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Outlier Detection in Multiple Circular Regression Model using DFFITC Statistic
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ABSTRACT

This paper presents the identification of outliers in multiple circular regression model (MCRM), where the model studies 
the relationship between two or more circular variables. To date, most of the published papers concentrating on detecting 
outliers in circular samples and simple circular regression model with one independent circular variable. However, no 
related studies have been found for more than one independent circular variable. The existence of outliers could alert 
the sign and change the magnitude of regression coefficients and may lead to inaccurate model development and wrong 
prediction. Hence, the intention is to develop an outlier detection procedure using DFFITS statistic for circular case. This 
method has been successfully used in multiple linear regression model. Therefore, the DFFITc statistic for circular variable 
has been derived. The corresponding critical values and the performance of the procedure are studied via simulations. 
The results of simulation studies show that the proposed statistic perform well in detecting outliers in MCRM using DFFITc 
statistic. The proposed statistic was applied to a real data for illustration purposes.
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ABSTRAK

Kertas ini membentangkan pengesanan nilai tersisih dalam model regresi berkeliling berganda (MCRM) dengan model 
tersebut mengkaji hubungan antara dua atau lebih pemboleh ubah berkeliling. Sehingga kini, kebanyakan kertas yang 
diterbitkan menumpukan ke atas pengesanan nilai tersisih dalam sampel berkeliling dan model regresi berkeliling 
ringkas untuk satu pemboleh ubah tak bersandar. Walau bagaimanapun, tiada kajian yang berkaitan telah dijumpai 
untuk lebih daripada satu pemboleh ubah berkeliling tak bersandar. Kewujudan nilai tersisih dapat memberi isyarat 
tanda dan mengubah perubahan magnitud pekali regresi dan mungkin menyebabkan pembangunan model yang tidak 
tepat dan ramalan yang salah. Oleh itu, objektif kajian adalah untuk membangunkan kaedah pengesanan nilai tersisih 
menggunakan statistik DFFITS untuk kes berkeliling. Kaedah ini telah berjaya digunakan dalam model regresi linear 
berganda. Oleh itu, statistik DFFITc untuk pemboleh ubah berkeliling telah diterbitkan. Nilai genting sepadan dan prestasi 
prosedur dikaji melalui simulasi. Hasil kajian simulasi menunjukkan bahawa statistik yang dicadangkan menunjukkan 
prestasi yang baik dalam mengesan nilai tersisih di dalam MCRM menggunakan statistik DFFITc. Statistik yang dicadangkan 
diaplikasikan kepada data sebenar untuk tujuan ilustrasi.

Kata kunci: Data berkeliling; DFFITS; model regresi berkeliling; nilai tersisih

INTRODUCTION

The multiple circular regression model is used to study 
the relationship between two or more circular variables 
as proposed by Ibrahim (2013). The model has interesting 
properties which are very close resemblance to that of 
the multiple linear regression models, including the 
sensitivity to the existence of outliers. Circular statistics 
are used in many different fields such as physics, medicine, 
oceanography, meteorology and biology. One of the most 
common problems in any statistical analysis is the existence 
of some unexpected observations, it is called outliers. Some 
studies have shown that outliers affect the performance of 
standard statistical methodology in modeling, diagnostic, 
and forecasting processes. The existence of outliers affects 
most of the statistical properties of the model (Abuzaid et 
al. 2009; Beckman & Cook 1983; Peña 1990).

	 The identification of outliers in circular data received 
great interest especially on the use the new methods, which 
were extended from the linear regression model to the 
simple circular regression model (Abuzaid et al. 2013, 
2011; Hussin et al. 2013; Ibrahim et al. 2013; Rambli et 
al. 2015, 2012). Recently, Alkasadi et al. (2018, 2016) 
considered the problem of outliers in multiple circular 
regression model. There are few published works on the 
problem of outlier detection in multiple linear regression 
by using the DFFITS statistic, such as in Ampanthong & 
Suwattee (2009), Belsley et al. (1980), Wong (1992) and 
Zakaria et al. (2014).
	 In the literature, the methods of outliers’ detection 
in linear case has been successfully used DFFITS statistic. 
However, there is no published work related to the 
detection of outliers on circular case using DFFITS statistic. 
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In this paper, we will extend the statistic of DFFITS to detect 
outliers in multiple circular regression models (MCRM).
	 This article is organized as follows: First, we review 
the multiple circular regression model and explains the 
estimation of model parameters via the least squares 
method. Next, we demonstrate the proposed of DFFITc 
statistic for the MCRM. After that, we obtains the cut-off 
points and investigates the performance of the proposed 
statistic. Lastly, we discusses the detection of outliers in 
multivariate eye data for illustration purpose.

THE MULTIPLE CIRCULAR REGRESSION MODEL (MCRM)

The MCRM which was proposed by Ibrahim (2013) study 
the relationship between a dependent circular variable and 
one or more independent circular variables. In this paper, 
we only focuses on two independent circular variables; U1, 
and U2 with the dependent circular variable V. The MCRM 
in terms of the conditional expectation, e iv is given by, 

	 E(eiv|u1, u2) = ρ(u1, u2)e
i,μ(u1, u2) = g1(u1, u2) + ig2(u1, u2)

	 (1)

where μ(u1, u2) is the conditional mean direction of v given 
u1 and u2 and ρ(u1, u2) is the conditional concentration 
towards μ(u1, u2).

The parameters μ(u1, u2) may be estimated such that 

	 (2)

	 The values of g1(u1, u2) and g2(u1, u2) may be 
estimated using the following trigonometric polynomials 
of a suitable degree (m) as, 

 

	
	
	

	  (3)
 

where  

Thus, and based on (3), there are two models as follow;

	

	

 

	 (4)

for  i = 1, …, n   and ε = (ε1, ε2) is the vector of random errors 
following a bivariate normal distribution with mean 0 and 
dispersion matrix Σ. The parameters  Akl, Bkl, Ckl, Dkl, Ekl, 
Fkl, Gkl and Hkl, where kl = 0, 1, …, m, the standard errors 
as well as the dispersion matrix Σ can then be estimated 
using generalized least squares method. 
	 We estimate the parameters of MCRM by using the 
least squares method. For a random sample of size n from 
(4), in order to ensure identifiability, it was assumed that 
B00 = C00 = D00 = F00 = G00 = H00 = 0. 
	 Subsequently, V(1) and V(2) were written in the matrix 
form as

	 V(1) = Uλ(1) + ε(1)

	 V(2) = Uλ(2) + ε(2).	 (5)

Thus, the least squares estimation turns out to be given 
by	

	 λ

λ

	 (6)

where U is the matrix of the combination of cosine and 
sine functions, such that 	 	 	 	

	 	 (7)

	 The covariance matrix of the residuals, Σ is estimated 
as follow 
								      
	 Σ 	 (8)

where R0 = (R0(p, q))p,q=1,2 and R0(p,q) = V(p)΄V(q) – V(p)΄

U(Uʹ U)–1 Uʹ V(q), is an unbiased estimation of Σ and m is 
a suitable degree (Ibrahim 2013). 

DFFITc STATISTIC OF MCRM

One of the methods to identify outliers in linear regression 
is DFFITS statistic which measures the effect of deleting 
a given observation on the predicted or fitted values. 
Belsley et al. (1980) proposed DFFITS statistic which is 
defined as,
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	 	 (9)

for , i = 1,2, …, n , where  and  are the prediction for 
point i with and without point i included in the regression, 
respectively. S(-i) denotes the standard error estimated 
without the point i and hii is the leverage of the point. The 
DFFITS statistic is large if the data point has high leverage 
which leads hii to be close to unity. Belsley et al. (1980) 

suggested that any observation for which  

indicates outliers, where k is the number of predictor 
variables and n is the sample size (Cousineau & Chartier 
2010; Rousseeuw & Leroy 2005). This section extends the 
DFFITS to identify possible outliers in the MCRM. 
	 An outlier detection procedure for the MCRM is 
developed using row deletion approach. In regression 
model, it is expected that the parameter estimates, variance 
of residuals, covariance matrix as well as the standard 
errors will be affected if an outlier exists in the data. In 
particular, we look at the effect of removing an observation 
on the fitted values, at the same time it will effects on 
standard error estimated and covariance matrix of residuals.

The proposed of DFFITc statistic is given by,

	 	 (10)

where  denotes the prediction from the full regression 
model for the ith observation, meanwhile  denotes the 
prediction when the ith observation is deleted. S(–i)denotes 
the standard error which is estimated without the point i 
while hjj is the jth diagonal element of (UʹU)–1 where the 
matrix U is the combination of cosine and sine functions as 
given in Equation (7). The ith observation is identified as an 
outlier if the value of DFFITc exceeds the pre-specified cut-
off point, which will be obtained in the following section.

CRITICAL VALUES OF DFFITc STATISTIC

A simulation study is carried out to obtain the cut-off 
points of the DFFITc statistic for different values of different 
sample sizes n = 20, 40, 60, 80, 100 and standard deviations 
and . For m = 1, ten coefficients are to be estimated; 
namely,  and . For simplicity, 
we set the true values of A0 and E0 of the MCRM of order 
m=1 to be zero, while the other eight parameters, namely, 

 and  are obtained by using the 
standard additive trigonometric polynomial equations  cos 
(a + u1 + u2) and sin (a + u1 + u2). Then, these functions are 
expanded using standard additive trigonometric function. 
For example, when a = 2, we have cos (2 + u1 + u2) = 0.4161 
cos u1 cos u2 –0.9093 cos u1 sin u2 –0.9093 sin u1 cos u2 
+0.4161 sin u1 cos u2 and sin (2 + u1 + u2) = 0.9093 cos u1 

cos u2 –0.4161 cos u1 sin u2 –0.4161 sin u1 cos u2 –0.9093 
sin u1 sin u2. Then, by comparing with (4), the true values 
of  A1, B1, C1, D1, E1, F1, G1 and H1  to be 0.4161, –0.9093, 
–0.9093, 0.4161, 0.9093, –0.4161, –0.4161 and –0.9093, 
respectively, with A0 and E0 being zero. Similarly, we can 
also get different sets of true values by choosing different 
values of a (Ibrahim 2013).
	 Then, the 10%, 5% and 1% upper percentiles of 
the maximum values of DFFITc are obtained. The full 
procedures to obtain the critical values are summarized 
as follows;

1.	 Generate the independent variables U1 and U2 of 
size n from von Mises distribution with mean p and 
concentration parameters 3 and 2 (VM (p , 3) and VM 
(p , 2)), respectively.

2.	 Generate ε1 and ε2 of size n from  For 

a fixed a=2, obtain the true values of λ = A0, A1, B1, 
C1, D1, E0, E1, F1, G1 and H1. Here, let the true values 
of A0 and E0 to be zero. Then, calculate V1j and V2j,

	  j = 1, …, n, using (4) .

3.	 Obtain the circular variable , j = 1, …, n 

	 using (2).

4.	 Fit the generated circular data using the MCRM to give 
the parameter estimates of   

and  as given in (6).

5.	 Exclude the ith row from the generated circular data, 
where i = 1, …, n. For each i, repeat steps (4) for the 
reduced data set to obtain .

6.	 Compute DFFITcji for each i from (10).

7.	 Specify the maximum value of DFFITcji.
	
	 The process is repeated 2000 times for each 
combination of sample size n and standard deviation (σ1, σ2)
= (0.03, 0.03),(0.05, 0.05), (0.1, 0.1) and (0.3, 0.3). 
	 Table 1 represents the critical values at 5% upper 
percentiles for different sample size n and standard 
deviation (σ1, σ2) at a=2. The others critical values can be 
obtained from the authors upon request. The results show 
that, for a fixed σ1  and σ2 ≥ σ1, the cut-off point increases 
as σ1  gets larger. A similar pattern is observed for a fixed 
σ2 where σ1 ≥ σ2. This is because the residual error values 
will be small and fluctuated around the unit circle. Thus, 
for low leverage points, the values of DFFITc are expected to 
be small, whereas as the leverage goes to 1 the distribution 
of the DFFITc value enlarges infinitely. On the other hand, 
the cut-off points have a decreasing function of the sample 
size n.
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TABLE 1. Cut-off points at 5% upper percentiles of DFFITc statistic at a=2

n σ1

σ2

0.03 0.05 0.08 0.1 0.3

 
 20
 
 

0.03
0.05
0.08
0.1
0.3

0.0761
0.0707
0.0795
0.0804
0.0720

0.0809
0.0738
0.0815
0.0822
0.0722

0.0835
0.0780
0.0817
0.0848
0.0723

0.0850
0.0782
0.0827
0.0845
0.0750

0.0888
0.0799
0.0864
0.0859
0.0765

 
 40
 
 

0.03
0.05
0.08
0.1
0.3

0.0475
0.0489
0.0510
0.0536
0.0668

0.0490
0.0500
0.0521
0.0536
0.0677

0.0552
0.0531
0.0522
0.0539
0.0679

0.0579
0.0560
0.0535
0.0543
0.0698

0.0695
0.0704
0.0704
0.0690
0.0693

 
 60
 
 

0.03
0.05
0.08
0.1
0.3

0.0352
0.0367
0.0388
0.0389
0.0487

0.0381
0.0370
0.0391
0.0398
0.0499

0.0426
0.0395
0.0391
0.0403
0.0500

0.0445
0.0421
0.0411
0.0404
0.0511

0.0550
0.0540
0.0538
0.0525
0.0514

 
 80
 
 

0.03
0.05
0.08
0.1
0.3

0.0275
0.0289
0.0310
0.0305
0.0411

0.0318
0.0291
0.0314
0.0313
0.0419

0.0347
0.0328
0.0316
0.0313
0.0426

0.0357
0.0340
0.0321
0.0318
0.0431

0.0516
0.0513
0.0502
0.0486
0.0445

 
 100

 
 

0.03
0.05
0.08
0.1
0.3

0.0246
0.0259
0.0263
0.0250
0.0298

0.0273
0.0263
0.0266
0.0253
0.0323

0.0296
0.0276
0.0272
0.0282
0.0365

0.0312
0.0276
0.0284
0.0293
0.0394

0.0418
0.0416
0.0411
0.0418
0.0421

THE PERFORMANCE OF DFFITc STATISTIC

A simulation study is carried out to investigate the 
performance of DFFITc statistic for detecting outliers in the 
MCRM. Five different sample size are considered, n = 20, 
40, 60, 80 and 100 with different value of (σ1, σ2) = (0.03, 
0.03), (0.05, 0.05), (0.1, 0.1) and (0.3, 0.3). The observation 
at position d, say vd, is contaminated as follows:

	

where  is the response value after contamination and τ 
is the degree of contamination in the range  0 ≤ τ ≤ 1. The 
generated data of U1, U2 and V are then fitted to obtain the 
parameter estimates of  and 
. Consequently, exclude the ith row from the sample, 

for i=1, …, n and refit the remaining data using (6). 
Then, the DFFITcji is calculated. If the values of DFFITc 
is maximum and greater than the corresponding cut-off 
point, then the procedure has correctly detecte the outlier 
in the data. The process is carried out 5000 times. The 
power of performance of the procedure is then examined 
by computing the percentage of the correct detection of 
the contamination observation at point d.
	 Figure 1 illustrates the power of performance of DFFITc 
statistic for n=100 and four values of standard deviation 
(σ1, σ2) = (0.03, 0.03), (0.05, 0.05), (0.1, 0.1) and (0.3, 
0.3). It is shown that the power of performance is an 

increasing function of contamination level provided that 
the standard deviation, and decreasing function. The power 
of performance depends on the level of contamination, τ, 
where the proposed statistic is able to detect almost all 
contamination points for τ > 0.3. 

FIGURE 1. Power performance for DFFITc statistic for n=100

	 Figure 2 shows the performance of DFFITc statistic 
for and different sample sizes, n. For DFFITc statistic, the 
power of performance is an increasing function of sample 
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size n. It is also clear and show good performance if the 
contaminated level is greater than 0.3, (τ ≥ 0.3). Similar 
results were obtained for fixed values of (σ1, σ2) = (0.1, 0.1) 
and different sample sizes n as shown in Figure 3. These 
results are supported by Alkasadi et al. (2018) and Ibrahim 
et al. (2013).

PRACTICAL EXAMPLE: MULTIVARIATE EYE DATA

The multivariate eye data consist of 23 observations of 
glaucoma patients recorded using Optical Coherence 
Tomography at the University Malaya Medical Centre, 
Malaysia for three angles v, u1, u2 (Alkasadi et al. 2018 & 
Ibrahim 2013).
	 Thus, the MCRM is used to fit the multivariate eye data. 
The least squares parameter estimates of MCRM are given 
as follow;

 = –1.076,  = 7.0890,  = –11.6852,  = 2.9691, 
 =  –1.4526,  = 3.1246,  = –9.9634,  = 16.5369, 
 = –4.2270,  = 2.2351,  = 0.17 and  = 0.14.

	 The MCRM of multivariate eye data respect to  (u1, u2)  
and  (u1, u2) are given by

 (u1, u2) =	–1.076 + 7.0890 cos u1 cos u2 – 11.6852 
cos u1 sin u2 + 2.9691 sin u1 cos u2 – 1.4526 
sin u1 sin u2 

 (u1, u2)	=	3.1246 – 9.9634 cos u1 cos u2 + 16.5369 
cos u1 sin u2 – 4.2270 sin u1 cos u2 + 2.2351 
sin u1 sin u2

	 Figure 4 illustrates the Q-Q plot for residuals. The 
corresponding plot of ε1 shows that almost all points are 
adjacent to the straight line excluding only two points 
positioned at the upper right of the plot (observations 
number 1 and 23). Meanwhile, plot of ε2 also showed that 
almost all points are adjacent to the straight line, excluding 
only one point positioned at the upper right of the plot 
(observation number 1). 
	 By applying DFFITc statistic on the regression model 
of multivariate eye data in order to detect any possible 
outliers, we obtain the cut-off point equals to 0.08134. 
Figure 5 shows only one observation is above the specific 
cut-off point, which is observation number one. 
	 Table 2 presents the effect of removing of detected 
outlier on the parameters estimates. Upon excluding 
observation 1 from the multivariate eye data set changes 
the value of the parameters estimates where the standard 

FIGURE 2. Power performance for DFFITc statistic 
for 

FIGURE 3. Power performance for DFFITc statistic 
for 

FIGURE 4. The Q-Q plot for residuals of fitted MCRM for eye data (n =23)
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the quantiles are close to the straight line indicating the 
best fit for the data.

CONCLUSION

A new outlier detection statistic for multiple circular model was 
proposed by extending the DFFITc statistic from the multiple 
linear regression model and based on row deletion approach.
	 The cut-off points are obtained and the power of 
performance were investigated via simulation study. The 
statistic showed a very good performance in identifying 
prospective outlier in the MCRM even for lower level of 
contamination. The application of the proposed statistics 
on the multivariate eye data revealed one outlier which is 
consistent to the findings of Alkasadi et al. (2018, 2016).
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TABLE 2. MCRM parameters estimates for full and reduced multivariate eye data

Parameter
estimates

Full
data

Standard
error

Reduced data
(case 1 deleted)

Standard
error

-1.071
7.089

-11.685
2.969
-1.452
3.124
-9.963
10.536
-4.227
2.235
0.136
0.115
0.96

(0.037)
(0.050)
(0.053)
(0.027)
(0.036)
(0.039)
(0.058)
(0.037)
(0.047)
(0.036)
(0.285)
(0.230)

-

-1.097
7.244

-12.192
3.021
-1.471
3.176
-9.954
10.537
-4.052
2.026
0.120
0.112
0.992

(0.036)
(0.042)
(0.052)
(0.025)
(0.036)
(0.030)
(0.042)
(0.029)
(0.035)
(0.026)
(0.110)
(0.133)

-

FIGURE 6. Q-Q plot of circular residuals after removing observation number 1 (n =22)

error becomes smaller for all parameters estimate. The 
concentration parameter increases from 0.96 to 0.992 upon 
deleting observation number one. Figure 6 plot shows that 
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