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ABSTRACT

The problem of multicollinearity compromises the numerical stability of the regression coefficient estimate and cause some 
serious problem in validation and interpretation of the model. In this paper, we propose two new collinearity diagnostics 
for the detection of collinearity among regressors, based on coefficient of determination and adjusted coefficient of 
determination from auxiliary regression of regressors. A Monte Carlo simulation study has been conducted to compare 
the existing and proposed collinearity diagnostic tests. Comparison of diagnostics on some existing collinear data are 
also made.
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ABSTRAK

Masalah multikekolinearan kompromi kestabilan berangka pekali regresi anggaran dan menyebabkan beberapa masalah 
serius dalam pengesahan dan tafsiran model. Dalam kajian ini, kami mencadangkan dua diagnostik kekolinearan baru 
untuk pengesanan kekolinearan dalam kalangan peregrasi, berdasarkan pekali penentuan dan pekali penentuan terlaras 
daripada bantuan regresi oleh peregrasi. Kajian simulasi Monte Carlo telah dijalankan untuk membandingkan kajian 
kekolinearan sedia ada dengan cadangan ujian kekolinearan diagnostik. Perbandingan diagnostik pada sesetengah 
data kolinear sedia ada turut dijalankan. 

Kata kunci: Analisis regresi; kebergantungan linear; kekolinearan diagnostik; multi-kekolinearan; persuasanaan tak sihat

INTRODUCTION

Consider the usual multiple linear regression model

 y = Xβ + u,

where y is an n × 1 vector of observations on dependent 
variable; X is known design matrix of order n × p, having 
full-column rank p; β is a p × 1 vector of unknown 
parameters and u is an n × 1 vector of random errors with 
mean zero and variance σ2 In, where In is an identity matrix 
of order n.
 The use and application of the ordinary least squares 
(OLS) method is popular due to its low computational cost, 
intuitive plausibility in a wide variety of circumstances and 
its support by a broad and convoluted body of statistical 
inference (Belsley et al. 1980). However, linear dependence 
(relationship; shared variance) between the regressors can 
affect the model ability to estimate the model’s parameters 
(regression coefficients). Multicollinearity is lack of 
independence or the presence of interdependence signified 
by usually high intercorrelations within a set of explanatory 
variables (Abdullah 1996; Farrar & Glauber 1967; Gunst 
1983; Gunst & Månson 1977; Mason et al. 1975). Perfect 
or near to perfect multicollinearity destroys the uniqueness 
of the OLS estimators (Belsley et al. 1980).
 The OLS estimators can be ambiguous and unstable 
under severe multicollinearity (i.e. ill-conditioning of 

X'X  matrix). This issue often generates implausible signs, 
inflated standard errors, low t-ratios with high R-squared 
(R2) value, wider confidence intervals, very large condition 
number and non-significant and/or unexpected magnitude 
of the regression coefficient estimates. On the basis of 
theoretical considerations, these indications are thought 
to be important for detection of multicollinearity among 
regressors, while the forecasting power of the model may 
not be affected (Adnan et al. 2006; Belsley et al. 1980; 
Chen 2012; Greene 2002; Younger 1979).
 Many multicollinearity diagnostic indicators are 
available in the existing literature proposed or discussed 
by various authors (Belsley 1991; Curto & Pinto 2011; 
Koutsoyiannis 1978; Kovács et al. 2005; Marquardt 1970; 
Midi et al. 2011; Montgomery & Askin 1981). Widely used 
and the most suggested diagnostics are values of pair-wise 
correlations (Adnan et al. 2006; Chen 2012), variance 
inflation factor (VIF) and tolerance limit (TOL) (Kutner et 
al. 2004; Marquardt 1970), eigenvalues values (Kendall 
1957; Silvey 1969), condition number (CN) and condition 
index (CI) (Belsley et al. 1980), Leamer’s method (Greene 
2002), Klien’s rule (Klein 1962), three tests proposed by 
Farrar and Glauber (1967), Red indicator (Kovács et al. 
2005) and Theil’s measure (Theil 1971). Table A lists 
these diagnostics with formulae, references and detection 
criteria. These collinearity diagnostics are classified and 
compared as overall (Table 1) and individual (Table 2) 
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measures of collinearity. The overall diagnostic measures 
help to get idea about existence of collinearity and result 
in a single number, while individual measures try to detect 
the existence of collinearity for each of the regressors. 

NEW PROPOSED DIAGNOSTICS

Multicollinearity is considered as a sample phenomenon; 
therefore, there is no unique method for detection of 
multicollinearity (Kmenta 1986). So, the existence of 
multicollinearity should always be tested when examining 
a data set, in order to avoid the adverse effects of 
multicollinearity and its pitfall that may exist in regression 
model. Various diagnostic (graphical and numerical) 
measures for the quantification of multicollinearity are 
available in the literature, but none of them can be regarded 
as a synthetic and normalized indicator at the same time 
(Curto & Pinto 2011; Green et al. 1978; Kovács et al. 2005; 
Silvey 1969; Ukoumunne et al. 2002).
 In this article, we propose two new diagnostics 
for multicollinearity. The existing multicollinearity 
diagnostics depend heavily on R2 (multiple coefficient 
of determination) and/or eigenvalues or some relation 
between R2 and eigenvalues/ eigenvectors. That is why, 
the correlation between regressors, the R2  and eigenvalues 
are considered as important multicollinearity detection 
measures. 
 The proposed collinearity diagnostic measures depend 
on R2 and adjusted-R2 (adj-R2) values from auxiliary 
regression. The performance of the proposed measures has 
been evaluated through empirical results using the Monte 
Carlo simulations. These simulations have been carried out 
for both uncorrelated and correlated regressors at different 
levels of correlations and different sample sizes. Some 
threshold values for the new proposed diagnostics have 

also been determined.
 The R2  indicates that how well data fit a statistical 
model as it is the proportion of explained variation in 
dependent variable due to independent variables. The 
higher the R2 value, the more chances of regressors to 
be plagued with multicollinearity (Asteriou & Hall 
2007; Gujarati & Porter 2008; Maddala 1988). The R2 

is a monotone non-decreasing function of number of 
regressors included in the model. It means R2  inflates the 
estimate of how well the regression fits the data (Gujarati 
& Porter 2008; Stock & Watson 2010). The adj-R2 is a 
modified version of R2 (due to Theil 1961) that adjusts for 
number of regressors in a model relative to the number 
of data points and hence, it is an attempt to take account 
of the phenomenon of the automatically and spuriously 
increasing when extra regressors are added to the model 
(Stock & Watson 2010). In other words, it deflates the by 
some factor, i.e., . For p > 1, adj-R2 ≤ R2, implies that 
as the number of regressor(s) increases, the adj-R2 increases 
less than the (un-adjusted) R2, because R2 is affected by 
regressors sharing their variances, since linear dependence 
exists among regressors (Gujarati & Porter 2008; Maddala 
1988). The above discussion about R2 and adj-R2 is the main 
reason to consider adj-R2 in new diagnostic measures. 
 In the auxiliary regression, for every regressor 
the association is checked with the other (remaining) 
regressors of the model. For this paper, we generated six 
correlated regressors with various combination of sample 
size and degrees of correlation among these regressors. For 
our proposed diagnostic measures, six auxiliary regression 
models are carried out and coefficient of determination 
( ) and adjusted coefficient of determination (adj- ) are 
obtained from each regression. The reason of using  and 
adj-  is discussed above. The other reason of using  and 

TABLE 1. Percentage detection of collinearity by overall diagnostics measures

n Indicators
θ

0.8366 0.8944 0.9487 0.9747 0.9950

50

Determinant
FGC
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

61.34
100.00
99.90
0.00

99.98
0.46

99.10
100.00
100.00

0.16
100.00
39.54

100.00
100.00
100.00
44.62

100.00
99.76

100.00
100.00
100.00
99.32

100.00
100.00

100.00
100.00
100.00
100.00
100.00
100.00

100

Determinant
FGC
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

54.34
100.00
100.00

0.00
100.00

0.00

99.86
100.00
100.00

0.00
100.00
19.48

100.00
100.00
100.00
10.16

100.00
100.00

100.00
100.00
100.00
100.00
99.82

100.00

100.00
100.00
100.00
100.00
100.00
100.00

200

Determinant
FGC
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

48.60
100.00
100.00

0.00
100.00

0.00

100.00
100.00
100.00

0.00
100.00

5.42

100.00
100.00
100.00

0.28
100.00
100.00

100.00
100.00
100.00
99.90

100.00
100.00

100.00
100.00
100.00
100.00
100.00
100.00
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adj-  is that stronger the undesired association between 
the regressor say X1 with the remaining regressors of the 
model, more the chances of multicollinearity exists when 
two or more regressors correlated. Therefore, the degree 
of multicollinearity can also be expressed by  (obtained 
from auxiliary regression of the jth regressor as dependent 
variable), since the VIF is also built on the idea of auxiliary 
regression. If the  value of any regressor is close to zero, 
the VIF will be closer to one; hence, no multicollinearity 
exists in this case. On the other hand, if  from an auxiliary 
regression is very large the VIF would also be large showing 
severe multicollinearity (Cleff 2013).
 From empirical results of the Monte Carlo experiment, 
existing theory related to coefficient of determinations, 
inflation (spurious increase) in R2 values due to addition 
of regressor(s) in model, and deflation in adj-R2 by factor 

, we suggest to take difference of adj-R2 and from 
auxiliary regression of regressors to account the sharing 
of variances due to different regressors in each auxiliary 
regression run, for the detection of multicollinearity (see 
Asteriou & Hall 2007; Gujarati & Porter 2008; Maddala 
1988, for auxiliary regression). The difference of  and 
adj-  is used as a new diagnostic measure and is referred 
to as Indicator 1 (IND1j) for further discussion. 

 IND1j =  – adj-  =  +  – 1,

  = (  – 1) × , (1) 

where  and adj-  are from the auxiliary regression of 
each explanatory variables. 
 For simulated collinear and non-collinear data, 
using auxiliary regression, we empirically found that 
smaller the difference or alternatively closer the value of 

 and adj-  (  – adj-  ≤ 0.020), greater the chances 
of multicollinearity. Alternatively, larger the value of
(  – adj- )–1 ≥ 50 more severe the multicollinearity will 
be there. This difference of  and adj-  from auxiliary 
regression of explanatory variables lies in an interval  
[0.0104, 0.0418] for various combination of sample size 
and correlation level between generated regressors. Any of 
the extreme difference value from the interval can be used 
as criterion but we used central value (average of value 
of differences for all sample sizes and correlation levels) 
which was approximately 0.020. 
 From (1), as n → ∞, IND1j approaches to 0. Therefore, 
multicollinearity is detected when

 

where, C ∈ [0.01, 0.04].

 The second diagnostic tool is the ratio of each R2 

from the auxiliary regression (that is, ) to the mean of 

all  i.e.,  where m = , and j = 1, 2, …, p. If this 

ratio for jth variable is greater than R2 (from regression 
of y on X’s) then the jth regressor will be highly collinear 
with others regressors. In denominator of this diagnostic, 
mean of all  (m) gives the average sharing of variances 
among regressors accounted by using auxiliary regression 
for jth regressor as dependent variable on the remaining 
regressors, whereas the distribution of  for different 
sample size and correlation level between variables was 
found to be approximately normally distributed. Note that 
if correlation among regressors is small then this proposed 
indicator (say IND2j for further reference) will give false 
positive (wrong) detection of collinearity, as magnitude of 

 will be larger than the average of ’s (j = 1, 2, …, p) in 
this case. Since the classic symptom of multicollinearity is 
R2 ≥ 0.7, therefore, to avoid the false positive detection of 
multicollinearity, the IND2j specifies multicollinearity when, 

 IND2j =   

 Thus, the chief objective of this paper was to compare 
the existing and proposed multicollinearity diagnostic 
tools for their performance of detection under various 
combination of level of correlation and sample size.

NUMERICAL EVALUATION

For the numerical evaluation of different diagnostic 
measures of multicollinearity, we have followed the similar 
Monte Carlo schemes as used by many other researchers 
(Aslam 2014; Clark & Troskie 2006; Månsson et al. 2010; 
McDonald & Galarneau 1975; Newhouse & Oman 1971).
 The simulation deals with six parameter case. The 
explanatory variables are computed as

 xij = (1 – θ2)½  zij + θ zi7; i = 1,2, …, n;  j = 1,2,…,7,

where zi1, zi2, …, zi7 are independent standard normal 
pseudorandom numbers, and correlation between any 
explanatory variable is given by θ2. Without loss of 
generality, these variables are standardized so that X'X 
from a usual correlation matrix. Five different sets of 
correlations are considered corresponding to θ = 0.8366, 
0.9844, 0.9487, 0.9747 and 0.9950. The values of such 
generated predictors are kept fixed for simulation.
 The sample size (n) is set to 50, 100, and 200. The 
number of Monte Carlo replications is set to be 5,000. 
In addition to simulation study, for illustration purpose, 
different diagnostic measures were also evaluated on 
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some popular collinear datasets, available in few previous 
studies (Hald 1952; Longley 1967; Malinvaud 1968). All 
the computations are performed making programming 
routines (available as R package mctest (Imdad & Aslam 
2018)). 
 Table 1 contains the simulated results for the overall 
measure of collinearity diagnostics in percentage of 
detection that indicates the collinearity among all the 
regressors. It can be seen that the determinant of X'X, the 
Farrar-Glauber Chi-square (FGC) test, red indicator and 
Theil’s measure detect collinearity correctly than the CI 
and sum of reciprocal of eigenvalues for all θ ≥ 0.8944 
and for different sample size (n = 50, 100, and 200) while 
only determinant detects the collinearity poorly for θ = 
0.8366. Percentage of detection by the CI is the lowest 
than all the other overall diagnostics for different sample 
sizes, but it detects well as θ increases than θ = 0.9487 
while for θ ≥ 0.9747 detection becomes 100% for all 
sample sizes. For θ = 0.8366 and θ = 0.8944 the sum of 
reciprocal of eigenvalues diagnostic detects existence 
of collinearity among regressors at low percentage, but 
relatively much higher than that by the CI. The FGC and 
Theil’s indicator successfully diagnose the collinearity 
between the explanatory variables. 
 Table 2 consists of the simulated results for 
collinearity diagnostics for each regressor xj, referred 
to as individual measure of diagnostics in the available 
literature. For θ ≥ 0.9487 and sample size 𝑛 = 50, 100 and 
200, all the diagnostic measures successfully detect the 
collinearity among regressors 𝑥𝑗, except VIF/TOL, Leamer’s 
measure and CVIF (Curto & Pinto 2011). For correlation 
level θ = 0.8366, and 0.8944, the diagnostic measures VIF 
(or alternatively TOL), CVIF and Leamer’s method could 
not successfully detect the collinearity among regressors. 
For sample size of 50, the percentages of detection by 
VIF/ TOL and Leamer’s method (when θ = 0.8366 ) is less 
than approximately 4% and 17%, respectively. For n = 
50 and θ = 0.8944 percentage detection by VIF/ TOL and 
Leamer’s method is less than 40% and 74%, respectively. 
For sample of size 100, the percentages of detection by 
VIF/ TOL and Leamer’s method (when θ = 0.8366) is less 
than 1% and 4.2%, respectively. Similarly, for θ = 0.8944, 
the percentage detection is less than 25% and 71%, 
respectively. Percentage of collinearity detection by CVIF 
indicator is smaller as compared to the other indicators, 
as this percentage for sample of size 50 and θ  = 0.8366 
is less than 1% for θ = 0.8944 is less than 3% and for θ = 
0.9487 is less than 41%. The percentage of detection by 
CVIF indicator increases as correlation among regressors 
and the sample size both increases. It is worthy to note 
that the percentage of detection decreases with the increase 
of sample size which follows the theory that collinearity 
reduces with the increase of sample size. 
 On the other hand, our proposed collinearity 
diagnostics (IND1j and IND2j) detect 100% existence of 
collinearity between regressors xj for different samples size 
and correlation levels. When the regressors are collinear 
at θ = 0.8366 and sample size of 50, 100 and 200, the 

percentage of collinearity detection is less than 65%, 75% 
and 84%, respectively, by IND1j, while IND2j detects 
100% existence of collinearity for different correlation 
level and sample sizes. For θ ≥ 0.8944, the percentage of 
detection is about 100%. Thus, when collinearity is needed 
to be detected rightly, the new proposed measures do it 
correctly.
 We also performed simulation on very large sample 
size (n = 500, 1000, 2000) with very high or low 
correlation level (θ = 0.3162, 0.5477, 0.7071, and 0.9999) 
among regressors. For n = 100 and θ = 0.5477, among the 
overall diagnostic tools, Theil’s measure and FGC result 
in 100% false positive collinearity detection. Among the 
individual diagnostic measures, the Farrar wi, F-test, and 
Klein’s rule detected collinearity in most of the cases, 
reflecting very high false positive rate. On the other hand, 
the new proposed indicators, IND1j and IND2j also detect 
collinearity about 10% of the times. These results are not 
presented due to huge volume of diagnostics output.
 In Table 3, we tested all collinearity diagnostics on 
already existing and tested data available in literature. 
The results indicate that whether different collinearity 
diagnostic tools detected the collinearity or they failed to 
detect the collinearity among regressors for three different 
existing datasets already available in literature. The 
datasets by Hald (1952), Longley (1967), and Malinvaud 
(1968), extremely plagued with multicollinearity, were 
used. All of the overall diagnostic measures successfully 
detected the existence of collinearity among regressors for 
these datasets except Theil’s measure for Malinvaud data 
set. Individual diagnostic measures, Klein’s rule and CVIF 
failed to detect the collinearity among regressors for the 
Longley and Hald datasets. However, Farrar and Glauber’s 
wi and F-test also detected the existence of collinearity due 
regressor x5 for Longley dataset which was not reported 
by other indicators. New proposed indicators (IND1j and 
IND2j) correctly detected the existence of collinearity 
among regressors x5 for all three existing datasets. Correct 
detection by these new indicators also followed the results 
from the existing literature (Chatterjee & Hadi 2006; 
Gujarati & Porter 2008; Maddala 1988).

CONCLUSION

The simulated results favour the use of determinant of 
normalized correlation matrix without intercept and 
Red indicator as overall detection of collinearity among 
regressors, while CN or CI, FGC test, Theil’s measure and 
sum of reciprocal of eigenvalues may be avoided due to 
their poor detecting behavior. The VIF/TOL and Leamer’s 
method may be used especially if interdependence among 
regressors is ≥ 0.8944. However, Farrar and Glauber’s wi  
test, F-test, Klein’s rule and CVIF may not be preferred 
because Farrar and Glauber’s tests are criticized by many 
researchers (Haitovsky 1969; Kumar 1975; O’Hangan & 
McCabe 1975) and because of high false positive detection 
by the other diagnostic measures. 
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TABLE 3. Collinearity detection by overall and individual indicators for existing collinear datasets

Diagnostic Data Set Indicators Results *

Overall

Longley

Determinant
Farrar 
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

1
1
1
1
1
1

X1 X2 X3 X4 X5 X6

Individual

VIF
TOL
Farrar 
Leamer
F-test
Klein
CVIF
IND1
IND2

1
1
1
1
1
1
0
1
1

1
1
1
1
1
0
0
1
1

1
1
1
1
1
1
0
1
1

1
1
1
1
1
0
0
1
1

0
0
1
0
1
0
0
0
0

1
1
1
1
1
1
0
1
1

Overall

Malinvaud

Determinant
Farrar 
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

1
1
1
1
0
1

X1 X2 X3

Individual

VIF
TOL
Farrar 
Leamer
F-test
Klein
CVIF
IND1
IND2

1
1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1

Overall

Hald

Determinant
Farrar 
Red Indicator
CI
Theil
Sum of reciprocal of eigenvalues

1
1
1
1
1
1

X1 X2 X3 X4

Individual

VIF
TOL
Farrar 
Leamer
F-test
Klein
CVIF
IND1
IND2

1
1
1
1
1
0
0
1
1

1
1
1
1
1
1
0
1
1

1
1
1
1
1
0
0
1
1

1
1
1
1
1
1
0
1
1

* 1 indicates that collinearity is detected by the indicator while 0 indicates the failure of detection 
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 Among the individual diagnostic measures, Klein’s 
rule and our proposed indicators (IND1j and IND2j) 
are recommended for detection of collinearity. The 
measures, IND1j and IND2j are reported to give attractive 
performance for successful detection of linear dependencies 
among regressors for different level of correlation among 
regressors and samples sizes. 
 Our proposed collinearity diagnostic IND1j should 
be preferred over IND2j and the other diagnostics as 
it correctly detects the collinearity among regressors 
at different sample sizes and correlation level among 
regressors. IND2j may gave false positive detection for 
small samples and low correlation among regressors.
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