Study on numerical solution of a variable order fractional differential equation based on symmetric algorithm

Liu, Jingrui and Pan, Dongyang (2019) Study on numerical solution of a variable order fractional differential equation based on symmetric algorithm. Sains Malaysiana, 48 (12). pp. 2807-2815. ISSN 0126-6039

[img]
Preview
PDF
1MB

Official URL: http://www.ukm.my/jsm/malay_journals/jilid48bil12_...

Abstract

As the class of fractional differential equations with changing order has attracted more attention and attention in the fields of research and engineering, it is important to study its numerical solutions. Numerical solution algorithm for a class of fractional differential equations with transformed arrays based on the proposed symmetry algorithm. The symmetry classification is used for the class of values of the boundary problem of the fractional differential equation with the order of change. A fully symmetric classification of the boundary value problem for a class of fractional differential equations with variable sequences is determined by using a fully symmetric differential sequence sorting algorithm. The problem of the boundary value of the fractional differential equation with the transformed order is reduced to the initial value of the ordinary differential equation. The Legendre polynomial method is used to solve the numerical solution of the starting value of the differential equation. The common differential equation is transformed into a matrix series product by a different operator matrix. The matrix products are converted to algebraic equations by discrete variables. By solving the equations, the numerical solution of the starting value of the common differential equation is obtained.

Item Type:Article
Keywords:Boundary value problem; Differential equation; Numerical solution; Operator matrix; Symmetric algorithm; Variable fractional order
Journal:Sains Malaysiana
ID Code:14470
Deposited By: ms aida -
Deposited On:16 Apr 2020 06:24
Last Modified:21 Apr 2020 02:09

Repository Staff Only: item control page