Surface modification of cellulose nanomaterial for urea biosensor application

Wan Elina Faradilla Wan Khalid, and Lee, Yook Heng and Mohamad Nasir Mat Arip, (2018) Surface modification of cellulose nanomaterial for urea biosensor application. Sains Malaysiana, 47 (5). pp. 941-949. ISSN 0126-6039

[img]
Preview
PDF
1MB

Official URL: http://www.ukm.my/jsm/english_journals/vol47num5_2...

Abstract

Cellulose nanomaterial with rod-like structure and highly crystalline order, usually formed by elimination of the amorphous region from cellulose during acid hydrolysis. Cellulose nanomaterial with the property of biocompatibility and nontoxicity can be used for enzyme immobilization. In this work, urease enzyme was used as a model enzyme to study the surface modification of cellulose nanomaterial and its potential for biosensor application. The cellulose nanocrystal (CNC) surface was modified using 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation to introduce the carboxyl group at C6 primary alcohol. The success of enzyme immobilization and surface modification was confirmed using chemical tests and measured using UV-Visible spectrophotometer. The immobilization strategy was then applied for biosensor application for urea detection. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were used for electroanalytical characterization of the urea biosensor.

Item Type:Article
Keywords:Biosensor; Cellulose nanomaterial; Enzyme immobilization; Surface modification
Journal:Sains Malaysiana
ID Code:12082
Deposited By: ms aida -
Deposited On:19 Sep 2018 01:41
Last Modified:22 Sep 2018 10:42

Repository Staff Only: item control page