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A New Discordancy Test on a Regression for Cylindrical Data
(Ujian Ketakselanjaran Terbaru ke atas Regresi untuk Data Silinder)

NURUL HIDAYAH SADIKON, ADRIANA IRAWATI NUR IBRAHIM*, IBRAHIM MOHAMED & DHARINI PATHMANATHAN

ABSTRACT

A cylindrical data set consists of circular and linear variables. We focus on developing an outlier detection procedure 
for cylindrical regression model proposed by Johnson and Wehrly (1978) based on the k-nearest neighbour approach. 
The procedure is applied based on the residuals where the distance between two residuals is measured by the Euclidean 
distance. This procedure can be used to detect single or multiple outliers. Cut-off points of the test statistic are generated 
and its performance is then evaluated via simulation. For illustration, we apply the test on the wind data set obtained 
from the Malaysian Meteorological Department.
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ABSTRAK

Data silinder adalah data yang mengandungi pemboleh ubah bulatan dan linear. Kami memberi tumpuan kepada 
pembangunan prosedur pengecaman nilai tersisih untuk model regresi silinder yang dicadangkan oleh Johnson dan 
Wehrly (1978) dengan menggunakan pendekatan jiran k-terdekat. Prosedur tersebut adalah berdasarkan nilai-nilai reja 
dengan jarak di antara dua reja diukur menggunakan jarak Euclidean. Prosedur ini boleh digunakan untuk mengesan nilai 
tersisih tunggal atau berbilang. Titik potongan untuk statistik ujian dijana dan prestasi bagi ujian tersebut dikaji secara 
simulasi. Untuk ilustrasi, kami menggunakan set data angin yang diperoleh daripada Jabatan Meteorologi Malaysia.

Kata kunci: Bulatan-linear; data silinder;  jarak jiran k-terdekat;  nilai tersisih

INTRODUCTION

In statistical modeling, regression analysis is one of the 
common methods used to investigate the relationship 
between variables. For the linear case, the theory of linear 
regression is readily available in various literature. As for 
the circular regression, it can be divided into different 
types according to the type of dependent of independent 
variables (Jammalamadaka &  SenGupta  2001). Circular-
circular regression is a type of regression when both the 
dependent and independent variables are circular; circular-
linear regression is a regression when the linear variable 
depends on the independent circular variable while linear-
circular regression is a type of regression when the circular 
variable depends on the linear variable. The regression for 
cylindrical data can be considered as the circular-linear 
regression or the linear-circular regression.
 Johnson and Wehrly (1978) proposed a regression of a 
linear variate on other linear and circular variates in which 
the  model follows closely the linear regression; the least-
square method is used to find the parameter estimates. Then, 
SenGupta and Ugwuowo (2006) proposed three different 
models of circular-linear regression for multivariate data 
based on both circular and linear predictors. These models 
can be used to deal with both symmetric and asymmetric 
model forms. Qin et al. (2011) proposed a nonparametric 
regression model for circular-linear multivariate regressors 
using a kernel-weighted local linear method.

 Outliers can affect the estimation of a regression 
model. In linear regression, many outlier detection methods 
have been proposed in the literature. For the case of a 
single outlier, Barnett and Lewis (1978) and Srikantan 
(1961) used residuals from the least square fit in their 
outlier detection procedures. Cook (1977) presented a 
new distance measure based on two maximum likelihood 
estimates using row-deletion approach. Srivastava and 
Rosen (1998) proposed a likelihood ratio test for detecting 
single outlier in multivariate regression models. For the 
case of multiple outliers, Hadi and Simonoff (1993) 
proposed procedures to detect outliers in univariate linear 
regression model. Barrett and Ling (1992) presented 
general classes of multivariate influence measure for a 
univariate regression based on Cook’s influence measure. 
The outlier detection in circular regression mainly focuses 
on the circular-circular regression models. Abuzaid et al. 
(2011) and Ibrahim et al. (2013) extended the COVRATIO 
statistic that is used in linear regression to a circular-
circular regression model. Abuzaid et al. (2013) and Rambli 
et al. (2016) proposed new outlier detection methods in the 
circular-circular regression models called mean circular 
error statistic by using row-deletion method. Rambli et al. 
(2016) transformed the residuals into linear scales using a 
trigonometric function while Abuzaid et al. (2013) used the 
circular distance between two circular observations. While 
different outlier detection procedures have been developed 
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for linear and circular regression models, no such work has 
been done on the regression model for cylindrical data. 
Hence, we propose a new test of outlier detection in the 
regression model for cylindrical data.
 Thus in this article, the regression model for cylindrical 
data, in particular the Johnson-Wehrly (JW) circular-linear 
regression model, is discussed and a discussion on the 
k-nearest neighbour approach is given. Then, a new outlier 
detection method for circular-linear regression model based 
on the k-nearest neighbour approach is presented. Next, 
the cut-off points of the new statistic are calculated, and its 
performance is studied through simulation. An application 
of the new test of discordancy is later shown using real 
data set from the Malaysian Meteorological Department. 

REGRESSION FOR CYLINDRICAL DATA

Johnson and Wehrly (1978) proposed three different 
regression models including a regression of a linear 
variable on other linear and circular variables. Herewith, 
we refer to the model as the JW circular-linear regression 
model. Consider the joint density f (x, θ) such that

 (x, θ) x x x xλ a(θ)'  (1)

where c is a constant of integration and a(θ)' = (a1 (θ), …, 
aq(θ)) is given by

 ai(θ) =  [uijk cos(kθj) + vijk sin(kθj)], 
  
  i = 1, …, q, (2)

x ∈ q, θ ∈ [0, 2π)p, λ ∈ q, Σ–1 is positive definite while 
uijk and vijk are constant. Let us partition x =   and 
hence λ, Σ and a(θ) accordingly. The model is constructed 
from the conditional distribution of x1 = (x1, x2, …, xr)' 
given x2 and θ, where x1 is the dependent variable while 
x2 and θ are the independent variables. The conditional 
distribution  f(x1⏐x2, θ) is the r-dimensional normal 
distribution with mean λ1 +  [x2 – (λ2 + a2 (θ))] and 
co-variance matrix . It can be shown that 
each component xi of x1 has a variance not depending on 
the conditioning variables and a mean of the form

  

(3)

where β0, βi, γijk and δijk are the coefficients which represent 
the relationship between the variables and k is the angular 
frequency. This model is basically reduced to a standard 
method of predicting a linear variable from a mixture of 
linear and circular variables.

 In the next section, we use a simple form of the model 
given in (3) with one linear variable and one circular 
variable with the frequency k = 1. The model takes the 
form of

 x1i = β0 + β2x2i + γ cos θi + δ sin θi + i,   i = 1,2,…,n
(4)

i ~ N (0, σ2). The estimation of the parameters β0, β2, γ and 
δ  can be obtained using the least square estimation method. 

THE k-NEAREST NEIGHBOR APPROACH

We denote d(xi, x1), d(xi, x2), …, d(xi, xn) as the distances 
between the ith observation with the other observations 
while d(1)(xi, x1), d(2)(xi, x2), …, d(k)(xi, xn) are the 
corresponding ordered distances. The first-nearest distance 
for the ith observation is defined as the smallest distance 
or the distance at the first position in the ordered distances 
given by,

 L1i = d(1)(xi, xj),  i, j = 1, 2, …, n,   i ≠ j. (5)

 Note that L1i gives a sequence of distances between 
consecutive observations on the p-dimensional surface. 
Hence, we can define Lki as the k-NN distance for the ith 
observation to other points where,

 Lki = d(k)(xi, xj),  i, j = 1, 2, …, n,  i ≠ j. (6)

 In the next section, we develop a new test of 
discordancy to detect outliers in JW circular-linear 
regression model using the statistic as given in (6), but on 
residuals, instead of observations.

OUTLIER DETECTION IN A REGRESSION MODEL FOR 
CYLINDRICAL DATA USING k-NN APPROACH

The new outlier detection for JW circular-linear model is 
constructed based on the k-NN approach when applied on 
the distances between the residuals. The residual is given 
by, 

 ei = x1i – 1i,   i = 1, 2, …, n. (7)

 Given ei and ej, the Euclidean distance between the 
two residuals is defined as,

 d(ei, ej) = ⏐ei – ej⏐,   i = 1, 2, …, n. (8)

 Using the same k-NN approach given in the previous 
section, the k-NN distance for this case is given by,

 Lki = d(k)(ei, ej),  k = 1,2,3,…,   

 i, j = 1,2,…, n,   i ≠  j (9)
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Hence, the test statistic is
        
  (10)

where n is the sample size and k is the kth-nearest 
neighbour. The complete steps to detect the outlier in 
regression for cylindrical data are given as follows:
 First, fit the circular-linear regression as given in (4); 
next, calculate the residuals as defined in (7); after that, 
choose any k = 1,2,3,... for the k-nearest neighbour distance, 
then calculate the distances between residuals, Lki, as given 
in (9); subsequently, define the test statistic  as given in 
(10); and lastly if the value of  exceeds the cut-off point, 
say aL, then the ith observation corresponding to  
is identified as an outlier.
 We note that  statistic can also be used to detect a 
patch of outliers. For example, when k = 1, it can be used to 
detect an outlier while when k = 2, it can be used to detect 
a patch of 2 outliers. For multiple outliers, we usually need 
to repeat the  statistic iteratively for k = 1,2,3,... until no 
outliers are detected.

CUT-OFF POINTS OF THE TEST STATISTIC

We design a simulation study for  statistic to obtain the cut-
off points using the R statistical package based on the null 
hypothesis that there are no outliers present in the cylindrical 
data set. The generation of the cut-off points are based on 
the sample size n and residual standard deviation σ. 

 In our study, the cut-off points are generated from 
various values of n in the range of [10, 100] and σ = [0.05, 
1]. We generate x2 from Normal distribution N(5,2) and  θ 
from von Mises distribution VM(π,2). Then, we generate 
the residuals of size n from N(0,σ). For each sample, we 
obtain the variable x1 using (4) where the values of the JW 
model parameters are chosen to be β0 = 0.306, β2 = 1, γ = 
1 and δ = 1. Next, we fit the JW model and compute the 
fitted values and resulting residuals. We then calculate { , 
k = 1,2} statistic as given in (10). The process is repeated 
for 2000 times and the estimated cut-off points at 10%, 
5% and 1% upper percentiles are collected.
 The cut off-points of  statistic are tabulated in Table 
1 for the case of a single outlier (k = 1) and two outliers 
(k = 2). It can be seen that for each sample size n, the 
cut-off points increase as the value of σ increases. On the 
other hand, the cut-off points are a decreasing function of 
sample size n.

THE PERFORMANCE OF  STATISTIC

THE PERFORMANCE OF   STATISTIC FOR SINGLE OUTLIER

From Barnett and Lewis (1978) and David (1981), P1 = 
1 - β is the power function where β is the type-II error; P3 
is the probability that the contaminant point is an outlier 
and it is identified as discordant; and P5 is the probability 
that that the contaminant point is an outlier given that it 
is identified as discordant. A good test should have: high 
P1; high P5; and low P1-P3.

TABLE 1. The cut-off points of statistic for the JW distribution where β0 = 0.306, β2 = 1, γ = 1 and δ = 1 

n
Level of 

percentile

k = 1 k = 2
σ 

0.08 0.2 0.5 0.8 1 2 0.08 0.2 0.5 0.8 1 2

10
10%
5%
1%

0.096
0.114
0.146

0.239
0.284
0.366

0.598
0.710
0.914

0.956
1.136
1.463

1.196
1.420
1.828

2.391
2.840
3.657

0.125
0.144
0.180

0.312
0.361
0.451

0.779
0.901
1.127

1.246
1.442
1.803

1.558
1.803
2.254

3.116
3.606
4.508

20
10%
5%
1%

0.094
0.111
0.144

0.235
0.277
0.361

0.587
0.691
0.902

0.939
1.106
1.443

1.174
1.383
1.804

2.349
2.765
3.608

0.119
0.135
0.165

0.299
0.338
0.413

0.747
0.845
1.033

1.195
1.352
1.652

1.494
1.689
2.065

2.987
3.379
4.130

30
10%
5%
1%

0.088
0.106
0.142

0.221
0.265
0.354

0.553
0.662
0.885

0.884
1.059
1.417

1.105
1.324
1.771

2.211
2.647
3.542

0.114
0.130
0.166

0.286
0.326
0.416

0.715
0.814
1.041

1.143
1.303
1.665

1.429
1.629
2.081

2.858
3.258
4.162

50
10%
5%
1%

0.084
0.103
0.143

0.210
0.258
0.356

0.525
0.644
0.891

0.839
1.031
1.426

1.049
1.288
1.782

2.098
2.576
3.565

0.108
0.125
0.161

0.270
0.313
0.403

0.675
0.783
1.006

1.079
1.252
1.610

1.349
1.565
2.013

2.698
3.130
4.026

80
10%
5%
1%

0.081
0.098
0.129

0.202
0.244
0.323

0.505
0.609
0.808

0.809
0.975
1.293

1.011
1.219
1.616

2.022
2.438
3.232

0.103
0.119
0.148

0.257
0.298
0.370

0.642
0.746
0.925

1.027
1.194
1.481

1.283
1.492
1.851

2.567
2.984
3.702

100
10%
5%
1%

0.082
0.095
0.125

0.204
0.238
0.312

0.510
0.595
0.780

0.817
0.952
1.249

1.021
1.190
1.561

2.042
2.381
3.121

0.101
0.116
0.149

0.253
0.290
0.373

0.631
0.725
0.932

1.010
1.160
1.492

1.263
1.449
1.864

2.526
2.899
3.729
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 The performance of  statistic is conducted using 
simulation method. To investigate the performance of  
statistic, the samples are generated from various samples 
n = [20, 100] from normal distribution, x2 ~ N(5,2) and 
von Mises distribution, θ ~ VM(π,2) with different values 
of σ in the range (0.2, 2). Using the generated data of x2 
and θ, the values of the response variable x1 are obtained 
using (4) where the values of the JW model parameters β0, 
β2, γ and δ are the same as in the previous section. Then, 
the outlier is generated by altering,

 

where Δ ≥ 0 is the contamination level. Next, the generated 
cylindrical data of x1, x2 and θ are fitted to JW circular-linear 
regression to find the estimates 0, 2,  and . Then, we 
apply the   statistic for the detection of outlier in each 
sample. If the value of the  statistic is greater than the 
specified cut-off points, then we have correctly detected 
the outlier. The process is repeated for 2000 times and the 
values of P1, P3 and P5 are obtained.
 The results for the samples when n = 20 and n = 100 are 
plotted in Figures 1 and 2, respectively. From both figures, 
the performance of  statistic are almost similar. It can be 
seen that the performance of the  statistic depends on 

the value of σ. The performance is better as the value of σ 
decreases. Hence, the performance is a decreasing function 
of σ. However, the performance is slightly better for n = 
100 than for n = 20. When n is large, the distance between 
the residuals is expected to be shorter resulting in lower 
values of  statistic as illustrated by the smaller cut-off 
points as shown in Table 1. Hence, when outlier occurs in 
large sample size, we detect the corresponding observation 
easier as its respective distance will be relatively longer 
compared to the case in smaller sample size.
 We can see that the performance of P1 and P5 for 
different values of n shows similar behaviour. However, we 
note that, for large sample sizes, the curves are approaching 
1 slightly faster. In addition, the differences between P1 and 
P3 are also approximately close to 0 but not shown here.

THE PERFORMANCE OF  STATISTIC FOR TWO OUTLIERS

To investigate the performance of  statistic, the samples 
are generated from various samples n = [20,100] from 
normal distribution, x2 ~ N(5,2) and von Mises distribution,  
θ ~VM(π,5) with different values of σ in the range (0.2, 2). 
The values of the response variable x1 are obtained using 
the same method as for the  statistic case. Then, the outlier 
is generated by altering,

FIGURE 1. Sampling behaviour of the statistic for different values of σ when n = 20

FIGURE 2. Sampling behaviour of the statistic for different values of σ when n = 100
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where Δ ≥ 0 is the contamination level. Then, similar 
procedure as the performance of  is used.
 The performance of  statistic when n = 50 and n = 
100 are given in Figures 3 and 4, respectively. Generally, 
the performance of  statistic shows a similar behaviour 
of  statistic.

PRACTICAL EXAMPLE

We now apply the JW circular-linear regression model 
on a real data set. For a practical example, we use wind 
direction, wind speed (in m/s) and temperature (˚C) data 
taken from the Malaysian Meteorological Department, 
which were measured in Bayan Lepas, Penang, in January 
2005 at a pressure of 850 Hpa at 12:00 am. The data are 
given in Table 2.

 The parameter estimates of the JW circular-linear 
regression model are 0 = 5.260, 2 = - 0.124,  = 0.309 
and  = 1.486 with the fitted is given by,

 1 = 0.526 – 0.124 x2 + 0.309 cos θ + 1.486 sin θ.
 
 From Figures 5-7, it can be seen that there is an 
observation that is located far away from the rest of the 
data. This shows that a possible outlier is present in the 
data set. We apply the proposed outlier detection method 
for circular-linear regression using  statistic. 
 The root mean squared error (RMSE) for this data set is 
2.547 and value of test statistic  = 8.143. Knowing that 
n = 31 and  = 2.547, the corresponding cut-off point is 
3.301. Clearly, the value of the  statistic for observation 
1 is greater than the cut-off point. Hence, the observation 
is identified as an outlier. We apply again the procedure 
on the reduced data set by removing observation 1 and no 
outlier is detected.

FIGURE 3. Sampling behaviour of the statistic for different values of σ when n = 20

FIGURE 4. Sampling behaviour of the statistic for different values of σ when n = 100
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TABLE 2. The wind data

Wind Speed 
(m/s)

Temperature
(˚C)

Wind direction
 (˚)

Wind Speed 
(m/s)

Temperature 
(˚C)

Wind direction 
(˚)

14.9
5.1
4.6
6.2
3.6
1.5
2.1
4.6
4.6
5.1
4.6
2.6
1.0
0.5
5.1
3.1

17.6
18.0
18.2
18.0
18.2
17.6
18.4
18.2
17.6
17.4
19.0
17.6
18.4
18.6
18.4
18.0

85
85
140
100
135
310
340
120
130
120
150
80
205
60
110
125

2.1
1.5
1.0
0.5
4.6
2.6
3.6
2.1
3.6
2.6
3.1
3.1
4.6
3.6
2.6

19.0
17.8
17.4
17.2
16.6
17.2
18.2
16.6
18.0
17.2
17.2
18.6
18.0
17.4
17.8

125
185
190
70
135
125
90
200
5
30
165
260
325
325
345

Source: Malaysian Meterological Department

FIGURE 5. The regression plot of the wind data

FIGURE 6. The residual vs fitted plot for wind data

FIGURE 7. Q-Q normal plot of the residuals

TABLE 3. The summary of the effect of outlier removal 
from the wind data set

Parameters Full data Data after removing 
observation 1

0
5.260 -0.138

2
-0.124 0.170

0.309 -0.033

1.486 0.807

2.547 1.509

 The removal of observation 1 from the data set notably 
changes the values of 0, 2, ,  and . The results are 
shown in Table 3 and Figures 8-10. Thus, the removal of 
observation 1 gives a better model fitting to the data set. 
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CONCLUSION

In this paper, we propose a new method of outlier 
detection in the JW circular-linear regression based on 
the k-nearest neighbour distance. The proposed test 
statistic performs well in detecting single and multiple 
outliers. Although we consider only the JW circular-
linear regression model, the  statistic can be extended 
to other circular-linear regression models, with their 
corresponding simulated cut-off points. 
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