>
</tr>
<tr>
<td>4</td>
<td>NZ</td>
<td>0.51</td>
<td></td>
<td>Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Converge</td>
</tr>
<tr>
<td>5</td>
<td>BRN</td>
<td>0.93</td>
<td></td>
<td>Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Converge</td>
</tr>
<tr>
<td>6</td>
<td>KR</td>
<td>-4.2</td>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Diverge</td>
</tr>
<tr>
<td>7</td>
<td>MYS</td>
<td>-2.4</td>
<td>Base</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Diverge</td>
</tr>
<tr>
<td>8</td>
<td>CHN</td>
<td>6.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Converge</td>
</tr>
</tbody>
</table>
A significant conclusion of this investigation is that, in enhancing economic partnership and integration between the ASEAN + 6 FTAs, the findings of convergence indicates that these countries made the right move in joining RCEP, for there are experiencing though different level of catching up yet possible chances of convergence at its level. Convergence has been the most prominent economic approach being investigated by economists and researchers for the last two decades, however, with different results. Government around the globe is concern about the growing inequality in income between the lower income countries and the advanced nations. Therefore, the challenge of how rapid developing nations converge to the advanced nations has significant policy implications. What policy remedy is convenient to contribute to the lower income parts or nations to the level of the advanced groups? Therefore the challenges continued, as to whether the RCEP is a convenient group of nations to establish a regional economic block. The investigation demonstrates that preferences of members are particularly crucial to establish the bloc. Previous background has demonstrated us that economic integration is a particularly gradual and scrutinized procedure, for illustration, the formation of European Union took 50 years to materialise with only 12 representatives as an initiate. Thus it advanced up by including each representative at a time as it fulfils the Maastricht Criteria. The development of RCEP integration is under progress even though shows to be relatively slow. For the sub-group of RCEP members that show weak convergence or divergence, further comprehensive growth policies are required to stimulate stronger integration with other participant. The outcomes are remarkably significant to the policy makers as to suggest the degree of economic similarity/dissimilarity across the participant nations.

The ASEAN+6 FTAs economies had encountered various phases of economic advancement and represent that economic integration process experienced by the ASEAN is a long and winding pathway. While the RCEP will take considerable than considerable responsibility and political decision, concepts and insights into the economics of distribution of income and redistributive action should be extended. This convergence analysis encourages us suggest more economic endeavors and potential economic policies as to diminish the disparity among new participants of the ASEAN and 6-FTAs members. An acceptable condition for convergence is that developing members pursue reasonably productive economic policies. The economic policy of convergence recommends the decline of economic inequalities across RCEP regions. The regional redistribution is vital to satisfy for the shocks imposed by expanding economic integration. The presence of certain clubs convergence that were determined in this investigation will facilitate RCEP in arranging the allocation for cohesion policy.

NOTA

1 In standard neoclassical growth model, for heterogenous technology development, log income per capita, \(\log y_{it} \) can be written as: \(\log y_{it} = \log y_{i0}^* + (\log y_{i0} - \log y_i^*) e^{-\beta t} + \log A_{it} = a + \log A_{it} \) (Phillip and Sul, 2007). Log \(A_t \) can be further decomposed by, \(\log A_t = \log A_{io} + \gamma_{it} \log \hat{A}_t \) Where, in terms initial technology accumulation, \(A_{io} \) is current technology for country \(I \) and from available advance technology log \(\hat{A}_t \) log \(A_t \) capture distance of country \(i \) technology. If advance technology log \(\hat{A}_t \) assume to grow a constant rate \(\alpha \): \(\log y_{it} = (\alpha \log A_{it} + \gamma_{it} A_i) = \delta_{it} \mu_t \).
RUUKUKAN

Dayang Affizah Awang Marikan*
Department of Economics and Business
University Malaysia Sarawak
Jalan Datuk Mohammad Musa
94300 Kota Samarahan Sarawak
MALAYSIA
E-mail: amdaffizah@unimas.my

Md.Mahbubur Rahman
Department of Economics and Business
University Malaysia Sarawak
Jalan Datuk Mohammad Musa
94300 Kota Samarahan Sarawak
MALAYSIA
E-mail: purnimabd72@yahoo.com

Nor Afiza Abu Bakar
Department of Economics and Business
University Malaysia Sarawak
Jalan Datuk Mohammad Musa
94300 Kota Samarahan Sarawak
MALAYSIA
E-mail: abnafiza@unimas.my

Ting Mee Sing
Department of Economics and Business
University Malaysia Sarawak
Jalan Datuk Mohammad Musa
94300 Kota Samarahan Sarawak
MALAYSIA
Email:angeltms@yahoo.com

*Corresponding author
Appendix 1. Logarithms of GDP per Capita

![Graph showing logarithms of GDP per Capita from 1997 to 2015]

FIGURE 2. Logarithms of GDP per Capita 1997-2015
Appendix 2. Descriptive Statistics

<table>
<thead>
<tr>
<th>Variables</th>
<th>Country</th>
<th>No Of Obs.</th>
<th>Mean</th>
<th>Std.Dev</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Jarque-Bera</th>
<th>Probability</th>
<th>Sum</th>
<th>Sum Sq. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(GDP)</td>
<td>Japan</td>
<td>19</td>
<td>10.53927</td>
<td>0.120164</td>
<td>10.37045</td>
<td>10.79198</td>
<td>1.909418</td>
<td>0.384924</td>
<td>200.2461</td>
<td>0.259910</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Australia</td>
<td>19</td>
<td>10.48694</td>
<td>0.461502</td>
<td>9.877921</td>
<td>11.12214</td>
<td>1.877544</td>
<td>0.391108</td>
<td>199.2518</td>
<td>3.833717</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Singapore</td>
<td>19</td>
<td>10.43293</td>
<td>0.368602</td>
<td>9.979387</td>
<td>10.93324</td>
<td>1.944852</td>
<td>0.378164</td>
<td>198.2257</td>
<td>2.445616</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Brunei</td>
<td>19</td>
<td>10.16572</td>
<td>0.422500</td>
<td>9.456010</td>
<td>10.75735</td>
<td>1.440993</td>
<td>0.486511</td>
<td>193.1487</td>
<td>3.213118</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>New Zealand</td>
<td>19</td>
<td>10.14907</td>
<td>0.405572</td>
<td>9.520843</td>
<td>10.70055</td>
<td>1.648017</td>
<td>0.438670</td>
<td>192.8324</td>
<td>2.960794</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Korea</td>
<td>19</td>
<td>9.76156</td>
<td>0.369545</td>
<td>9.003775</td>
<td>10.23958</td>
<td>1.406943</td>
<td>0.494865</td>
<td>185.4697</td>
<td>2.458145</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Malaysia</td>
<td>19</td>
<td>8.74246</td>
<td>0.433293</td>
<td>8.079559</td>
<td>9.33080</td>
<td>1.734829</td>
<td>0.420036</td>
<td>166.1068</td>
<td>3.379369</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Thailand</td>
<td>19</td>
<td>8.12921</td>
<td>0.448434</td>
<td>7.526125</td>
<td>8.736337</td>
<td>1.964116</td>
<td>0.374540</td>
<td>154.4552</td>
<td>3.619681</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>China</td>
<td>19</td>
<td>7.76565</td>
<td>0.837375</td>
<td>6.661527</td>
<td>8.990651</td>
<td>1.826534</td>
<td>0.400810</td>
<td>147.5471</td>
<td>12.62154</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Indonesia</td>
<td>19</td>
<td>7.37384</td>
<td>0.670964</td>
<td>6.139632</td>
<td>8.216230</td>
<td>1.323594</td>
<td>0.515923</td>
<td>140.1031</td>
<td>8.103480</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Philippines</td>
<td>19</td>
<td>7.34365</td>
<td>0.420333</td>
<td>6.864860</td>
<td>7.973914</td>
<td>2.113088</td>
<td>0.347655</td>
<td>139.5294</td>
<td>3.180237</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Vietnam</td>
<td>19</td>
<td>6.72658</td>
<td>0.636383</td>
<td>5.887772</td>
<td>7.654982</td>
<td>1.738582</td>
<td>0.419249</td>
<td>127.8051</td>
<td>7.289705</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>India</td>
<td>19</td>
<td>6.70128</td>
<td>0.510768</td>
<td>6.044582</td>
<td>7.376670</td>
<td>2.018533</td>
<td>0.364486</td>
<td>127.3245</td>
<td>4.695910</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Lao</td>
<td>19</td>
<td>6.46899</td>
<td>0.700118</td>
<td>5.512835</td>
<td>7.505735</td>
<td>1.876139</td>
<td>0.391383</td>
<td>122.9110</td>
<td>8.822985</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Cambodia</td>
<td>19</td>
<td>6.29288</td>
<td>0.510604</td>
<td>5.591148</td>
<td>7.055045</td>
<td>1.848150</td>
<td>0.396898</td>
<td>119.5647</td>
<td>4.692890</td>
</tr>
<tr>
<td>Log(GDP)</td>
<td>Myanmar</td>
<td>19</td>
<td>6.05023</td>
<td>0.795453</td>
<td>4.900865</td>
<td>7.112439</td>
<td>1.881474</td>
<td>0.390340</td>
<td>114.9545</td>
<td>11.38942</td>
</tr>
</tbody>
</table>
Appendix 6. Correlation analysis (Log GDP Per Capita)

<table>
<thead>
<tr>
<th></th>
<th>JP</th>
<th>AUS</th>
<th>SGP</th>
<th>BRN</th>
<th>NZ</th>
<th>KR</th>
<th>MY</th>
<th>THD</th>
<th>CHN</th>
<th>IDN</th>
<th>PHP</th>
<th>VNM</th>
<th>IND</th>
<th>LAO</th>
<th>CAM</th>
<th>MMN</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>AUS</td>
<td>0.7121</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>SGP</td>
<td>0.6821</td>
<td>0.9893</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>BRN</td>
<td>0.7381</td>
<td>0.9622</td>
<td>0.9439</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>NZ</td>
<td>0.6131</td>
<td>0.9669</td>
<td>0.9508</td>
<td>0.9430</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>KR</td>
<td>0.5767</td>
<td>0.9328</td>
<td>0.9339</td>
<td>0.9503</td>
<td>0.9622</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>MY</td>
<td>0.6895</td>
<td>0.9859</td>
<td>0.9899</td>
<td>0.9669</td>
<td>0.9599</td>
<td>0.9545</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THD</td>
<td>0.6760</td>
<td>0.9892</td>
<td>0.9949</td>
<td>0.9445</td>
<td>0.9615</td>
<td>0.9417</td>
<td>0.9927</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHN</td>
<td>0.6321</td>
<td>0.9698</td>
<td>0.9749</td>
<td>0.9205</td>
<td>0.9433</td>
<td>0.9308</td>
<td>0.9752</td>
<td>0.9790</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDN</td>
<td>0.7081</td>
<td>0.9674</td>
<td>0.9764</td>
<td>0.9510</td>
<td>0.9504</td>
<td>0.9549</td>
<td>0.9902</td>
<td>0.9858</td>
<td>0.9659</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHP</td>
<td>0.6325</td>
<td>0.9643</td>
<td>0.9842</td>
<td>0.8940</td>
<td>0.9114</td>
<td>0.8940</td>
<td>0.9694</td>
<td>0.9823</td>
<td>0.9762</td>
<td>0.9549</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNM</td>
<td>0.6270</td>
<td>0.9704</td>
<td>0.9732</td>
<td>0.9264</td>
<td>0.9468</td>
<td>0.9396</td>
<td>0.9767</td>
<td>0.9782</td>
<td>0.9989</td>
<td>0.9670</td>
<td>0.9716</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND</td>
<td>0.6575</td>
<td>0.9789</td>
<td>0.9810</td>
<td>0.9385</td>
<td>0.9618</td>
<td>0.9491</td>
<td>0.9789</td>
<td>0.9848</td>
<td>0.9914</td>
<td>0.9722</td>
<td>0.9667</td>
<td>0.9905</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAO</td>
<td>0.6381</td>
<td>0.9734</td>
<td>0.9869</td>
<td>0.9215</td>
<td>0.9381</td>
<td>0.9329</td>
<td>0.9850</td>
<td>0.9890</td>
<td>0.9928</td>
<td>0.9777</td>
<td>0.9882</td>
<td>0.9923</td>
<td>0.9847</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAM</td>
<td>0.6122</td>
<td>0.9747</td>
<td>0.9793</td>
<td>0.9306</td>
<td>0.9543</td>
<td>0.9492</td>
<td>0.9824</td>
<td>0.9860</td>
<td>0.9953</td>
<td>0.9725</td>
<td>0.9769</td>
<td>0.9967</td>
<td>0.9918</td>
<td>0.9937</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>MMN</td>
<td>0.6850</td>
<td>0.9340</td>
<td>0.9469</td>
<td>0.8277</td>
<td>0.8636</td>
<td>0.7964</td>
<td>0.9152</td>
<td>0.9457</td>
<td>0.9260</td>
<td>0.9021</td>
<td>0.9674</td>
<td>0.9157</td>
<td>0.9239</td>
<td>0.9379</td>
<td>0.9204</td>
<td>1.000</td>
</tr>
</tbody>
</table>