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MODELING MULTIVARIABLE AIR POLLUTION DATA IN MALAYSIA 

USING VECTOR AUTOREGRESSIVE MODEL 
(Memodelkan Data Pencemaran Udara Multipemboleh Ubah di Malaysia Menggunakan  
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ABSTRACT  

In this study, the vector autoregressive (VAR) model was used to model and forecast the 

multivariable air pollution data in Klang area. Stationary test, Hannan–Quinn evaluation 

criteria, Granger causality test, R2 coefficient and Root Square Mean Error (RMSE) 

measurements have been conducted to get the best model and will be used in forecasting. The 

VAR (7) model is found to be the best model with the highest R2 and lowest RMSE value 

recorded for each dependent pollutant variable. Based on the fitted VAR (7) model, the VAR 

model is able to describe the dynamic behavior of multivariable air pollution data of Klang. 

Forecasts of up to 12 days ahead were constructed with confidence intervals. The VAR model 

found to provides good forecast accuracy on the data.  

Keywords: air-pollution modeling; VAR model; forecasting 

 

ABSTRAK  

Dalam kajian ini, model autoregresi vektor (VAR) digunakan untuk memodel dan meramal data 

pencemaran udara multipemboleh ubah di kawasan Klang. Ujian kepegunan, kriterium 

penilaian Hannan-Quinn, ujian kebersebaban Granger, pekali R2 dan ukuran ralat min kuasa dua 

(RMSE) telah dijalankan untuk mendapatkan model terbaik dan akan digunakan bagi tujuan 

peramalan. Model VAR (7) dikenal pasti sebagai model terbaik dengan nilai pekali R2 tertinggi 

dan nilai RMSE yang terendah untuk setiap pemboleh ubah pencemar bersandar. Berdasarkan 

model VAR (7) yang disuaikan, model VAR didapati mampu untuk memerihalkan tingkah laku 

dinamik data pencemaran udara multipemboleh ubah di Klang. Ramalan sehingga 12 hari ke 

depan telah dijalankan beserta maklumat selang keyakinan bagi model VAR(7). Model VAR 

didapati boleh memberikan ketepatan ramalan yang baik terhadap data.  

Kata kunci: pemodelan pencemaran udara; model VAR; peramalan  

 

1. Introduction  

Air pollution issues are always a matter of concern in Malaysia due to the rapid growth of 

industry, manufacturing, economy, and transportation. Air pollution involves any chemicals, 

particulate matter, or biological substances that can cause damage to the environment and 

discomfort to humans and living organisms when released to the atmosphere. Air pollution will 

also cause the depletion of the ozone layer, haze, acid rain, warming of the earth and affect the 

health and safety of people or properties. As stated by Omasa (2002), air pollution is hard to 

treat and control due to the nature of airborne particles. 

According to World Health Organization (2006), four main types of air pollution exist which 

are nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter (PM10). 

Additionally, five main types of air pollution that are commonly used by researchers to measure 

the air pollution index (API) include PM10, O3, carbon monoxide (CO2), SO2, and NO2 (Gass et 

al. 2015; Masseran et al. 2016). To get the benchmark of air quality status and health, the API 
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scales are used. There are five API scales, which are good (0–50), moderate (51–100), 

unhealthy (101–200), very unhealthy (201–300), or hazardous (301 and above) status (World 

Health Organization 2006). 

Internationally, considerable research has been conducted to monitor and forecast the air 

quality status and health by using various methods (Bai et al. 2018). Several popularly 

discussed techniques include auto regressive moving average, compositional time series, auto 

regressive integrated moving average, artificial neural network, fuzzy time series, generalized 

autoregressive conditional heteroscedastic model and vector autoregressive model (VAR) (Al-

Dhurafi et al. 2018; Masseran 2017). However, each model has its own advantages and 

disadvantages. In this study, we propose the application of the VAR model to API data as it can 

capture linear interdependencies among multiple time series. Particularly in our cases, the API 

data involved five different variables, namely, CO, NO2, O3, PM10, and SO2. This research 

primarily aimed to develop VAR models to predict the daily API data using these five pollutant 

variables to monitor the air quality status. 

2. Study Area  

Klang, one of the regions in the state of Selangor Darul Ehsan, is considered as one of the most 

developed and urbanized areas in Selangor. In 2010, the total population of Klang City has 

reached 240,016, whereas in Klang District, the population approximates 842,146. Hence, this 

area has become busy as the center of economy, shipping, residential, and leisure activities. 

The rapid growth and development in Klang City have contributed to the positive economic 

growth and profit to the nation. However, this condition also caused negative impacts to the air 

quality and health due to industrial and manufacturing activities (Masseran et al. 2016). Thus, 

a reliable and accurate forecasting model must be developed to predict the air quality status and 

health in the long run. The data from 2002 to 2016, which include CO, NO2, O3, PM10, and SO2, 

were obtained from the Department of Environment Malaysia (DOE). However, several sets of 

data from DOE showed a small percentage of missing values. To estimate these missing values, 

we used a single-imputation method based on the average of the last and next known 

observations. This method is easy to implement and is reported to provide good results for 

random missing data (Masseran et al. 2013). 

3. Methodology 

3.1.  Stationary test 

In the VAR model, all response variables should be stationary and contain no unit root (Brooks 

2019). The stationary data can be evaluated through several types of unit root test. In general, 

three types of test, namely, augmented Dickey–Fuller (ADF), Phillips–Perron, and 

Kwiatkowski–Phillips–Schmidt–Shin tests, are commonly used to assess stationarity of the data 

(Masseran et al. 2012). In this study, we applied ADF test on five dependent variables of API 

data. 

3.2.  Lag order selection 

The lag order selection is also an important step in modeling the data using the VAR model. 

According to Ary Pani (2016), the optimal lag length in a VAR model can be estimated through 

several tests of information criteria, such as Akaike information criteria (AIC), Schwarz 

information (SIC) and Hannan–Quinn (HQ) information criteria. The smaller values of 

information criteria indicate a better model fit to the data. The equation for each criteria is stated 

below: 

https://en.wikipedia.org/wiki/Time_series
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where T is the number of observations and k is the number of parameters involved in the 

VAR model. 

3.3.  Granger causality test 

Granger causality test is used to assess the cause and effect in a given condition. For example, 

if an event A exists before event B, then A may causes B. However B does not necessary caused 

by event A. This situation can be explained with the concept of Granger causality test (Ary 

Pani 2016). The equation of causality test is shown below: 

 

𝑌𝑡 =  ∑ 𝑎𝑖
𝑘
𝑖=1 𝑌𝑡−𝑖 + ∑ 𝛽𝑖𝑋𝑡−𝑖

𝑘
𝑖=1 +  𝜀1𝑡                                            (4) 

 

where: 

𝑌𝑡  : Value of variable Y at time t 

𝑘 :  Lag length 

𝑎𝑖 :  Measure of the influence of 𝑌𝑡−𝑖 on 𝑋𝑡 

𝛽𝑖 :  Measure of the influence of 𝑋𝑡−𝑖 on 𝑌𝑡 

𝑋𝑡−𝑖 : Vector of length k 

𝜀1𝑡  :  Error at time t 

3.4. Estimation of the VAR model  

In this study, the restrict function, which was suggested by Pfaff (2008), was used to estimate 

the VAR model. This function only keeps the significant coefficients. In general, the VAR 

model at kth order is denoted as VAR (k). The VAR model includes k lags and n variables, can 

be formulated as follows: 

 

 𝑌𝑡 = 𝐴𝑜 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 + ⋯ + 𝐴𝑘𝑌𝑡−𝑘                        (5)       

 

where 

 

    𝑌𝑡 ,  𝑌𝑡−1  : Vector 𝑛 × 1 at time 𝑡 and 𝑡 − 𝑖, 𝑖= 1, 2, …, k 

    𝐴𝑜          : Intercept  

    𝑡         : Period of observation 

    𝜀          : Residual error 

3.5.  Model accuracy 

To determine the performance of the VAR model, we used the root square mean error (RMSE) 

and R2 coefficient as measure criteria. According to Barnston (1992), RMSE is the standard 

deviation of the residuals. Residuals measure how far data points are from the regression line, 

whereas RMSE measures the spread of residuals. A low RMSE indicates a high accuracy, and 

https://www.statisticshowto.datasciencecentral.com/residual/
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the best model with the highest accuracy will be used in forecasting. The formula for 

calculating RMSE is stated below: 

 

𝑅𝑀𝑆𝐸 =  √
1

𝐿
∑ (𝑦𝑇+𝑙 − �̂�𝑇+𝑙)2𝐿

𝑙=1                                            (6) 

 

where  𝑇 is the last observation period and  𝑙 is the lag. 

 

R² has the advantage of being scale-free and closely related to RMSE. The value of R² 

coefficient, which ranges between 0 and 1, measures how close of the data are to the fitted line 

(Cameron & Windmeijer 1997): 

 

𝑅2 =
∑ (�̂�𝑡−�̅�)2𝑇

𝑡−1

∑ (�̂�𝑡−�̅�)2+ ∑ (�̂�𝑡−�̂�𝑡)2𝑇
𝑡−1

𝑇
𝑡−1

                                             (7) 

 

where ty  and y  are the observed and mean values of the time series data, respectively, and ˆ
ty  

is the simulated/predicted value that is obtained from the model (Masseran & Razali 2016). In 

general, a higher R2 value means the better model fit of our data. 

3.6.  Forecasting using the VAR model 

Forecasting refers to the estimation or prediction of the future. This process predicts the future 

values of a series using a current information set. The variable 𝒚𝒕  is assumed to follow the 

VAR (p). Then, the forecast �̂�𝑻+𝟏 is given by the following: 

 

            �̂�𝑇+1 = 𝑣 +  𝐴1𝑦𝑇 + ⋯ + 𝐴𝑃𝑦𝑇−𝑃+1                                  (8) 

 

The above equation also defines a forecast for each component of  𝑦𝑡+1. 

4. Results and Discussions 

4.1.  Stationary test 

The results show in Table 1 reveal that that all the series are integrated at order 0. Given that 

the series are integrated at I(0), the series are not co-integrated. The test statistics indicates that 

all the variables are stationary because all p-values are significant at any significance levels. 

Given that ADF test fulfills the assumption of stationarity, our data fit the VAR model. 

 

 
Table 1:  Results of ADF test on each series of pollutant variables 

Variables Order t-statistics Prob. 

CO I(0) -11.785 0.01*** 

NO2 I(0) -10.75 0.01*** 

O3 I(0) -10.002 0.01*** 

PM10 I(0) -12.403 0.01*** 

SO2 I(0) -8.9225 0.01*** 

Notes:*, **, *** shows the significant variables at 10%, 5%, and 1% of significance levels. 
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4.2.  Lag order selection 

The number of lag order selection was based on the three valuation criteria, namely, AIC, SIC, 

and HQ (Table 2). The AIC suggests that lag of 9 is the appropriate lag length, but SC suggests 

a lag length of 3. By contrast, HQ suggests a lag order of 7 to be used in our model. Usually, 

AIC is selected over other criterion due to its favorable small-sample forecasting features. 

However, for a large sample size, HQ works better compared with AIC and SC (Liew 2004). 

Given our large sample size, we believe that the result from HQ evaluation criteria is 

appropriate. Thus, a lag order of 7 was selected for our VAR model based on the lowest HQ 

value. The results are reported in Table 2. 

 

 
Table 2:  Lag order selection for the VAR model 

Lag  AIC SC HQ 

1 29.689 29.726 29.702 

2 29.471 29.538 29.494 

3 29.387 29.485* 29.421 

4 29.360 29.489 29.405 

5 29.342 29.501 29.398 

6 29.305 29.495 29.372 

7 29.288 29.509 29.365* 

8 29.289 29.540 29.377 

9 29.286* 29.568 29.384 

10 29.289 29.602 29.398 

Note: the bold* value shows the minimum value for each evaluation criterion. 

 

4.3.  Granger causality test 

After obtaining the optimal lag length, a Granger causality test was performed to investigate 

whether a reciprocal relationship exists between the variables.  

 

 
Table 3:  Granger causality test on each pollutant variable 

No  Hypothesis F-statistics p-value 

1 
NO2 does not granger cause CO 

CO does  not granger cause NO2 
14.617 

4.9547 

2.2e-16 *** 

1.337e-05 *** 

2 
O3 does  not granger cause CO 

CO does  not granger cause O3 
6.0023 

2.6386 

5.504e-07 ***  

0.01011 ** 

3 
PM10 does  not granger cause CO 

CO does  not granger cause PM10 
5.3094 

11.267 

4.579e-06 *** 

3.017e-14 *** 

4 
SO2 does  not granger cause CO 

CO does  not granger cause SO2 
4.9334   

3.9706 

1.425e-05 ***  

0.0002455 *** 

5 
O3 does  not granger cause NO2 

NO2 does  not granger cause O3 

12.678  

3.8967 

3.092e-16 *** 

0.0003042 *** 

6 
PM10 does  not granger cause NO2 

NO2 does  not granger cause PM10 
3.4724 

24.711 

0.001024 *** 

2.2e-16 *** 

7 
SO2 does  not granger cause NO2 

NO2 does  not granger cause SO2 
2.4512 

27.08 

0.01652 ** 

2.2e-16 *** 

8 
PM10 does  not granger cause O3 

O3 does  not granger cause PM10 
2.6367 

12.814 

0.01016 ** 

2.2e-16 *** 

9 
SO2 does  not granger cause O3 

O3 does  not granger cause SO2 
1.8683 

1.2134 

0.07046* 

0.2913 

10 
SO2 does  not granger cause PM10 

PM10 does  not granger cause SO2 
1.2543 

6.2109 

0.269 

2.892e-07 *** 

Notes:*, **, and *** indicates the significant variables at 10%, 5%, and 1% significance level. 
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From the results in Table 3, most API variables have a Granger cause on the other variables 

because the p-value is significant at 1%, 5%, and 10% significance level. For result No. 1, the 

p-value is significant for both variables. NO2 has a Granger cause on CO, and CO also has a 

Granger cause on NO2. This finding indicates that past NO2 contains information to forecast 

the current CO, and previous CO also has information to predict the current NO2. 

By contrast, for result No. 9, the p-value is non-significant for the second hypothesis. The 

finding indicates that SO2 has a Granger cause on O3, but O3 lacks a Granger cause on SO2. 

Thus, past SO2 has information to predict the current O3, but the previous O3 contains no 

information to forecast the current SO2. Thus, this insignificant result was excluded in the 

estimation of the VAR model. Only variables with significant p-value were used for estimation. 

4.4.  Estimation using the VAR model 

VAR is estimated separately by using each equation on each variable. After the estimation, the 

values of R2 and RMSE were calculated. The summarization of our findings only discussed the 

estimated and significant coefficients of variables after removing the insignificant coefficients 

in our model. The overall estimated model is stated in the equation below: 

  

The estimated model for CO is given as follows: 

 

𝐶�̂�𝑡 = 0.430𝐶�̂�𝑡−1 + 0.182𝑁𝑂2̂𝑡−1 + 0.290𝑃𝑀10̂𝑡−1 − 0.060𝑆𝑂2̂𝑡−1 + 0.124𝐶�̂�𝑡−2

− 0.170𝑁𝑂2̂𝑡−2 + 0.037𝑂3̂𝑡−2 − 0.022𝑃𝑀10̂𝑡−2 + 0.055𝑆𝑂2̂𝑡−2 + 0.095𝐶�̂�𝑡−3

− 0.048𝑁𝑂2̂𝑡−4 + 0.060𝐶�̂�𝑡−5 − 0.026𝑆𝑂2̂𝑡−5 + 0.080𝐶�̂�𝑡−7 − 0.012𝑃𝑀10̂𝑡−7

+ 0.038𝑆𝑂2̂𝑡−7 + 2.461 
 

The estimated model for NO2 is given by the following: 

 

𝑁𝑂2̂𝑡 = −0.057𝐶�̂�𝑡−1 + 0.548𝑁𝑂2̂𝑡−1 + 0.064𝑂3̂𝑡−1 + 0.080𝑁𝑂2̂𝑡−3 + 0.043𝐶�̂�𝑡−5

− 0.170𝑃𝑀10̂𝑡−5 − 0.025𝑆𝑂2̂𝑡−5 + 0.070𝑁𝑂2̂𝑡−6 + 0.012𝑃𝑀10̂𝑡−6 + 0.031𝑆02̂𝑡−6

+ 0.062𝑁𝑂2̂𝑡−7 − 0.020𝑂3̂𝑡−7 + 2.642 
 

The estimated model for O3 is given as follows: 

 

𝑂3̂𝑡 = 0.077𝑁𝑂2̂𝑡−1 + 0.467𝑂3̂𝑡−1 + 0.011𝑃𝑀10̂𝑡−1 + 0.069𝑂3̂𝑡−2 + 0.066𝑂3̂𝑡−3 + 0.054𝑂3̂𝑡−4

+ 0.076𝑂3̂𝑡−6 − 0.008𝑃𝑀10̂𝑡−6 − 0.027𝑆02̂𝑡−6 + 0.045𝑂3̂𝑡−7 + 3.163 
 

The estimated model for PM10 is given below: 

 

𝑃𝑀10̂𝑡 = 0.321𝐶�̂�𝑡−1 + 0.486𝑁𝑂2̂𝑡−1 + 0.310𝑂3̂𝑡−1 + 0.794𝑃𝑀10̂𝑡−1 − 0.127𝑆𝑂2̂𝑡−1

− 0.745𝑁𝑂2̂𝑡−2 − 0.137𝑂3̂𝑡−2 − 0.174𝑃𝑀10̂𝑡−2 + 0.087𝑆𝑂2̂𝑡−2 + 0.193𝑁𝑂2̂𝑡−3

+ 0.095𝑃𝑀10̂𝑡−3 − 0.114𝐶�̂�𝑡−4 − 0.128𝑁𝑂2̂𝑡−4 + 0.039𝑃𝑀10̂𝑡−4 − 0.125𝐶�̂�𝑡−7

+ 0.044𝑃𝑀10̂𝑡−7 + 0.071𝑆𝑂2̂𝑡−7 + 9.646 
 

The estimated model for SO2 is given below: 

 

𝑆𝑂2̂𝑡 = −0.089𝐶�̂�𝑡−1 + 0.288𝑁𝑂2̂𝑡−1 − 0.010𝑃𝑀10̂𝑡−1 + 0.700𝑆𝑂2̂𝑡−1 + 0.073𝐶�̂�𝑡−2

− 0.237𝑁𝑂2̂𝑡−2 − 0.065𝑆𝑂2̂𝑡−2 + 0.106𝑆𝑂2̂𝑡−3 − 0.056𝑁𝑂2̂𝑡−4 + 0.055𝑆𝑂2̂𝑡−4

+ 0.058𝐶�̂�𝑡−5 − 0.021𝑃𝑀10̂𝑡−5 + 0.024𝑃𝑀10̂𝑡−6 + 0.036𝑆𝑂2̂𝑡−6

− 0.051𝑁𝑂2̂𝑡−7 + 0.069𝑆𝑂2̂𝑡−7 + 1.906 
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4.5.  Model accuracy 

Table 4 summarizes the results of our VAR model considering CO, NO2, O3, PM10, and SO2. 

Based on the results, the RMSE values for all models are slightly small. This finding means 

that residuals are spread close to each other, and most of the data are dispersed around the best 

fit line. The value of RMSE indicates the accuracy of the model in data fitting. 
 

 
Table 4:  Values of RMSE and R2 coefficient for each VAR model 

 CO NO2 O3 PM10 SO2 

RMSE 0.010 0.012 0.019 0.012 0.010 

R2 coefficient 0.907 0.950 0.921 0.963 0.928 

 
 

Based on Table 4, the VAR (7) model with R2 value greater than 0.9 includes all the 

pollution variables. Thus, the VAR (7) model can describe more than 90% of the total variation 

for all the pollution variable. The values of RMSE are also small for all the fitted VAR (7) 

models. These results indicate that the fitted VAR (7) model is a good model for all the 

pollution variables involved in this study. 

4.6.  Forecasting using the VAR model 

The VAR (7) model was used to provide a forecast 12 days ahead of the air pollutant data. We 

can choose any future value to be forecast as long as it provide a valid forecasting values from 

the fitted model. In this study, 12-day ahead is chosen as a forecasting value in order to provide 

some practical example. The point forecast refers to the mean of the distribution, and the 

confidence limits describe the spread of the distribution above and below the point forecast.The 

graphs in Figure 1 show the time series forecasting 12 days ahead and the confidence limit for 

each pollutant variable (CO, NO2, O3, PM10, and SO2) in the fitted VAR (7) model.  

The forecast values of CO for the next 12 days will be in the average range of 8–10, with 

the lowest and highest confidence intervals of 7 and 10, respectively. The lower and upper 

confidence limits are between 0 and 20.9, respectively. This range means that the highest future 

values of CO could be being at or below the upper confidence limit which is about 20.9, and its 

lowest future values could be being at or below the lower confidence limit is 0. The forecast 

values of NO2 for the upcoming 12 days will be in the average range of 9–11, with the lowest 

and highest confidence interval of 5 and 7, respectively. The upper and lower confidence limits 

are lies between 18.9 and 3, respectively. These mean that highest future values of NO2 could 

be being at or below the upper confidence limit which is about 18.9, and its lowest future values 

could be being at or below the lower confidence limit is 3. 

For O3, the forecast values for the next 12 days will be in the average range of 15–16, with 

the lowest and highest confidence interval of 10 and 13, respectively. The upper and lower 

confidence limits are set to 29.8 and 2.5, respectively. These mean that highest future values of 

O3 could be being at or below the upper confidence limit which is about 29.8, and its lowest 

future values could be being at or below the lower confidence limit is 2.5. For PM10, the forecast 

values for the upcoming 12 days will be in the average range of 50–57, with the lowest and 

highest confidence interval of 23 and 39, respectively. The upper and lower confidence limits 

are between the range of 96.6 and 18.5, respectively. These finding means that highest future 

values of PM10  could be being at or below the upper confidence limit which is about 96.6, and 

its lowest future values could be being at or below the lower confidence limit is 18.5.  

Lastly, the forecast values of SO2 for the next 12 days will be in the mean range of 9–12, 

with the lowest and highest confidence interval of 7 and 12, respectively. The upper and lower 

confidence limits are lies between 25 and 0, respectively. These finding implies that highest 
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future values of SO2  could be being at or below the upper confidence limit which is about 25, 

and its lowest future values could be being at or below the lower confidence limit is 0.  

 

 

 
 

 

Figure 1:  Forecast of CO, NO2, O3, PM10 and SO2 

 

 

These forecast values can serve as basis to the public authorities to monitor the risk of 

recurrence of extreme air pollution. However, for a wide future time horizon, the confidence 

interval of forecasting will be larger, which implies that the accuracy of forecasting will 

decrease. The VAR model constantly needs to be re-estimated to obtain the latest forecasting 

evaluation of air pollution data values over time to provide a better assessment. Thus, to use 

the VAR model for air pollution forecasting and decision making, we suggest running this 

model every day to forecast the future value of air pollution data. 

5. Conclusion 

This study examined a time series of the VAR model to forecast the 15-year air pollutant data, 

including CO, NO2, O3, PM10, and SO2, in Klang. The ADF test results showed that all the 

dependent variables are stationary at order I (0), which implies that the VAR model is suitable 

to model the air pollutant data. A lag of 7 on the VAR model was selected based on the HQ 

evaluation criteria. The findings reveal that the VAR (7) model is appropriate and fits the data 

with the highest R2 value and lowest RMSE recorded for each dependent model variable. 

In consideration of the actual data, an accurate forecasting performance was obtained when 

the VAR (7) model was used to forecast the five API variables. These forecast values can be a 

benchmark for the stakeholders to continually monitor the air status and health. The model must 

be re-estimated regularly to obtain the latest forecasting results of CO, NO2, O3, PM10, and SO2 

over time to obtain better predictions. Another important contribution of this paper is showing 

the possibility of using a large sample size of daily data with a large lag length of up to 7. 

Overall, we can conclude that the VAR (7) model, which designates the existence of a 

fluctuation and “shock point” effect, is an appropriate model to use when handling air pollution 

data. 
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