A New Classification of Hemirings through Double-Framed Soft h-Ideals

(Pengelasan Baru Hemirings melalui h-Ideals Lembut-Dual Kerangka)

Faiz Muhammad Khan, NieYufeng, Hidayat Ullah Khan \& Asghar Khan

Abstract

Due to lack of parameterization, various ordinary uncertainty theories like theory of fuzzy sets, and theory of probability cannot solve complicated problems of economics and engineering involving uncertainties. The aim of the present paper was to provide an appropriate mathematical tool for solving such type of complicated problems. For the said purpose, the notion of double-framed soft sets in hemirings is introduced. As h-ideals of hemirings play a central role in the structural theory, therefore, we developed a new type of subsystem of hemirings. Double-framed soft left (right) h-ideal, double-framed soft h -bi-ideals and double-framed soft h -quasi-ideals of hemiring are determined. These concepts are elaborated through suitable examples. Furthermore, we are bridging ordinary h-ideals and double-framed soft h-ideals of hemirings through double-framed soft including sets and characteristic double-framed soft functions. It is also shown that every double-framed soft h-quasi-ideal is double-framed soft h-bi-ideal but the converse inclusion does not hold. A well-known class of hemrings i.e. h-hemiregular hemirings is characterized by the properties of these newly developed double-framed soft h-ideals of

Keywords: DFS h-bi-ideal; DFS h-hemiregularhemirin; DFS h-quasi-idealg; DFS sets; h-ideal
ABSTRAK
Disebabkan oleh kekurangan pemparameteran, pelbagai teori ketidakpastian biasa seperti teori set kabur dan teori kebarangkalian tidak boleh menyelesaikan masalah ekonomi dan kejuruteraan yang rumit yang melibatkan ketidakpastian. Tujuan penulisan kertas ini adalah untuk menyediakan satu alat matematik yang sesuai untuk menyelesaikan masalah rumit yang sedemikian. Untuk tujuan tersebut, satu tanggapan set lembut dual kerangka dalam hemirings diperkenalkan. Oleh kerana h-ideals hemiring memainkan peranan utama dalam teori struktur, maka kami telah membangunkan satu jenis subsistem hemiring baru. h-ideals lembut kiri (kanan) dual kerangka, h-dwi-ideal lembut dual kerangka dan h -separaideal lembut dual kerangka hemirings ditentukan. Konsep ini dihuraikan melalui contoh yang sesuai. Selain itu, kami menghubungkan h-ideals biasa dan h-ideals lembut dual kerangka hemirings melalui set lembut dual kerangka dan pencirian fungsi lembut dual kerangka. Kajian ini juga menunjukkan bahawa setiap h-quasi-ideal lembut dual bingkai adalah h-dwi-ideal lembut dual kerangka tetapi rangkuman akas tidak dapat bertahan. Satu kelas hemirings terkenal iaitu h-hemisekata hemirings dicirikan oleh sifat h-ideals dua bingkai lembut daripada yang baru dibangunkan ini.

Kata kunci: Set DFS; DFS h-dwi-ideal; DFS h-hemisekata hemiring; h-ideal; DFS h-separa-ideal

INTRODUCTION

In modern era, economic and technological advancement plays a remarkable role in the development of any particular country. Due to the high-quality research in advanced fields like control engineering, data analysis, computer science, error correcting codes, economics, decision making, forecasting and robotics, most of the countries are left behind. These advanced countries are spending a huge part of budget on these domains. On the other hand, the aforementioned fields are facing some complicated problems involving uncertainties. These complicated problems cannot be handled through classical methods. There are certain types of theories such as theory of probability, theory of fuzzy sets and theory of rough sets which can be used in aforementioned problems. However, all of these theories have their significance as well as inherent limitations. One major problem faced by these
theories is their incompatibility with the parameterization tools. To overcome such type of difficulties, in 1999, Molodtsov initiated the ice breaking concept of soft set theory. The notion of soft sets is a new mathematical approach for dealing with uncertainties. This new approach is free from the difficulties pointed out in the other theories of uncertainties which usually use membership function. Soft sets gain reputation from the last decade due to its parameterization nature and which is free of membership function. Due to its dynamical nature, soft sets are nowadays extensively used in various applied fields. More precisely, soft sets are used in decision making problems (Çagman \& Enginoglu 2010a, 2010b; Feng 2011; Feng et al. 2010; Maji et al. 2002; Roya \& Maji 2007), soft derivatives, soft integrals and soft numbers along with their applications are thoroughly discussed (Molodtsov et al. 2006), in international trade, soft sets are used for
forecasting the export and import volumes (Sezer 2014). Simultaneously, this theory is very much useful due to its applications in information sciences with intelligent systems, approximate reasoning, expert and decision support systems and decision making (Acar et al. 2010; Atagun \& Sezgin 2011; Cagman \& Enginoglu 2011; Feng et al. 2008, 2011; Jun et al. 2010, 2009a, 2009b, 2008a, 2008b; Majumdar \& Samanta 2008; Sezgin \& Atagun 2011; Xiao et al. 2010; Yin Li; 2008; Zhan et al. 2010; Zou \& Xiao 2008).

It is also important to note that, soft set are used in algebraic framework which successfully leads to the applications of algebraic structures in aforementioned advanced applied fields. Keeping this motivation in view, Maji et al. (2003) presented several operations of algebraic structures in terms of soft sets which is further extended (Ali et al. 2011, 2009).

Presently, among other algebraic structures, semirings (Vandiver 1934), are also used in diverse fields like computer programming, coding theory, fuzzy automata, optimization, formal languages, graph theory and much more (Aho \& Ullman 1976; Benson 1989; Conway 1971; Golan 1998; Hebisch \& Weinert 1998; Henriksen 1958; Iizuka 1959; Kuich \& Salomma 1986; Torre 1965). Among these, several fields such as theory of automata, formal languages and computer sciences used special type of semirings known as hemirings (Benson 1989; Golan 1999; Hebisch \& Weinert 1998). Hemirings are those semirings which are commutative with addition and having zero element. Further, ideals of hemirings play a key role in structure theory for many purposes. In 1965, Torre determined h-ideals and h-ideals in hemirings with several classification of hemirings are discussed in terms of these ideals. The h-hemiregularity are investigated (Yin \& Li 2008). They also determined h-intra hemiregular hemirings and presented various characterization theorems of hemirings in terms of these notions. In 2013, Droste and Kuich discuss hemrings in automata domain. Moreover, Ma and Zhan (2014) characterized hemiregular hemirings by the properties of new type of soft union sets. For other applications of soft union sets in hemirings, the readers refer to (Ma et al. 2016; Zhan \& Maji 2014). The concept of cubic h-ideals along with several characterization theorems in hemirings is presented (Khan et al. 2015).

Recently, the notion of union and intersectional soft sets is further extended (Jun et al. 2012) to double-framed soft sets and defined double-framed soft subalgebra of a BCK/BCI-algebra. Beside this, Jun et al. (2013) also determined double-framed soft ideals of $\mathrm{BCK} / \mathrm{BCI}$-algebra. In 2017a, Khan et al. applied the notion of double-framed soft sets to AG-groupoids and investigated various results. Moreover, double-framed soft sets are further elaborated in LA-semigroups (Khan et al. 2017b).

The aim of the present paper was to apply the idea of double-framed soft sets to hemirings and to investigate double-framed soft h-ideals of a hamiring We define double-framed soft left (right) h-ideals, double-framed soft h-bi-ideals and double-framed soft h-quasi-ideals
of hemiring R. Further, these notions are elaborated through suitable examples. DFS Soft h-sum and h-product are developed and several results are determined by these notions. On the other hand, we are also bridging ordinary h-ideals and double-framed soft h-ideals of hemirings through double-framed soft including sets and characteristic double-framed soft functions which is the key milestone of the present paper. It is also shown that every double-framed soft h-quasi-ideal is double-framed soft h-bi-ideal but for the converse inclusion, the counter example is provided that it does not hold in general. Lastly, h-hemiregular hemirings are characterized by the properties of these newly developed double-framed soft h-ideals of R.

PRELIMINARIES

This section presents the fundamental concepts of hemirings which will be used throughout this paper.

An algebraic system ($R,+$, .) consists of a nonempty set R with two binary operations addition and multiplication is known as a semiring, if $(R,+)$ and $(R,$. are semigroups with the following distributive laws are satisfied $a \cdot(b+c)=a \cdot b+a \cdot c$ and $(a+b) \cdot c=a \cdot c+$ $b \cdot c$ for all $a, b, c \in R$.

An element $0 \in R$ is called zero of a semiring $(R,+, \cdot)$, if $0 \cdot x=x \cdot 0=0$ and $0+x=x+0=x$ for all A unit of a semiring is an element $1 \in R$ such that $1 \cdot x=x \cdot 1=x$ for all $x \in R$. A semiring R with zero element and in which $(R,+)$ is a commutative semigroup is known as hemiring. Throughout the paper, $a b$ will be used instead of $a \cdot b$ such that $a, b \in R$ for the sake of simplicity.

Since the objectives of the present research was to discussed several classifications of hemirings by the properties of various types of ideals, therefore, the basic types of ideals in hemirings are necessary to be coated over here. A subhemiring of R is a subset A of R which is both closed under addition and multiplication. A subset A of R is called a left (right) ideal of R if A is closed under addition and $R A \subseteq A$ (resp. $A R \subseteq A$). A subset A of R is called an ideal of R if it is both left and right ideal of R A subset B of R is called a bi-ideal of R if B is closed under addition and multiplication such that $B R B \subseteq B$. A subset Q of R is called a quasi-ideal of R if Q is closed under addition and $R Q \cap Q R \subseteq Q$. A subhemiring (left ideal, right ideal, ideal, bi-ideal) A of R is called an h-subhemiring (left h-ideal, right h-ideal, h-ideal, h-bi-ideal), respectively, if for any $x, z \in R, a, b \in A, x+a+z=b+z \rightarrow x \in A$.

The h-closure \bar{A} of a subset of is defined as

$$
\bar{A}=\{x \in R \mid x+a+z=b+z \text { for some } a, b \in A, z \in R\} .
$$

A quasi-ideal Q in a hemiring R is called a h-quasiideal of R if $\overline{R Q} \cap \overline{Q R} \subseteq Q$ and for any $x, z \in R, a, b \in Q$, $x+a+z=b+z \rightarrow x \in Q$.

Note that, for subsets A, B and C of a hemiring R, $A \subseteq \bar{A}, \overline{A B}=\overline{\overline{A B}}, \overline{A B} \subseteq A \cap B$ and $\bar{A}=\bar{A}$. A subset I in a
hemiring R is called an h-idempotent if $I=\overline{I^{2}}$. Clearly, every left h-ideal of a hemiring is a left ideal of R (the similar case is hold for right, bi- and quasi ideal as well). Every left (resp. right) h-ideal of is an h-quasi-ideal and every h-quasi-ideal is an h-bi-ideal of R but the converses of the aforementioned statements are not true in general (Yin \& Li 2008).

SOFT SETS IN HEMIRINGS (BASIC OPERATIONS)

In the last two decades, the uses of soft set theory are achieving another milestone in contemporary mathematics where several mathematical problems involving uncertainties in various field like decision making, automata theory, coding theory, economics and much others which cannot be handle through ordinary mathematical tools (like fuzzy set theory and theory of probability) due to the lack of parameterization. The latest research in this direction and the new investigations of soft set theory is much productive due to the diverse applications of soft sets in the aforementioned fields. It is important to note that Sezgin and Atagun (2011) introduced some new operations on soft set theory and defined soft sets in the following way:

Suppose U be universal set, E be the set of parameters, $P(U)$ be the power set of U and A be a subset of E. Then a soft set f_{A} over U is an approximate function defined by:

$$
f_{A}: E \rightarrow P(U) \text { such that } f_{A}(x)=\emptyset \text { if } x \notin A
$$

Symbolically a soft set over U is the set of ordered pairs

$$
f_{A}=\left\{\left(x, f_{A}(x)\right): x \in E, f_{A}(x) \in P(U)\right\} .
$$

A soft set is a parameterized family of subsets of U, where $S(U)$ denotes the set of all soft sets.

Example 1 Suppose Mr. Lee want to buy various business corners in newly developed supermarket having hundred business corners $\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{100}\right\}=\mathrm{U}$. For the said purpose, Mr. Lee has three different parameters in mind that are "beautiful $\left(\mathrm{e}_{1}\right)$ ", "cheap $\left(\mathrm{e}_{2}\right)$ " and "good location $\left(e_{3}\right)$ ". These parameters are represented by the set $E=\left\{e_{1}\right.$, $\left.\mathrm{e}_{2}, \mathrm{e}_{3}\right\}$. Now for few corners he only consider $\left\{\mathrm{e}_{1}, \mathrm{e}_{3}\right\}=$ A. Therefore, an approximate function $\mathrm{f}_{\mathrm{A}}: \mathrm{E} \rightarrow \mathrm{P}(\mathrm{U})$ will image $f_{A}\left(e_{2}\right)=\varnothing$ as $e_{2} \notin A$ and ultimately he will have only those choices from $P(U)$ which depend on e_{1}, e_{3}. Similarly, for any other subset of parameters, Mr. Lee can select a better corner for his business.

Definition 2 Suppose $f_{A}, f_{B} \in S(U)$. Then f_{A} is said to be subset of f_{B} denoted by $f_{A} \subseteq f_{B}$ if $f_{A}(x) \subseteq f_{B}(x)$ for all $x \in E$. Also, two soft sets f_{A}, f_{B} are said to be equal denoted by $f_{A} \cong f_{B}$ if $f_{A} \subseteq f_{B}$ and $f_{A} \cong f_{B}$ holds.

Definition 3 Let $f_{A}, f_{B} \in S(U)$, then the union of f_{A} and f_{B}, denoted by $f_{A} \tilde{\cup} f_{B}$ is defined by $f_{A} \tilde{\cup} f_{B}=f_{A \cup B}(x)=f_{A}(x) \cup$ $f_{B}(x)$, where for all $x \in E$.

Definition 4. If $f_{A}, f_{B} \in S(U)$, then the intersection of f_{A} and f_{B}, denoted by $f_{A} \widetilde{\cap} f_{B}$ is defined by $f_{A} \tilde{\cap} f_{B}=f_{A \cap B}$, where $f_{A \cap B}(x)=f_{A}(x) \cap f_{B}(x)$ for all $x \in E$.

Throughout this paper, R will denote a hemiring unless otherwise stated.

Definition 5 A double-framed soft set of A over U is a pair $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$, where $\mathrm{f}_{\mathrm{A}}^{+}$and $\mathrm{f}_{\mathrm{A}}^{-}$both are mappings from A to $\mathrm{P}(\mathrm{U})$. It is denoted by DFS-set of A .

The set of all DFS-set of A over U is denoted by DFS(U). γ-inclusive set: If $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be a DFS-set of A and γ be a subset of U , then the γ-inclusive set is denoted by $\mathrm{i}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+} ; \gamma\right)$ and defined as

$$
\mathrm{i}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+} ; \gamma\right)=\left\{\mathrm{x} \in \mathrm{~A} \mid \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \supseteq \gamma\right\}
$$

δ-exclusive set: If $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be a DFS-set of A and δ be a subset of U , then the δ-exclusive set is denoted by $\mathrm{e}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{-} ; \delta\right)$ and defined as

$$
\mathrm{e}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{-} ; \delta\right)=\left\{\mathrm{x} \in \mathrm{~A} \mid \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \subseteq \delta\right\}
$$

A double-framed soft including set is of the form

$$
\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}=\left\{\mathrm{x} \in \mathrm{~A} \mid \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \supseteq \gamma, \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \subseteq \delta\right\}
$$

clearly, $\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}=\mathrm{i}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+} ; \gamma\right) \cap \mathrm{e}_{A}\left(\mathrm{f}_{\mathrm{A}}^{-} ; \delta\right)$.
In the following, the double-framed soft sum briefly h-sum and int-uni soft product (h-product) for two double-framed soft sets of hemirings are introduced.

Definition 6 Let $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{g}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be two double-framed soft sets of a hemiring R over U. Then the h-sum is denoted by $\mathrm{f}_{\mathrm{A}} \widetilde{\oplus} \mathrm{g}_{\mathrm{A}}^{+}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+} \widetilde{\oplus} \mathrm{g}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is defined to be a double-framed soft set of R over U, in which $f_{A}^{+} \widetilde{\oplus} \mathrm{g}_{\mathrm{A}}^{+}$and $\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{g}_{\mathrm{A}}^{-}$are soft mappings from R to $\mathrm{P}(\mathrm{U})$ given as:

Definition 7 Let $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{g}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be two double-framed soft sets of a hemiring R over U . Then the h-product is denoted by $\mathrm{f}_{\mathrm{A}} \tilde{\diamond} \mathrm{g}_{\mathrm{A}}^{+}=\left\langle\left(\mathrm{f}_{\mathrm{A}} \otimes \mathrm{g}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is defined to be a double-framed soft set of R over U, in which $f_{A}^{+} \otimes g_{A}^{+}$and $f_{A}^{-} \boxtimes g_{A}^{-}$are soft mappings from R to $\mathrm{P}(\mathrm{U}(\mathrm{g})$ given as
$f_{A}^{+} \otimes g_{A}^{+}: x \mapsto\left\{\begin{array}{c}U\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap g_{A}^{+}\left(b_{1}\right) \cap g_{A}^{+}\left(b_{2}\right)\right\} \\ x+a_{1} b_{1}+z=a_{2} b_{2}+z\end{array} \quad \begin{array}{rl}\text { if } x \text { cannot be expressed as } x+a_{1} b_{1}+z=a_{2} b_{2}+z \\ \text { if } x \text { cannot be expressed as } x+a_{1} b_{1}+z=a_{2} b_{2}+z .\end{array}\right.$
$f_{A}^{-} \boxtimes g_{A}^{-}: x \mapsto\left\{\begin{array}{l}\cap\left\{f_{A}^{f}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{A}^{-}\left(b_{1}\right) \cup g_{A}^{-}\left(b_{2}\right)\right\} \\ x+a_{1} b_{1}+z=a_{2} b_{2}+z \\ \\ \text { if } x \text { can be expressed as } x+a_{1} b_{1}+z=a_{2} b_{2}+z \\ U \quad \text { if } x \text { cannot be expressed as } x+a_{1} b_{1}+z=a_{2} b_{2}+z .\end{array}\right.$

Definition 8 Let $f_{A}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{g}_{\mathrm{B}}=\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$ be two double-framed soft sets over U. Then $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is called a double-framed soft subset of $\mathrm{g}_{\mathrm{B}}=\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$ denoted by $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; \mathrm{A}\right\rangle \subseteq \mathrm{g}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ if A is the subset of $\mathrm{B}, \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \subseteq \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x})$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \supseteq \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{A}$. Also two double-framed soft sets $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{g}_{\mathrm{B}}=$ $\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$ are equal denoted by $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle=\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$, if $f_{A}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle \widetilde{\subseteq} \mathrm{g}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ $\widetilde{\cong}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ both hold.

Definition 9 Let $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ and $\mathrm{g}_{\mathrm{A}}=\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be two double-framed soft sets of a hemiring R over U . Then the DFS int-uni set of $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ and $g_{A}=\left\langle\left(g_{A}^{+}, g_{A}^{-}\right) ; A\right\rangle$ is to be defined as a DFS set $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-} \tilde{\cup} \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ where $f_{A}^{+} \tilde{\cap} g_{A}^{+}$and $f_{A}^{-} \tilde{U} g_{A}^{-}$are mappings from A to $P(U)$ such that $\left(f_{A}^{+} \tilde{\cap} g_{A}^{+}\right)(x)=f_{A}^{+}(x) \cap g_{A}^{+}(x)$ and $\left(f_{A}^{-} \tilde{\cup} g_{A}^{-}\right)(x)=f_{A}^{+}(x)$ $\cup \mathrm{g}_{\mathrm{A}}^{-}(\mathrm{x})$. It is denoted by $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle \tilde{\cap}\left\langle\left(\mathrm{g}_{\mathrm{A}}^{+}, \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle=$ $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+} \widetilde{\sim} \mathrm{g}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-} \widetilde{\cup} \mathrm{g}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$.

Lemma 10 Suppose $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle, \mathrm{g}_{\mathrm{B}}=\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$ and $\mathrm{h}_{\mathrm{c}}=\left\langle\left(\mathrm{h}_{\mathrm{c}}^{+}, \mathrm{h}_{\mathrm{c}}^{-}\right) ; \mathrm{C}\right\rangle$ be double-framed soft sets in a hemiring R , then the following hold.
(1). $\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}\left(\mathrm{g}_{\mathrm{B}} \tilde{\cap} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus} \mathrm{g}_{\mathrm{B}}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus} \mathrm{h}_{\mathrm{C}}\right)$
(2). $\mathrm{f}_{\mathrm{A}} \tilde{\nabla}\left(\mathrm{g}_{\mathrm{B}} \tilde{\cap} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \tilde{\nabla} \mathrm{g}_{\mathrm{B}}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}} \tilde{\diamond} \mathrm{h}_{\mathrm{C}}\right)$

Proof Let x be an arbitrary element of a hemiring R which cannot be expressed as $\mathrm{x}+\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{z}=\mathrm{a}_{2}+\mathrm{b}_{2}+\mathrm{z}$. Then, $\mathrm{f}_{\mathrm{A}}^{+} \oplus\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})=\varnothing=\left(\mathrm{f}_{\mathrm{A}}^{+} \oplus \mathrm{g}_{\mathrm{B}}^{+}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{+} \oplus \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})$ and $\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus\right.$ $\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\cap}_{\mathrm{C}}^{-}\right)(\mathrm{x})=\mathrm{U}=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{g}_{\mathrm{B}}^{-}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})$. Therefore, $\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}^{(}$ $\left(\mathrm{g}_{\mathrm{B}} \tilde{\sim} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}_{\mathrm{B}}\right) \widetilde{\cap}\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}_{\mathrm{C}}^{\mathrm{C}}\right.$). Now let us suppose that x can be expressed as $\mathrm{x}+\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{z}=\mathrm{a}_{2}+\mathrm{b}_{2}+\mathrm{z}$, then

```
\(\mathrm{f}_{\mathrm{A}}^{+} \oplus\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})\)
\(=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(\mathrm{a}_{2}\right) \cap\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)\left(\mathrm{b}_{1}\right) \cap\left(\mathrm{g}_{\mathrm{B}}^{+} \cap \mathrm{h}_{\mathrm{C}}^{+}\right)\left(\mathrm{b}_{2}\right)\right\}\)
\(=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+\geq}\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right\}\)
\(=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z_{2}}\left\{\left[\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right)\right] \cap\left[\mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right]\right\}\)
\(=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left\{\left(f_{A}^{+}\left(\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right)\right)\right\}\right.\)
\(=\left\{\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z} f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap g_{B}^{+}\left(b_{1}\right) \cap g_{B}^{+}\left(b_{2}\right)\right\}\)
    \(\cap\left\{\bigcup_{x+a_{1}+b_{1}+z+a_{2}+z} f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap h_{C}^{+}\left(b_{1}\right) \cap h_{C}^{+}\left(b_{2}\right)\right\}\)
\(=\left(\mathrm{f}_{\mathrm{A}}^{+} \oplus \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x}) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \oplus \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})\)
\(=\left(f_{A}^{+} \oplus \mathrm{g}_{\mathrm{B}}^{+}\right) \widetilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{+} \oplus \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})\).
```

Also,

$$
\mathrm{f}_{\mathrm{A}}^{-} \boxplus\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})
$$

$$
=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{2}\right) \cup\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{-}\right)\left(\mathrm{b}_{1}\right) \cup\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{-}\right)\left(\mathrm{b}_{2}\right)\right\}
$$

$$
=\bigcup_{x+a_{1} b_{1}+z=a_{2}+b_{2}+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cap h_{C}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right) \cap h_{C}^{-}\left(b_{2}\right)\right\}
$$

$$
\bigcup_{=x+a_{1}}^{b_{1}+z=a_{2}+b_{2}+z}\left\{_ { A } \left\{\left[f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right]\right.\right.
$$

$$
\left.\cap\left[\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{2}\right) \cup \mathrm{h}_{\mathrm{C}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{h}_{\mathrm{C}}^{-}\left(\mathrm{b}_{2}\right)\right]\right\}
$$

$$
=\begin{aligned}
& \left\{\bigcup_{x+a_{1} b_{1}+z=a_{2}+b_{2}+z} f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right\} \\
& \cap\left\{\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z} f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup h_{C}^{-}\left(b_{1}\right) \cup h_{C}^{-}\left(b_{2}\right)\right\}
\end{aligned}
$$

$=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{g}_{\mathrm{B}}^{-}\right)(\mathrm{x}) \cap\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})$
$=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{g}_{\mathrm{B}}^{-}\right) \widetilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{-} \boxplus \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})$.
Thus, $\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}\left(\mathrm{g}_{\mathrm{B}} \tilde{\cap} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus} \mathrm{g}_{\mathrm{B}}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}} \widetilde{\oplus}_{\mathrm{C}} \mathrm{C}_{\mathrm{C}}\right)$ and so (1) hold.
For (2) Let $x \in R$ which cannot be expressed as $x+a_{1} b_{1}$ $+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}$. Then
$\mathrm{f}_{\mathrm{A}}^{+} \otimes\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}(\mathrm{x})=\varnothing=\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})\right.$ and $\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes\right.$ $\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})=\mathrm{U}=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})$. Therefore, f_{A} $\tilde{\diamond}\left(\mathrm{g}_{\mathrm{B}} \tilde{\cap} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \tilde{\diamond} \mathrm{h}_{\mathrm{C}}\right)$. Now let x can be expressed as $\mathrm{x}+$ $a_{1} b_{1}+z=a_{2} b_{2}+z$, then,

$\mathrm{f}_{\mathrm{A}}^{+} \otimes\left(\mathrm{g}_{\mathrm{B}}^{+} \widetilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x})$

$=\bigcup_{x+a_{1} \mathrm{~b}_{1}+z=\mathrm{a}_{2} \mathrm{~b}_{2}+z}\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)\left(\mathrm{b}_{1}\right) \cap\left(\mathrm{g}_{\mathrm{B}}^{+} \tilde{\cap} \mathrm{h}_{\mathrm{C}}^{+}\right)\left(\mathrm{b}_{2}\right)\right\}$
$=\bigcup_{x+\mathrm{a}_{1} \mathrm{~b}_{+}+z=\mathrm{a}_{2} \mathrm{~b}_{2}+z}\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right\}$
$=\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{\left[\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right)\right] \cap\left[\mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right]\right\}$

$$
\begin{aligned}
& =\bigcup_{x+\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}}\left\{(\mathrm { f } _ { \mathrm { A } } ^ { + } (\mathrm { a } _ { 1 }) \cap \mathrm { f } _ { \mathrm { A } } ^ { + } (\mathrm { a } _ { 2 }) \cap \mathrm { g } _ { \mathrm { B } } ^ { + } (\mathrm { b } _ { 1 }) \cap \mathrm { g } _ { \mathrm { B } } ^ { + } (\mathrm { b } _ { 2 })) \cap \left(\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap\right.\right. \\
& \left.\cap\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right)\right\} \\
& =\left\{\bigcup_{\mathrm{x}+\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}} \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& \cap\left\{\bigcup_{\mathrm{x}+\mathrm{a}_{1}+\mathrm{b}_{1}+\mathrm{z=}=\mathrm{a}_{2}+\mathrm{b}_{2}+\mathrm{z}} \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{h}_{\mathrm{C}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& =\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x}) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x}) \\
& =\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right) \widetilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{h}_{\mathrm{C}}^{+}\right)(\mathrm{x}) .
\end{aligned}
$$

Also,

$$
=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right)(\mathrm{x}) \cap\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{h}_{\mathrm{C}}^{-}\right)(\mathrm{x})
$$

$$
\left.=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{h}_{\mathrm{C}}^{-}\right)\right)(\mathrm{x}) .
$$

Thus, $\mathrm{f}_{\mathrm{A}} \tilde{\diamond}\left(\mathrm{g}_{\mathrm{B}} \tilde{\cap} \mathrm{h}_{\mathrm{C}}\right)=\left(\mathrm{f}_{\mathrm{A}} \tilde{\diamond} \mathrm{g}_{\mathrm{B}}\right) \tilde{\cap}\left(\mathrm{f}_{\mathrm{A}} \tilde{\diamond} \mathrm{h}_{\mathrm{C}}\right)$.
Definition 11 Suppose be a non-empty subset of a hemiring R , then the characteristic double-framed soft mapping of A is a double-framed soft set denoted by $\mathrm{C}_{\mathrm{A}}=\left\langle\left(\mathrm{C}_{\mathrm{A}}^{+}, \mathrm{C}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ where $\mathrm{C}_{\mathrm{A}}^{+}, \mathrm{C}_{\mathrm{A}}^{-}$are soft mappings from R to $\mathrm{P}(\mathrm{U})$ and defined as

$$
\mathrm{C}_{\mathrm{A}}^{+}: \mathrm{x} \mapsto \begin{cases}\mathrm{U} & \text { if } \mathrm{x} \in \mathrm{~A} \\ \varnothing & \text { if } \mathrm{x} \notin \mathrm{~A}\end{cases}
$$

and

$$
C_{A}^{-}: x \mapsto \begin{cases}\varnothing & \text { if } x \in A \\ U & \text { if } x \notin A\end{cases}
$$

It is important to note that the identity double-framed soft mapping is denoted by $\mathrm{C}_{\mathrm{R}}=\left\langle\left(\mathrm{C}_{\mathrm{R}}^{+}, \mathrm{C}_{\mathrm{R}}^{-}\right) ; \mathrm{R}\right\rangle$ where $\mathrm{C}_{\mathrm{R}}^{+}$: $\mathrm{x} \mapsto \mathrm{U}$ and $\mathrm{C}_{\mathrm{R}}^{-}: \mathrm{x} \mapsto \emptyset$ for all $\mathrm{x} \in \mathrm{R}$.

Theorem 12 Suppose A and B be two non-empty subsets of a hemiring R , then the following axioms for characteristic double-framed soft mapping are holds:
(1). $A \subseteq B$ if and only if $C_{A} \subseteq \widetilde{C}_{B}$, i.e., $A \subseteq B \Leftrightarrow C_{A}^{+}(x) \subseteq$ $C_{B}^{+}(x)$ and $C_{A}^{-}(x) \supseteq C_{B}^{-}(x)$ for all $x \in A$.

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{A}}^{-} \boxtimes\left(\mathrm{g}_{\mathrm{B}}^{-} \tilde{\mathrm{n}}_{\mathrm{C}}^{-}\right)(\mathrm{x}) \\
& =\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{f_{A}^{-}\left(a_{1}\right) \cap\left(a_{2}\right) \cup\left(g_{B}^{-} \tilde{\sim} h_{C}^{-}\right)\left(b_{1}\right) \cup\left(g_{B}^{-} \tilde{\cap} h_{C}^{-}\right)\left(b_{2}\right)\right\} \\
& =\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cap h_{C}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right) \cap h_{C}^{-}\left(b_{2}\right)\right\} \\
& \bigcup_{=x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{\left[f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right]\right. \\
& \left.\cap\left[\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{2}\right) \cup \mathrm{h}_{\mathrm{C}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{h}_{\mathrm{C}}^{-}\left(\mathrm{b}_{2}\right)\right]\right\} \\
& =\left\{\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z} f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right\} \\
& \cap\left\{\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z} f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup h_{C}^{-}\left(b_{1}\right) \cup h_{C}^{-}\left(b_{2}\right)\right\}
\end{aligned}
$$

(2). $\mathrm{C}_{\mathrm{A}} \tilde{\cap}_{\mathrm{C}}^{\mathrm{B}}=\mathrm{C}_{\mathrm{A} \cap \mathrm{B}}$, i.e., $\left\langle\mathrm{C}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{C}_{\mathrm{B}}^{+}, \mathrm{C}_{\mathrm{A}}^{-} \tilde{\cup}_{\mathrm{B}}^{-}\right\rangle=\left\langle\mathrm{C}_{\mathrm{A} \cap \mathrm{B}}^{+}, \mathrm{C}_{\mathrm{A} \cap \mathrm{B}}^{-}\right\rangle$
(3). $\mathrm{C}_{\mathrm{A}} \widetilde{\oplus}_{\mathrm{C}} \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\overline{A+B}}$, i.e., $\left\langle\mathrm{C}_{\mathrm{A}}^{+} \oplus \mathrm{C}_{\mathrm{B}}^{+}, \mathrm{C}_{\mathrm{A}}^{-} \boxplus \mathrm{C}_{\mathrm{B}}^{-}\right\rangle=\left\langle\mathrm{C}_{\overline{++B}}^{+}, \mathrm{C}_{\overline{\mathrm{A}+\mathrm{B}}}^{-}\right\rangle$
(4). $\mathrm{C}_{\mathrm{A}} \tilde{\nabla}_{\mathrm{C}_{\mathrm{B}}}=\mathrm{C}_{\overline{\mathrm{AB}}}$, i.e., $\left\langle\mathrm{C}_{\mathrm{A}}^{+} \oplus \mathrm{C}_{\mathrm{B}}^{+}, \mathrm{C}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{B}}^{-}\right\rangle=\left\langle\mathrm{C}_{\overline{\mathrm{AB}}}^{+}, \mathrm{C}_{\overline{\mathrm{AB}}}^{-}\right\rangle$.

Proof The proof of (1) and (2) directly follows from Definition 11.

For the proof of (3) suppose and are two subsets of a hemiring R and $x \in R$. If $x \notin \overline{A+B}$, then x can not be expressed as $x+a_{1}+b_{1}+z=a_{2}+b_{2}+z$ where $a_{1}, a_{2} \in A$, $\mathrm{b}_{1}, \mathrm{~b}_{2}, \in \mathrm{~B}$ and $\mathrm{z} \in \mathrm{R}$. Hence, $\left(\mathrm{C}_{\mathrm{A}}^{+} \oplus \mathrm{C}_{\mathrm{B}}^{+}\right)(\mathrm{x})=\varnothing=\mathrm{C}_{\overline{\mathrm{A}+\mathrm{B}}}^{+}$and $\left(C_{A}^{-} \boxplus C_{B}^{-}\right)(x)=U=C_{\overline{A+B}}^{-}$. Therefore, $C_{A} \widetilde{\oplus} C_{B}=C_{\overline{A+B}}$. Now, let $x \in \overline{A+B}$, then x can be expressed as $x+a_{1}+b_{1}+z=$ $\mathrm{a}_{2}+\mathrm{b}_{2}+\mathrm{z}$ such that $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \in \mathrm{~B}$ and $\mathrm{z} \in \mathrm{R}$. Thus
$\left(\mathrm{C}_{\mathrm{A}}^{+} \oplus \mathrm{C}_{\mathrm{B}}^{+}\right)(\mathrm{x})$
$=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left\{C_{A}^{+}\left(a_{1}\right) \cap C_{A}^{+}\left(a_{2}\right) \cap C_{B}^{+}\left(b_{1}\right) \cap C_{B}^{+}\left(b_{2}\right)\right\}$
$=\bigcup_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\{U \cap U \cap U \cap U\}$
$=\mathrm{U}$
$=\mathrm{C}_{\mathrm{A}+\mathrm{B}}^{+}(\mathrm{x})$,
also,

$$
\begin{aligned}
& \left(C_{A}^{-} \boxplus C_{B}^{-}\right)(x) \\
& =\bigcap_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\left\{C_{A}^{-}\left(a_{1}\right) \cup C_{A}^{-}\left(a_{2}\right) \cup C_{B}^{-}\left(b_{1}\right) \cup C_{B}^{-}\left(b_{2}\right)\right\} \\
& =\bigcap_{x+a_{1}+b_{1}+z=a_{2}+b_{2}+z}\{\varnothing \cap \varnothing \cap \varnothing \cap \varnothing\} \\
& =\varnothing \\
& =C_{\overline{A+B}}^{-}(x) .
\end{aligned}
$$

Hence, $\mathrm{C}_{\mathrm{A}} \widetilde{\oplus} \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\overline{\mathrm{A}+\mathrm{B}}}$.
(4). Let $x \notin \overline{\mathrm{AB}}$, then x can not be expressed as $\mathrm{x}+\mathrm{a}_{1} \mathrm{~b}_{1}$ $+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}$ where $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A}, \mathrm{~b}_{1}, \mathrm{~b}_{2} \in \mathrm{~B}$ and $\mathrm{z} \in \mathrm{R}$.
 Therefore, $\mathrm{C}_{\mathrm{A}} \tilde{\delta} \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\overline{\mathrm{AB}}}$. Now let $\mathrm{x} \in \overline{\mathrm{AB}}$, then x can be expressed as $\mathrm{x}+\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}$ such that $\mathrm{a}_{1}, \mathrm{a}_{2} \in \mathrm{~A}$, $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathrm{~B}$ and $\mathrm{z} \in \mathrm{R}$. Thus

$$
\left(\mathrm{C}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{B}}^{+}\right)(\mathrm{x})
$$

$=\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{C_{A}^{+}\left(a_{1}\right) \cap C_{A}^{+}\left(a_{2}\right) \cap C_{B}^{+}\left(b_{1}\right) \cap C_{B}^{+}\left(b_{2}\right)\right\}$
$=\bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\{U \cap U \cap U \cap U\}$
$=\mathrm{U}$
$=\mathrm{C}_{\stackrel{+}{\mathrm{AB}}}^{+}(\mathrm{x})$,
also,
$\left(\mathrm{C}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{B}}^{-}\right)(\mathrm{x})$

$$
\begin{aligned}
& =\bigcap_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{C_{A}^{-}\left(a_{1}\right) \cup C_{A}^{-}\left(a_{2}\right) \cup C_{B}^{-}\left(b_{1}\right) \cup C_{B}^{-}\left(b_{2}\right)\right\} \\
& =\bigcap_{x+a_{1} b_{1}+z=a_{2} \mathrm{a}_{2}+z}\{\varnothing \cap \varnothing \cap \varnothing \cap \varnothing\} \\
& =\varnothing \\
& =C_{\overline{A B}}^{-}(x) .
\end{aligned}
$$

Hence, $\mathrm{C}_{\mathrm{A}} \tilde{\diamond} \mathrm{C}_{\mathrm{B}}=\mathrm{C}_{\overline{\mathrm{AB}}}^{-}$.

DOUBLE-FRAMED SOFT LEFT (RIGHT) h-IDEALS

Double-framed soft structures, are newly developed structures. Comparatively to other structures these can comprehensively discuss and characterized hemirings. The contributions of the present research will play a key role in the structure theory. In this section, hemirings are classified by the properties of double-framed soft left (resp. right) h-ideals. Several important results are determined by the above said notions. Note that onward, double-framed soft left (resp. right) h-ideal will simply be denoted by DFS left (resp. right) h-ideal.

Definition 13 A DFS-set $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of a hemiring R is said to be a double-framed soft left (resp. right) h-ideal of if for $\mathrm{a}, \mathrm{b} \in \mathrm{R}$, the following conditions hold.
(1a). $f_{A}^{+}(a+b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)$
(1b). $f_{A}^{-}(a+b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)$
(2a). $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{ab}) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b})\left(\right.$ resp. $\left.\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{ab}) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a})\right)$
$(2 b) . \mathrm{f}_{A}^{-}(\mathrm{ab}) \subseteq \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b})\left(\right.$ resp. $\left.\mathrm{f}_{A}^{-}(\mathrm{ab}) \subseteq \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a})\right)$
(3a). $\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{+}(a) \cap f_{A}^{+}(b)\right)$
(3b). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{-}(x) \subseteq f_{A}^{-}(a) \cup\right.$ $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b})$).
Note that a Double-framed soft left h-ideal $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of a hemiring R with zero element satisfies the inequalities $\mathrm{f}_{\mathrm{A}}^{+}(0) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}), \mathrm{f}_{\mathrm{A}}^{-}(0) \subseteq \mathrm{f}_{\mathrm{A}}^{-}($a $)$for all $\mathrm{a} \in \mathrm{R}$.

Example 14 Suppose $\mathrm{R}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ be a set with addition and multiplication defined in the following tables:

+	0	a	b	c
0	0	a	b	c
a	0	a	b	c
b	b	b	b	c
c	c	c	c	b

.	0	a	b	c
0	0	0	0	0
a	0	a	a	a
b	0	a	a	a
c	0	a	a	a

Define a double-framed soft $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ in R over $\mathrm{U}=\mathrm{Z}^{-}$ as follows:

R	0	a	b	c
$f_{A}^{+}(x)$	$\{-1,-2, \ldots,-10\}$	$\{-1,-3, \ldots,-9\}$	$\{-1,-3,-9\}$	$\{-1,-3\}$
$f_{A}^{-}(x)$	$\{-2,-4,-6,-8\}$	$\{-2,-4,-8\}$	$\{-2,-4\}$	$\{-2\}$

using Definition 13, $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft h-ideal of R over Z^{-}.

In the following Lemma, double-framed soft including sets are used to connect ordinary left h-ideals with DFS left h-ideals of hemiring R.

Lemma 15 If $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft set of a hemiring R, then a non-empty double-framed soft including set $\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{A}^{-}\right)_{(\gamma, \delta)}$ is left h-ideal of R if and only if $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is DFS left h-ideal of R.

Proof Suppose $\varnothing \neq \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)} \in \mathrm{R}$ (be a left h-ideal, if there exist $a, b \in R$ such that $f_{A}^{+}(a+b) \subset f_{A}^{+}(a) \cap f_{A}^{+}(b)$ $=\gamma_{1}$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}+\mathrm{b}) \supset \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b})=\delta_{1}$ for some γ_{1}, δ_{1} are subsets of U. Then $\mathrm{a}, \mathrm{b} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{1}, \delta_{1}\right)}$ but $\mathrm{a}+\mathrm{b} \notin \mathrm{DF}_{\mathrm{A}}$ $\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{1}, \delta_{1}\right)}$ which is contradiction to the fact that $\mathrm{DF}_{\mathrm{A}}($ $\left.\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{1}, \delta_{1}\right)}$ is left h-ideal. Hence $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}+\mathrm{b}) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b})$ and $f_{A}^{-}(a+b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)$ hold for all $a, b \in R$. Let a, $r \in R$, assume that $f_{A}^{+}(r a) \subset f_{A}^{+}(a)=\gamma_{2}, f_{A}^{-}(r a) \supset f_{A}^{-}(a)=\delta_{2}$, then $\mathrm{a} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{2}, \delta_{2}\right)}$ but ra $\notin \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{2}, \delta_{2}\right)}$ which is contradiction to the hypothesis so, $f_{A}^{+}(\mathrm{ra}) \supseteq \mathrm{f}_{A}^{+}(\mathrm{a})$ and $\mathrm{f}_{A}^{-}(\mathrm{ra})$ $\subseteq f_{A}^{-}(a)$ is true for all $a, r \in R$. Lastly, if there exist x, a, b, z $\in R$ with the expression $x+a+z=b+z$ such that $f_{A}^{+}(x)$ $\subset \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b})=\gamma_{3}$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \supset \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b})=\delta_{3}$, then $\mathrm{a}, \mathrm{b} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{3}, \delta_{3}\right)}$ but $\mathrm{x} \notin \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{\left(\gamma_{3}, \delta_{3}\right)}$ leads to contradiction again. Thus $f_{A}^{+}(x) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)$ and $f_{A}^{-}(x) \subseteq$ $f_{A}^{-}(a) \cup f_{A}^{-}(b)$ hold for all $x, a, b, z \in R$. Consequently, $f_{A}=$ $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is double-framed soft left h-ideal of R .

Conversely, suppose that $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is doubleframed soft left h-ideal of R , need to show that $\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$ $\neq \varnothing$ (is a left h-ideal of for this consider $\mathrm{a}, \mathrm{b} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)$ ${ }_{(\gamma, \delta)}$, then $\mathrm{f}_{A}^{+}(\mathrm{a}) \supseteq \gamma, \mathrm{f}_{A}^{+}(\mathrm{b}) \supseteq \gamma$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \subseteq \delta, \mathrm{f}_{A}^{-}(\mathrm{b}) \subseteq \delta$. Since $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is DFS left h-ideal of R , so $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}+\mathrm{b}) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}$ (b) $\supseteq \gamma \cap \gamma=\gamma$ implies that $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}+\mathrm{b}) \supseteq \gamma$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}+\mathrm{b})$ $\subseteq \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b}) \subseteq \delta \cup \delta=\delta$, hence $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}+\mathrm{b}) \subseteq \delta$. Thus $\mathrm{a}+\mathrm{b} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$. Similarly, for $\mathrm{a} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$ and $r \in R, \quad f_{A}^{+}(r a) \supseteq f_{A}^{+}(a) \supseteq \gamma, f_{A}^{-}(r a) \subseteq f_{A}^{-}(a) \subseteq \delta$ leads to $\mathrm{ra} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$. Finally, let $\mathrm{a}, \mathrm{b} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$, $\mathrm{x}, \mathrm{z} \in \mathrm{R}$ with the expression $\mathrm{x}+\mathrm{a}+\mathrm{z}=\mathrm{b}+\mathrm{z}$, then $\mathrm{f}_{\mathrm{A}}^{+}$ (a) $\supseteq \gamma, \mathrm{f}_{A}^{+}(\mathrm{b}) \supseteq \gamma$ and $\mathrm{f}_{A}^{-}(\mathrm{a}) \subseteq \delta, \mathrm{f}_{A}^{-}(\mathrm{b}) \subseteq \delta$. ${\text { So } \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \supseteq}^{(}$ $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b}) \supseteq \gamma$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \subseteq \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b}) \subseteq \delta$ means that $\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \supseteq \gamma$ and $\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \subseteq \delta$, hence $\mathrm{x} \in \mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$. Therefore, $\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$ is a left h-ideal of a hemiring R .

The case for the right h-ideal can be shown accordingly.
Theorem 16 Suppose A is a non-empty subset of a hemiring R and $\mathrm{C}_{\mathrm{A}}=\left\langle\mathrm{C}_{\mathrm{A}}^{+}, \mathrm{C}_{\mathrm{A}}^{-}\right\rangle$is a double-framed soft set on R defined by

$$
\mathrm{C}_{\mathrm{A}}^{+}(\mathrm{x})=\left\{\begin{array}{ll}
\gamma_{1} & \text { if } \mathrm{x} \in \mathrm{~A}, \\
\delta_{1} & \text { if } \mathrm{x} \notin \mathrm{~A} .
\end{array} \quad \mathrm{C}_{\mathrm{A}}^{-}(\mathrm{x})= \begin{cases}\delta_{2} & \text { if } \mathrm{x} \in \mathrm{~A}, \\
\gamma_{2} & \text { if } \mathrm{x} \notin \mathrm{~A} .\end{cases}\right.
$$

where $\varnothing \subseteq \delta_{1} \subset \gamma_{1} \subseteq \mathrm{U}$ and $\emptyset \subseteq \delta_{2} \subset \gamma_{2} \subseteq \mathrm{R}$. Then show that C_{A} is a double-framed soft left h-ideal of R .

Proof The proof of the theorem is similar to the proof of Lemma 15.

For a hemiring R, the double-framed soft sets denoted by $\mathrm{R}=\left\langle\left(\mathrm{R}_{\mathrm{R}}^{+}, \mathrm{R}_{\mathrm{R}}^{-}\right) ; \mathrm{R}\right\rangle$ and $\varnothing=\left\langle\left(\varnothing_{\mathrm{R}}^{+}, \varnothing_{\mathrm{R}}^{-}\right) ; \mathrm{R}\right\rangle$ where $\left(\mathrm{R}_{\mathrm{R}}^{+}, \mathrm{R}_{\mathrm{R}}^{-}\right)$ and $\left(\varnothing_{R}^{+}, \varnothing_{R}^{-}\right)$are soft mappings from to defined by

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{R}}^{+}: \mathrm{x} \mapsto \mathrm{R}_{\mathrm{R}}^{+}(\mathrm{x})=\mathrm{U}, \\
& \mathrm{R}_{\mathrm{R}}^{-}: \mathrm{x} \mapsto \mathrm{R}_{\mathrm{R}}^{-}(\mathrm{x})=\varnothing, \\
& \varnothing_{\mathrm{R}}^{+}: \mathrm{x} \mapsto ?_{\mathrm{R}}^{+}(\mathrm{x})=\varnothing, \\
& \varnothing_{\mathrm{R}}^{+}: \mathrm{x} \mapsto \varnothing_{\mathrm{R}}^{-}(\mathrm{x})=\mathrm{U} .
\end{aligned}
$$

for all $x \in R$.
In the following theorem, the necessary and sufficient conditions for double-framed soft left h-ideal is provided.

Theorem 17 Suppose $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft left h-ideal of a hemiring T. Then the following are the necessary and sufficient conditions for $f_{A}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$
to be a DFS left h-ideal of R are:
(1). $(\forall x, y \in R)\left(f_{A}^{+}(a+b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)\right.$ and $\left.f_{A}^{-}(a+b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$,
(2). $\mathrm{C}_{\mathrm{R}} \tilde{\delta} \mathrm{f}_{\mathrm{A}} \tilde{\subseteq} \mathrm{f}_{\mathrm{A}}$
(3). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{+}(a) \cap f_{A}^{+}(b)\right.$ and $\left.f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$.
$\operatorname{Proof}(\Rightarrow)$ Suppose that $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft left h-ideal of R. Then, conditions (1) and (3) directly follows from the Definition 13. For Condition (2), if $x \in R$ can not be expressed as $x+a_{1} b_{1}+z=a_{2} b_{2}+z$, then $\left(C_{R}^{+} \otimes f_{A}^{+}\right)$ $(x)=\varnothing \subseteq f_{A}^{+}(x)$ and $\left(C_{R}^{-} \boxtimes f_{A}^{-}\right)(x)=U^{2} \supseteq f_{A}^{-}(x)$. Hence, C_{R} $\delta f_{A} \subseteq f_{A}$. Now assume that x can be expressed as $x+a_{1} b_{1}$
$+\mathrm{z}=\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{z}$, since $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a DFS left h-ideal, therefore, we have,

$$
\begin{aligned}
& \left(\mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{x}) \\
& =\bigcup_{x+\mathrm{a}_{1} \mathrm{~b}_{1}+z=\mathrm{a}_{2} \mathrm{~b}_{2}+z}\left\{\mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& =\bigcup_{\mathrm{x}+\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{z=a}_{2} \mathrm{~b}_{2}+\mathrm{z}}\left\{\mathrm{U} \cap \mathrm{U} \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\} \\
& \subseteq \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right) \\
& \subseteq f_{A}^{+}\left(a_{1} b_{1}\right) \cap f_{A}^{+}\left(a_{1} b_{1}\right) \\
& \subseteq \bigcup_{x+a_{1} b_{1}+z=a_{2} b_{2}+z} \mathrm{f}_{A}^{+}\left(a_{1} b_{1}\right) \cap f_{A}^{+}\left(a_{1} b_{1}\right) \\
& =f_{A}^{+}(x) \text {, }
\end{aligned}
$$

and

$\left(\mathrm{C}_{\mathrm{R}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)(\mathrm{x})$
$=\bigcap_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{C_{R}^{-}\left(a_{1}\right) \cap C_{R}^{-}\left(a_{2}\right) \cap f_{A}^{-}\left(b_{1}\right) \cap f_{A}^{-}\left(b_{2}\right)\right\}$
$=\bigcap_{x+\mathrm{a}_{1} \mathrm{~b}_{1}+z=\mathrm{e}_{2} \mathrm{~b}_{2}+z}\left\{\varnothing \cap \varnothing \cap \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\}$
$\supseteq \bigcap_{x+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{f_{A}^{-}\left(a_{1} b_{1}\right) \cap f_{A}^{-}\left(a_{1} b_{1}\right)\right\}$
$=\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$,
Hence, $\mathrm{C}_{\mathrm{R}} \tilde{\diamond} \mathrm{f}_{\mathrm{A}} \tilde{\subseteq} \mathrm{f}_{\mathrm{A}}$.
(\Leftarrow), now assume that Conditions (1)-(3) holds, let $\mathrm{x}, \mathrm{z} \in$ R, such that $\mathrm{x}+\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+\mathrm{z}=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+\mathrm{z}$, then using Condition 2, we have,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{xy}) \supseteq\left(\mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{xy}) \\
& =\bigcup_{x y+\mathrm{a}_{1} \mathrm{~b}_{1}+z=\mathrm{a}_{2} \mathrm{~b}_{2}+z}\left\{\mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& =\bigcup_{x y+a_{1} b_{1}+z=a_{2} b_{2}+z}\left\{U \cap U \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\} \\
& \supseteq \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right) \\
& \supseteq \bigcup_{y+b_{1}+z-b_{2}+z}\left\{f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\} \\
& =\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{y})
\end{aligned}
$$

also,

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{xy}) \subseteq\left(\mathrm{C}_{\mathrm{R}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)(\mathrm{xy}) \\
& =\bigcap_{\mathrm{xy}+\mathrm{a}_{1} \mathrm{~b}_{1}+2 \mathrm{z}_{2} \mathrm{~b}_{2}+z}\left\{\left(\mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{a}_{1}\right) \cup \mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{a}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\}\right. \\
& =\bigcap_{\mathrm{xy}+\mathrm{a}_{1} \mathrm{~b}_{1}+z=\mathrm{e}_{2} \mathrm{~b}_{2}+z}\left\{\varnothing \cup \varnothing \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\} \\
& =\bigcap_{\mathrm{xy}+\mathrm{a}_{1} \mathrm{~b}_{1}+z=\mathrm{e}_{2} \mathrm{~b}_{2}+z}\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\} \\
& \subseteq \bigcap_{y+a_{1}+z=b_{2}+z}\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\} \\
& =\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{y})
\end{aligned}
$$

Thus, $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is double-framed soft left h-ideal of R .

Lemma 18 Suppose $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft right h-ideal of a hemiring T . Then the following are the necessary and sufficient conditions for $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ to be a DFS right h-ideal of R are:
(1). $(\forall x, y \in R)\left(f_{A}^{+}(a+b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)\right.$ and $f_{A}^{-}(a+b) \subseteq$ $\left.f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$
(2). $\mathrm{f}_{\mathrm{A}} \tilde{\delta} \mathrm{C}_{\mathrm{R}} \subseteq \mathrm{f}_{\mathrm{A}}$
(3). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(a) \cap\right.$ $f_{A}^{+}(b)$ and $\left.f_{A}^{-}(x) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$.

Proof The proof of the lemma follows from Theorem 17.

DOUBLE-FRAMED SOFT h-BI-IDEALS AND h-QUASI-IDEALS

An important milestone of the present section is to develop the connection between ordinary h-bi-ideals (h-quasiideals) with double-framed soft h-bi-ideals (double-framed soft h-quasi-ideals). For this purpose, double-framed soft including set are used. Further, it is shown that every
double-framed soft h-quasi-ideal of a hemiring is a double-framed soft h-bi-ideal but the converse is not true in general.

Definition 19 A DFS-set $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of a hemiring R is said to be a double-framed soft h-bi-ideal of R if the following conditions hold.
(4a). $(\forall a, b \in R)\left(f_{A}^{+}(a+b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)\right)$
(4b). $(\forall a, b \in R)\left(f_{A}^{-}(a+b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$
(5a). $(\forall a, b \in R)\left(f_{A}^{+}(a b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)\right)$
(5b). $(\forall a, b \in R)\left(f_{A}^{-}(a b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$
(6a). $(\forall a, b, c \in R)\left(f_{A}^{+}(a b c) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(c)\right)$
(6b). $(\forall a, b, c \in R)\left(f_{A}^{-}(a b c) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(c)\right)$
(7a). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}(a)\right.$ $\left.\cap f_{A}^{+}(b)\right)$
(7b). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{-}(x) \subseteq f_{A}^{-}(a)\right.$ $\left.\cup f_{A}^{-}(b)\right)$.
Note that for a double-framed soft h-bi (quasi)-ideal $f_{A}=$ $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ the inequality $f_{A}^{+}(0) \supseteq f_{A}^{+}(x)$ and $f_{A}^{-}(0) \subseteq f_{A}^{-}(x)$ are hold for all $x \in R$.

Example 20 Let $\mathrm{U}=\mathrm{Z}^{+}$(positive integers) be the universal set. Consider a parameter set $\mathrm{A}=\{0,1,2,3\}$, the set of nonnegative integers module 4 is a hemiring.

Define a double-framed soft $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ in R over $U=Z^{+}$ as follows:

R	0	1	2	3
$f_{A}^{+}(x)$	Z^{+}	$\{2,3\}$	$\{1,2,3,5\}$	$\{2,3\}$
$f_{A}^{-}(x)$	$\{3,4\}$	Z^{+}	$\{1,3,4,6\}$	Z^{+}

using Definition 19, $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a double-framed soft h-bi-ideal of R over Z^{-}. If for the same universal set Z^{+}, we consider another parameter set:

$$
B=\left\{\left.\left[\begin{array}{ll}
x & x \\
y & y
\end{array}\right] \right\rvert\, x, y \in Z_{2}=\{0,1\}\right\}
$$

where Z_{2} is the set of non-negative integers module 2 .
Define a double-framed soft $\left\langle\left(f_{B}^{+}, f_{B}^{-}\right) ; B\right\rangle$ over Z^{+}as follows:

R	$\left[\begin{array}{ll}l l \\ 0 & 0\end{array}\right.$	$\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right]$	$\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$	$\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
$f_{B}^{+}(x)$	Z^{+}	$\{2,3,4,5\}$	$\{1,2,3,4,5,7\}$	$\{1,2,3,4,5,7,8\}$
$f_{B}^{-}(x)$	$\{3,4\}$	Z^{+}	$\{1,3,4,5,6,7,8\}$	$\{1,3,4,5,7\}$

then by Definition 19, $\left\langle\left(f_{B}^{+}, f_{B}^{-}\right) ; B\right\rangle$ is a double-framed soft h-bi-ideal of Z^{+}.

Theorem 21 A DFS-set $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of a hemiring R is a double-framed soft h-bi-ideal of R if and only if
(1). $\mathrm{f}_{\mathrm{A}} \widetilde{\oplus} \mathrm{f}_{\mathrm{A}} \widetilde{\subseteq} \mathrm{f}_{\mathrm{A}}$
(2). $\mathrm{f}_{\mathrm{A}} \tilde{\delta} \mathrm{f}_{\mathrm{A}} \widetilde{\widetilde{ } f_{A}}$
(3). $f_{A} \tilde{\delta} C_{R} \tilde{\diamond} f_{A} \widetilde{\subseteq} f_{A}$.

Proof Let $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be a double-framed soft h-biideal of R, and $x \in R$ be such that it can not be expressed in the form $x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z$, then $\left(f_{A}^{+} \oplus f_{A}^{+}\right)$ $(x)=\varnothing \subseteq f_{A}^{+}(x)$ and $\left(f_{A}^{-} \boxtimes f_{A}^{-}\right)(x)=U \supseteq f_{A}^{-}(x)$. So $f_{A}^{+} \oplus f_{A}^{+} \widetilde{\subseteq}$ f_{A}. Now if x can be expressed in the form $x+\left(a_{1}+b_{1}\right)+$ $\mathrm{z}=\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right)+\mathrm{z}$, then
$\left(f_{A}^{+} \oplus f_{A}^{+}\right)(x)$
$=\bigcup_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\}$
$\subseteq \bigcup_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}+a_{2}\right) \cap f_{A}^{+}\left(b_{1}+b_{2}\right)\right\} \quad$ by $(4 \mathrm{a})$
$\subseteq \bigcup_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z} f_{A}^{+}(x) \quad$ by $(7 \mathrm{a})$
$=f_{A}^{+}(x)$
also,
$\left(f_{A}^{-} \boxplus f_{A}^{-}\right)(x)$
$=\bigcap_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup f_{A}^{-}\left(b_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\}$
$\begin{array}{ll}\supseteq \bigcap_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}+a_{2}\right) \cup f_{A}^{-}\left(b_{1}+b_{2}\right)\right\} & \text { by (4b) } \\ \supseteq \bigcap_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z} f_{A}^{-}(x) & \text { by (7b) } \\ =f^{-}(x) & \end{array}$
$=f_{A}^{-}(x)$
Hence, $f_{A} \widetilde{\oplus} f_{A} \widetilde{\subseteq} f_{A}$.
Now, if $x \in R$ can not be expressed in the form $x+\left(a_{1} b_{1}\right)$ $+z=\left(a_{2} b_{2}\right)+z$, then $\left(f_{A}^{+} \otimes f_{A}^{+}\right)(x)=\varnothing \subseteq f_{A}^{+}(x)$ and $\left(f_{A}^{-} \boxtimes\right.$ $\left.f_{A}^{-}\right)(x)=U \supseteq f_{A}^{-}(x)$. So $f_{A} \tilde{\diamond} f_{A} \widetilde{\subseteq} f_{A}$. If can be written in the form $x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z$, then
$\left(f_{A}^{+} \oplus f_{A}^{+}\right)(x)$
$=\bigcup_{x+\left(a_{1} b_{1}+z=\left(a_{2} b_{2}\right)+z\right.}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\}$
$\subseteq \bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1} a_{2}\right) \cap f_{A}^{+}\left(b_{1} b_{2}\right)\right\} \quad$ by $(5 \mathrm{a})$
$\subseteq \bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z} f_{A}^{+}(x)$
$=f_{A}^{+}(x)$.
also,
$\left(f_{A}^{-} \boxtimes f_{A}^{-}\right)(x)$
$=\bigcap_{x+\left(a_{1},\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup f_{A}^{-}\left(b_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\}$
$\supseteq \bigcap_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1} a_{2}\right) \cup f_{A}^{-}\left(b_{1} b_{2}\right)\right\} \quad$ by $(5 b)$
$\supseteq \bigcap_{\left.x+\left(a_{1}\right)_{1}\right)+z=\left(a_{2} b_{2}\right)+z} f_{A}^{-}(x)$
$=f_{A}^{-}(x)$
Thus $f_{A} \tilde{\diamond} f_{A} \widetilde{\subseteq} f_{A}$.
The proof of Condition (3) follows from (1) and (2).
Conversely, assume that conditions (1) to (3) hold. First to show that $f_{A}^{+}(0) \supseteq f_{A}^{+}(x)$ and $f_{A}^{-}(0) \subseteq f_{A}^{-}(x)$ for all $x \in R$.
$f_{A}^{+}(x) \supseteq\left(f_{A}^{+} \oplus f_{A}^{+}\right)(0)$
$=\bigcup_{0+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\}$
$\supseteq\left\{f_{A}^{+}(x) \cap f_{A}^{+}(x) \cap f_{A}^{+}(x) \cap f_{A}^{+}(x)\right\}$
$=f_{A}^{+}(x)$ as $0+x+x+z=x+x+z$
also
$f_{A}^{-}(0) \subseteq\left(f_{A}^{-} \boxplus f_{A}^{-}\right)(0)$
$=\bigcap_{0+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup f_{A}^{-}\left(b_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\}$
$\subseteq\left\{f_{A}^{-}(x) \cup f_{A}^{-}(x) \cup f_{A}^{-}(x) \cup f_{A}^{-}(x)\right\}$
$=f_{A}^{-}(x)$.
Hence, $f_{A}^{+}(0) \supseteq f_{A}^{+}(x)$ and $f_{A}^{-}(0) \subseteq f_{A}^{-}(x)$ hold for all x $\in R$. Now,
$f_{A}^{+}(x+y) \supseteq\left(f_{A}^{+} \oplus f_{A}^{+}\right)(x+y)$
$=\bigcup_{x+y+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\}$
$\left.\supseteq\left\{f_{A}^{+}\right)(0) \cap f_{A}^{+}(0) \cap f_{A}^{+}(x) \cap f_{A}^{+}(y)\right\}$
now as $x+y+0+0+z=x+y+z$, so
$f_{A}^{+}(x+y) \supseteq f_{A}^{+}(x) \cap f_{A}^{+}(y)$
also,

$$
\begin{aligned}
& f_{A}^{-}(x+y) \subseteq\left(f_{A}^{-} \boxplus f_{A}^{-}\right)(x+y) \\
& =\bigcap_{x+y+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup f_{A}^{-}\left(b_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\} \\
& \subseteq\left\{f_{A}^{-}(0) \cup f_{A}^{-}(0) \cup f_{A}^{-}(x) \cup f_{A}^{-}(y)\right\} \\
& =f_{A}^{-}(x) \cup f_{A}^{-}(y) .
\end{aligned}
$$

Further,

$$
\begin{aligned}
& f_{A}^{+}(x) \supseteq\left(f_{A}^{+} \oplus f_{A}^{+}\right)(x) \\
& =\bigcup_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap f_{A}^{+}\left(b_{1}\right) \cap f_{A}^{+}\left(b_{2}\right)\right\}
\end{aligned}
$$

If $x+a+z=b+z$, then $x+a+0+z=b+0+z$, therefore, $f_{A}^{+}(x) \supseteq\left\{f_{A}^{+}(a) \cap f_{A}^{+}(0) \cap f_{A}^{+}(b) \cap f_{A}^{+}(0)\right\}=\left\{f_{A}^{+}(a) \cap f_{A}^{+}(b)\right\}$ similarly,
$f_{A}^{-}(x) \subseteq\left(f_{A}^{-} \boxplus f_{A}^{-}\right)(x)$
$=\bigcap_{x+\left(a_{1}+b_{1}\right)+z=\left(a_{2}+b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right) \cup f_{A}^{-}\left(b_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\}$
$\subseteq\left\{f_{A}^{-}(a) \cup f_{A}^{-}(0) \cup f_{A}^{-}(b) \cup f_{A}^{-}(0)\right\}$
$=f_{A}^{-}(x) \cup f_{A}^{-}(y)$.
The rest of the conditions can be proved in similar manner. Consequently, $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is a double-framed soft h-bi-ideal of R.

Definition 22 A DFS-set $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of a hemiring R is said to be a double-framed soft h-quasi-ideal of R if the following conditions hold.
(8a). $(\forall a, b \in R)\left(f_{A}^{+}(a+b) \supseteq f_{A}^{+}(a) \cap f_{A}^{+}(b)\right)$
(8b). $(\forall a, b \underset{\sim}{\in} R)\left(f_{A}^{-}(a+b) \underset{\sim}{\sim} f_{A}^{-}(a) \cup f_{A}^{-}(b)\right)$
(9a). \quad oo $\left(f_{A} \tilde{\delta} C_{R}\right) \tilde{\cap}\left(C_{R} \tilde{\nabla} f_{A}\right) \subseteq f_{A}$
(10a). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{+}(x) \supseteq f_{A}^{+}\right.$ (a) $\left.\cap f_{A}^{+}(b)\right)$
(10b). $(\forall a, b, x, z \in R)\left(x+a+z=b+z \rightarrow f_{A}^{-}(x) \subseteq f_{A}^{-}\right.$ (a) $\left.\cup f_{A}^{-}(b)\right)$.

Example 23 The set of all non-negative integers $\mathrm{U}=\mathrm{N}_{0}$ is a hemiring with respect to usual addition and multiplication. Suppose $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{1}^{\prime}, \mathrm{u}_{2}^{\prime} \in \mathrm{P}(\mathrm{U})$ be such that $\emptyset \neq \mathrm{u}_{1} \subset \mathrm{u}_{2}$ and $\emptyset \neq u_{2}^{\prime} \subset u_{1}^{\prime}$ where is power set of define a double-framed soft set over as follows:

N_{0}	if $a \in\langle 3\rangle$	$a \notin\langle 3\rangle$
$f_{A}^{+}(x)$	u_{2}	u_{1}
$f_{A}^{-}(x)$	u_{2}	u_{1}

then by Definition 22, $\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft h-quasi-ideal of N_{0}.

Theorem 24 If $_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a double-framed soft set of a hemiring R , then a non-empty double-framed soft including set $\mathrm{DF}_{\mathrm{A}}\left(\mathrm{f}_{A}^{-}, \mathrm{f}_{\mathrm{A}}^{-}\right)_{(\gamma, \delta)}$ is h-bi-ideal (resp. h-quasiideal) of R if $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\}$ and only if is DFS h-bi-ideal (resp. h-quasi-ideal) of R.

Proof The proof of the theorem follows from Lemma 15. Using characteristic double-framed soft sets, ordinary h-ideals (h-left (right) ideals, h-bi-ideals, h-quasi-ideals) in a hemiring R are linked with DFS h-ideals (DFS left (right)-ideals, DFS h-bi-ideals, DFS h-quasi-ideals) in the following result.

Corollary 25 If A is any non-empty subset of a hemiring R, then, characteristic double-framed soft set $\mathrm{C}_{\mathrm{A}}=$ $\left\langle\left(\mathrm{C}_{\mathrm{A}}^{+}, \mathrm{C}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is a DFS h-ideal (resp. DFS h-bi-ideal, DFS h-quasi-ideals) of R if and only if A is an h-ideal (resp. h-bi-ideal, h-quasi-ideal) of R.

Proof Follows from Lemma 15 and Theorem 24.
Theorem 26 If $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ is DFS right h-ideal and $\mathrm{g}_{\mathrm{B}}=$ $\left\langle\left(\mathrm{g}_{\mathrm{B}}^{+}, \mathrm{g}_{\mathrm{B}}^{-}\right) ; \mathrm{B}\right\rangle$ is DFS left h-ideal of a hemiring R , then $\mathrm{f}_{\mathrm{A}} \tilde{\cap} \mathrm{g}_{\mathrm{B}}=$ $\left\langle\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}-\widetilde{\mathrm{U}} \mathrm{g}_{\mathrm{B}}^{-}\right\rangle$is a double framed soft h-quasi-ideal of R .

Proof Assume $x, y \in R$, then
$\left(\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x}+\mathrm{y})=\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}+\mathrm{y}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x}+\mathrm{y})$
$\supseteq\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{y})\right\} \cap\left\{\mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{y})\right\}$
$=\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x})\right\} \cap\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{y}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{y})\right\}$
$=\left(\mathrm{f}_{\mathrm{A}}^{+} \cap \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x}) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{y})$
also
$\left(f_{A}^{-} \tilde{\cup} g_{B}^{-}\right)(x+y)=f_{A}^{-}(x+y) \cup g_{B}^{-}(x+y)$
$\supseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{y})\right\} \cup\left\{\mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{y})\right\}$
$=\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x})\right\} \cup\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{y}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{y})\right\}$
$=\left(f_{A}^{-} \tilde{U} g_{B}^{-}\right)(x) \cup\left(f_{A}^{-} \tilde{U}_{B}^{-}\right)(y)$.

Now let $\mathrm{x}, \mathrm{a}, \mathrm{b}, \mathrm{z} \in \mathrm{R}$ with the expression $\mathrm{x}+\mathrm{a}+\mathrm{z}=$ $\mathrm{b}+\mathrm{z}$, then
$\left(\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x})=\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x})$
$\supseteq\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b})\right\} \cap\left\{\mathrm{g}_{\mathrm{B}}^{+}(\mathrm{a}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{b})\right\}$
$=\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap\left\{\mathrm{g}_{\mathrm{B}}^{+}(\mathrm{a})\right\} \cap\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{b}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{b})\right\}\right.$
$=\left(f_{A}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{a}) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \tilde{\cap} \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{b})$
and
$\left(\mathrm{f}_{\mathrm{A}}^{-} \widetilde{\cup}_{\mathrm{B}}^{-}\right)(\mathrm{x})=\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x})$
$\supseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b})\right\} \cup\left\{\mathrm{g}_{\mathrm{B}}^{-}(\mathrm{a}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{b})\right\}$
$=\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{a}) \cup\left\{\mathrm{g}_{\mathrm{B}}^{-}(\mathrm{a})\right\} \cup\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{b}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{b})\right\}\right.$
$=\left(f_{A}^{-} \tilde{U}_{\mathrm{B}}^{-}\right)(\mathrm{a}) \cup\left(\mathrm{f}_{\mathrm{A}}^{-} \tilde{\cup} \mathrm{g}_{\mathrm{B}}^{-}\right)(\mathrm{b})$.
Also, $\left\{\left(\mathrm{f}_{\mathrm{A}} \tilde{\cap} \mathrm{g}_{\mathrm{B}}\right) \tilde{\diamond} \mathrm{C}_{\mathrm{R}}\right\} \tilde{\cap}\left\{\mathrm{C}_{\mathrm{R}} \tilde{\diamond}\left(\mathrm{f}_{\mathrm{A}} \tilde{\sim} \mathrm{g}_{\mathrm{B}}\right)\right\} \widetilde{\subseteq}\left(\mathrm{f}_{\mathrm{A}} \tilde{\delta} \mathrm{C}_{\mathrm{R}}\right.$ $\tilde{\sim} \mathrm{C}_{\mathrm{R}} \tilde{\delta}_{\mathrm{B}}$) (by Theorem 17, Lemma 18). Hence, $\mathrm{f}_{\mathrm{A}} \tilde{\cap}_{\mathrm{g}}$ is Double-framed soft h-quasi-ideal of R.

Next, it is shown that every DFS h-quasi-ideal is DFS h-bi-ideal of a hemiring R but the converse is not true in general.

Remark 27 Every double-framed soft h-quasi-ideal is double-framed soft h-bi-ideal in a hemiring R.
Proof Let $_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ be a double-framed soft h-quasiideal of a hemiring R and $a, b, c \in R$, since $f_{A} \widetilde{\subseteq}\left(f_{A} \tilde{\diamond} C_{R}\right.$ $\left.\tilde{\sim} C_{R} \tilde{\delta} g_{B}\right)$ therefore,
$\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{abc}) \supseteq\left(\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right) \tilde{\cap}\left(\mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)\right)(\mathrm{abc})$
$=\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right)(\mathrm{abc}) \cap\left(\mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{abc})$
$=\left\{\bigcup_{\text {abct }+\mathrm{a}_{1} \mathrm{~b}_{1}+z=-\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{b}_{2}\right)\right\}\right\}$
$=\cap\left\{\bigcup_{\text {abcc }\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+z=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\}\right\}$
$\mathrm{as} \mathrm{abc}+00+0=\mathrm{a}(\mathrm{bc})+0$ and $\mathrm{abc}+00+0=(\mathrm{ab}) \mathrm{c}+0$, therefore
$\left\{\bigcup_{\left.\text {abct } \mathrm{a}_{1} \mathrm{~b}_{1}\right)+z=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{b}_{2}\right)\right\}\right\}$
$\supseteq \mathrm{f}_{\mathrm{A}}^{+}(0) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{C}_{\mathrm{A}}^{+}(0) \cap \mathrm{C}_{\mathrm{A}}^{+}(\mathrm{bc})$
$=f_{A}^{+}(0) \cap f_{A}^{+}(a)$
and
$\left\{\bigcup_{\text {abct }\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+z-\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{1}\right) \cap \mathrm{C}_{\mathrm{R}}^{+}\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\}\right\} \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{c})$,
therefore, $\mathrm{f}_{A}^{+}(\mathrm{abc}) \supseteq \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{a}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{c})$ and
$\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{abc}) \subseteq=\left(\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right) \widetilde{\cap}\left(\mathrm{C}_{\mathrm{R}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)\right)(\mathrm{abc})$
$=\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right)(\mathrm{abc}) \cap\left(\mathrm{C}_{\mathrm{R}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)(\mathrm{abc})$
$\left\{\bigcap_{\left.\text {abct }+\mathrm{a}_{1} \mathrm{~b}_{1}\right)+z-\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{a}_{2}\right) \cup \mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{b}_{2}\right)\right\}\right\}$
$\cup\left\{\bigcap_{\text {abco }\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+2-\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{a}_{1}\right) \cup \mathrm{C}_{\mathrm{R}}^{-}\left(\mathrm{a}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\}\right\}$
$\subseteq f_{A}^{-}(a) \cup f_{A}^{-}(c)$.
By similar way, we can show that $f_{A}^{+}(a b) \supseteq f_{A}^{+}(a) \cap$ $f_{A}^{+}(b), f_{A}^{-}(a b) \subseteq f_{A}^{-}(a) \cup f_{A}^{-}(b)$. Hence, $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$ is double-framed soft h-bi-ideal of R.

The converse of the above proposition is not true in general, as shown in the following example.

Example 28 (Yin \& Li 2008). Let R be the set of all 2×2 matrices i.e.,

$$
\mathrm{R}=\left\{\left(\left.\binom{a_{11} \ldots a_{11}}{\mathrm{a}_{12} \ldots \mathrm{a}_{22}} \right\rvert\, \mathrm{a}_{\mathrm{ij}} \in \mathbb{N}_{0} \text { (non-negative integers) }\right\}\right.
$$

then R is a hemiring with usual addition and multiplication of matrices. Let $\mathrm{Q}=\left\{\left.\binom{a \ldots 0}{0 \ldots 0} \right\rvert\, \mathrm{a} \in \mathbb{N}_{0}\right\}$, then Q is an h-quasiideal of R but not an h-ideal of R. Hence, Q is not an h-bi-ideal of R. Using Corollary 25 , the double-framed
soft characteristic function C_{Q} is a double-framed soft h-quasi-ideal but not a double-framed soft h-ideal of R. Therefore, it is not a double-framed soft h-bi-ideal of R.

DOUBLE-FRAMED SOFT SETS OF h-HEMIREGULARHEMIRINGS

In this section, well known classification of hemirings called h-hemiregular hemirings are studied. The said important notion h-hemiregular hemirings presented by Zhan and Dudek (2007) are further classified through double-framed soft h-ideals, DFS h-bi-ideals and DFS h-quasi-ideals. Several characterization theorems and results are developed by the aforementioned DFS h-ideals.

Definition 29 (Zhan \& Dudek 2007). A hemiring R is h-hemiregular if for all $x \in R$, there exist $a_{1}, a_{2}, z \in R$ such that $\mathrm{x}+\mathrm{xa}_{1} \mathrm{x}+\mathrm{z}=\mathrm{xa} \mathrm{a}_{2} \mathrm{x}+\mathrm{z}$.

Lemma 30 (Zhan \& Dudek 2007). If R is a hemiring, then the following conditions are equivalent:
(i) R is h-hemiregular hemiring.
(ii) $\overline{\mathrm{MN}}=\mathrm{M} \cap \mathrm{N}$, where M is right h-ideal and N is left h-ideal of R.

Lemma 31 (Yin \& Li 2008). If R is a hemiring, then the following conditions are equivalent:
(i) R is h-hemiregular.
(ii) $\mathrm{B}=\overline{\mathrm{BRB}}$, where B is h-bi-ideal of R .
(iii) $\mathrm{Q}=\overline{\mathrm{QRQ}}$, where Q is h-quasi-ideal of R .

Theorem 32 If R is a hemiring, then the following conditions are equivalent:
(1). R is h-hemiregular hemiring.
(2). If $f_{A}=\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$, is DFS right h-ideal and $g_{B}=$ $\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle$ is DFS left h-ideal of R , then $f_{A} \tilde{\diamond} g_{B}=f_{A}$ $\tilde{\cap} g_{B}$.
$\operatorname{Proof}(1) \Rightarrow(2)$: Let R is h-hemiregular hemiring and $f_{A}=$ $\left\langle\left(f_{A}^{+}, f_{A}^{-}\right) ; A\right\rangle$, is DFS right h-ideal and $g_{B}=\left\langle\left(g_{B}^{+}, g_{B}^{-}\right) ; B\right\rangle^{A}$ is DFS left h-ideal of R. Since $f_{A}, g_{B} \widetilde{\subseteq} C_{R}$, therefore, using Theorem 17 and Lemma 18, we have, $f_{A} \tilde{\diamond} g_{B} \widetilde{\subseteq} f_{A} \tilde{\diamond} C_{R}$ and $f_{A} \tilde{\diamond} g_{B} \widetilde{\subseteq} C_{R} \tilde{\diamond} g_{B}$. Hence, $f_{A} \tilde{\diamond} g_{B} \widetilde{\subseteq} f_{A} \tilde{\cap} g_{B}$. Now assume $x \in R$, so by hypothesis, there exist $a_{1}, a_{2}, z \in R$ such that $x+x a_{1} x+z=z a_{2} x+z$. Thus

$$
\left(f_{A}^{+} \otimes g_{B}^{+}\right)(x)=\bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap g_{B}^{+}\left(b_{1}\right) \cap g_{B}^{+}\left(b_{2}\right)\right\}
$$

$$
\supseteq \bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}\left(x a_{1}\right) \cap f_{A}^{+}\left(x a_{2}\right) \cap g_{B}^{+}(x) \cap g_{B}^{+}(x)\right\}
$$

$$
\supseteq \bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}(x) \cap f_{A}^{+}(x) \cap g_{B}^{+}(x) \cap g_{B}^{+}(x)\right\}
$$

$$
\left.=f_{A}^{+}(x) \cap g_{B}^{+}\right)(x)
$$

$$
=\left(f_{A}^{+} \tilde{\cap} g_{B}^{+}\right)(x),
$$

also,

$$
\left(f_{A}^{-} \boxtimes f_{B}^{-}\right)(x)=\bigcap_{x+b_{1}+z z a a_{2} b_{2}+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right\}
$$

$\subseteq \bigcup_{x+\left(a a_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{-}\left(x a_{1}\right) \cup f_{A}^{-}\left(x a_{2}\right) \cup g_{B}^{-}(x) \cup g_{B}^{-}(x)\right\}$
$\subseteq \bigcup_{x+\left(a_{1} b_{1}+z=\left(a_{2} b_{2}\right)+z\right.}\left\{f_{A}^{-}(x) \cup f_{A}^{-}(x) \cup g_{B}^{-}(x) \cup g_{B}^{-}(x)\right\}$
$=f_{A}^{+}(x) \cup g_{B}^{+}(x)$
$=\left(f_{A}^{+} \tilde{\cup} g_{B}^{+}(x)\right.$,
Hence, $f_{A} \tilde{\cap} g_{B} \tilde{\subseteq} f_{A} \tilde{\diamond} g_{B}$, consequently, $f_{A} \tilde{\diamond} g_{B}=f_{A} \tilde{\cap} g_{B}$.
$(2) \Rightarrow(1)$: Let A and B be any right and left h-ideals of R, respectively, then by Corollary 25 , the characteristic function C_{A} and C_{B} are DFS right h-ideal and DFS left h-ideal of R. So by hypothesis, $C_{A} \tilde{\delta} C_{B}=C_{A} \underset{\sim}{\sim} C_{B}$. Therefore, by Theorem 12, $C_{A} \tilde{\diamond} C_{B}=C_{\overline{A B}}$ and $C_{A} \tilde{\cap} C_{B}=C_{A \cap B}$ which implies that $C_{\overline{A B}}=C_{A \cap B}$, hence $\overline{A B}=A \cap B$. Thus, using Lemma 30, R is h-hemiregular hemiring.

Theorem 33 If R is a hemiring, then the following conditions are equivalent:
(1). R is h-hemiregular hemiring.
(2). $\mathrm{f}_{\mathrm{A}} \widetilde{\subseteq}_{\mathrm{f}}^{\mathrm{A}} \tilde{\delta}^{\circ} \mathrm{C}_{\mathrm{R}} \tilde{\diamond} \mathrm{f}_{\mathrm{A}}$, for every DFS h-bi-ideal $\mathrm{f}_{\mathrm{A}}=\left\langle\left(\mathrm{f}_{\mathrm{A}}^{+}, \mathrm{f}_{\mathrm{A}}^{-}\right) ; \mathrm{A}\right\rangle$ of R.
(3). $\mathrm{f}_{\mathrm{A}} \widetilde{\subseteq} \mathrm{f}_{\mathrm{A}} \tilde{\nabla} \mathrm{C}_{\mathrm{R}} \tilde{\diamond} \mathrm{f}_{\mathrm{A}}$, for every DFS h-quasi-ideal f_{A} of R .
$\operatorname{Proof}(1) \Rightarrow(2)$. Let R is -hemiregular and $\mathrm{x} \in \mathrm{R}$. Suppose f_{A} is DFS h-bi-ideal of R , there exist $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{z} \in \mathrm{R}$ such that $\mathrm{x}+\mathrm{xa}_{1} \mathrm{x}+\mathrm{z} \mathrm{xa}_{2} \mathrm{x}+\mathrm{z}$ (R being h-hemiregular). Then

$$
\begin{aligned}
& \left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{x}) \\
& =\bigcup_{\mathrm{x}+\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+z=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right)\left(\mathrm{a}_{1}\right) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right)\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& \supseteq\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right)\left(\mathrm{xa}_{1}\right) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+}\right)\left(\mathrm{xa}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})
\end{aligned}
$$

$$
=\left\{\begin{array}{c}
\left\{\bigcup_{x a_{1}+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap C_{R}^{+}\left(b_{1}\right) \cap C_{R}^{+}\left(b_{2}\right)\right\}\right\} \cap \\
\left\{\bigcup_{x_{2}+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{+}\left(a_{1}\right) \cap f_{A}^{+}\left(a_{2}\right) \cap C_{R}^{+}\left(b_{1}\right) \cap C_{R}^{+}\left(b_{2}\right)\right\}\right\} \cap f_{A}^{+}(x)
\end{array}\right\}
$$

$$
\supseteq\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{xa}_{1} \mathrm{x}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{xa}_{2} \mathrm{x}\right)\right\} \cap\left\{\mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{xa}_{2} \mathrm{x}\right)\right\} \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}),
$$

this is because, $\mathrm{xa}_{1}+\mathrm{xa}_{1} x \mathrm{xa}_{1}+\mathrm{za}_{1}=\mathrm{xa}_{2} \mathrm{xa}_{1}+\mathrm{za}_{1}$ and $\mathrm{xa}_{2}+$ $\mathrm{xa}_{1} \mathrm{xa}_{2}+\mathrm{za}_{2}=\mathrm{xa}_{2} \mathrm{xa}_{2}+\mathrm{za}_{2}$.

Therefore,
$\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{C}_{\mathrm{R}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{x}) \supseteq\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})\right\}: \mathrm{f}_{\mathrm{A}}$ being DFS h-bi-ideal $=\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})$,
also
$\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)(\mathrm{x})$
$=\bigcap_{x+\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right)+z=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z}\left\{\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right)\left(\mathrm{a}_{1}\right) \cup\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right)\left(\mathrm{a}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\}$
$\subseteq\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right)\left(\mathrm{xa} \mathrm{a}_{1}\right) \cup\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{C}_{\mathrm{R}}^{-}\right)\left(\mathrm{xa}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$
$=\left\{\begin{array}{c}\left\{\bigcap_{x a_{1}+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(a_{2}\right)\right\}\right\} \cup \\ \left\{\begin{array}{c}\left.\bigcap_{x a_{2}+\left(a_{1} b_{1},+z=\left(a_{2} b_{2} b_{2}\right)+z\right.}\left\{f_{A}^{-}\left(a_{1}\right) \cup f_{A}^{-}\left(b_{2}\right)\right\}\right\} \cup f_{A}^{-}(x)\end{array}\right\}\end{array}\right\}$
$\subseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{xa} \mathrm{a}_{1} \mathrm{x}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{xa}_{2} \mathrm{x}\right)\right\} \cup\left\{\mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{xa} \mathrm{f}_{1} \mathrm{x}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{xa}_{2} \mathrm{x}\right)\right\} \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$
$\subseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})\right\}=\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$.
$(2) \Rightarrow(3)$. This implication hold using Remark 27.
(3) $\Rightarrow(1)$. If Q is any h-quasi-ideal of R , then by Corollary 25 , the characteristic function C_{Q} is a DFS h-quasi-ideal of R.Therefore by hypothesis, $\mathrm{C}_{\mathrm{Q}} \widetilde{\subseteq} \mathrm{C}_{\mathrm{Q}} \tilde{\Delta} \mathrm{C}_{\mathrm{R}} \tilde{\sim} \mathrm{C}_{\mathrm{Q}}$. Now by Theorem 12, $\mathrm{C}_{\mathrm{Q}} \tilde{\diamond} \mathrm{C}_{\mathrm{R}} \tilde{\Delta} \mathrm{C}_{\mathrm{Q}}=\mathrm{C}_{\overline{\mathrm{QRQ}}}$. Thus, $\mathrm{C}_{\mathrm{Q}} \tilde{\subseteq}_{\mathrm{C}_{\overline{\mathrm{QRQ}}}}$ implies $\mathrm{Q} \subseteq \overline{\mathrm{QRQ}}$ and reverse inclusion hold because Q is h-quasiideal of R i.e., $\overline{\mathrm{QRQ}} \subseteq \mathrm{Q}$, which implies that $\overline{\mathrm{QRQ}}=\mathrm{Q}$. Hence by Lemma 31, is h-hemiregular.

Theorem 34 If R is a hemiring, then the following conditions are equivalent:
(1). R is h-hemiregular hemiring.
(2). $f_{A} \tilde{\cap} g_{B} \widetilde{\subseteq} f_{A} \tilde{\diamond} g_{B} \tilde{\diamond} f_{A}$, for every DFS h-bi-ideal f_{A} and every DFS h-ideal g_{B} of R.
(3). $\mathrm{f}_{\mathrm{A}} \tilde{\cap} \mathrm{g}_{\mathrm{B}} \tilde{\subseteq} \mathrm{f}_{\mathrm{A}} \tilde{\delta} \mathrm{g}_{\mathrm{B}} \tilde{\delta} \mathrm{f}_{\mathrm{A}}$, for every DFS h-quasi-ideal f_{A} and every DFS h-ideal g_{B} of R.
$\operatorname{Proof}(1) \Rightarrow(2)$. Consider R is an h-hemiregular. Suppose f_{A} is DFS h-bi-ideal and g_{B} is DFS h-ideal of R , Let $\mathrm{x} \in \mathrm{R}$, then there exist $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{z} \in \mathrm{R}$ such that $\mathrm{x}+\mathrm{xa}_{1} \mathrm{x}$. Therefore,

$$
\begin{aligned}
& \left(f_{A}^{+} \otimes g_{B}^{+} \otimes f_{A}^{+}\right)(x) \\
& =\bigcup_{x+\left(a_{1} b_{1}\right)+z=\left(a_{2} \mathrm{~b}_{2}\right)+z^{2}}\left\{\left(\mathrm{f}_{A}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right)\left(\mathrm{a}_{1}\right) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right)\left(\mathrm{a}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{1}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}\left(\mathrm{b}_{2}\right)\right\} \\
& \supseteq\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right)\left(\mathrm{xa}_{1}\right) \cap\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+}\right)\left(\mathrm{xa}_{2}\right) \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})
\end{aligned}
$$

$\supseteq\left(f_{A}^{+}(x) \cap \mathrm{g}_{B}^{+}\left(\mathrm{a}_{1} x \mathrm{a}_{1}\right) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{a}_{1} \mathrm{xa}_{2}\right)\right\} \cap\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{a}_{1} \mathrm{xa}_{2}\right) \cap\right.$ $\left.\mathrm{g}_{\mathrm{B}}^{+}\left(\mathrm{a}_{2} \mathrm{xa}_{2}\right)\right\} \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})$,
this is because, $\mathrm{xa}_{1}+\mathrm{xa}_{1} x \mathrm{a}_{1}+\mathrm{za}_{1}=\mathrm{xa}_{2} \mathrm{xa}_{1}+\mathrm{za}_{1}$ and $\mathrm{za}_{1} x \mathrm{a}_{2}$ $+\mathrm{za}_{2}=\mathrm{xa}_{2} \mathrm{xa}_{2}+\mathrm{za}_{2}$.

Therefore,
$\left(\mathrm{f}_{\mathrm{A}}^{+} \otimes \mathrm{g}_{\mathrm{B}}^{+} \otimes \mathrm{f}_{\mathrm{A}}^{+}\right)(\mathrm{x}) \supseteq\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x})\right\} \cap\left\{\mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x}) \cap \mathrm{g}_{\mathrm{B}}^{+}(\mathrm{x})\right\} \cap \mathrm{f}_{\mathrm{A}}^{+}(\mathrm{x})$
$=f_{A}^{+}(x) \cap g_{B}^{+}(x)$
$=\left(\mathrm{f}_{\mathrm{A}}^{+} \cap \mathrm{g}_{\mathrm{B}}^{+}\right)(\mathrm{x})$,
also
$\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-} \boxtimes \mathrm{f}_{\mathrm{A}}^{-}\right)(\mathrm{x})$
$=\bigcap_{x+\left(\mathrm{a}_{1} \mathrm{~b}_{1}+2 z=\left(\mathrm{a}_{2} \mathrm{~b}_{2}\right)+z\right.}\left\{\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right)\left(\mathrm{a}_{1}\right) \cup\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right)\left(\mathrm{a}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{1}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}\left(\mathrm{b}_{2}\right)\right\}$
$\subseteq\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right)\left(\mathrm{xa}_{1}\right) \cup\left(\mathrm{f}_{\mathrm{A}}^{-} \boxtimes \mathrm{g}_{\mathrm{B}}^{-}\right)\left(\mathrm{xa}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$
$=\left\{\begin{array}{c}\left\{\begin{array}{c}\left\{\bigcap_{x a_{1}+\left(a_{1} b_{1}\right)+z-\left(a_{2} b_{2} b_{2}\right)+z}\left\{f_{A}^{-}\left(a_{1}\right) \cup\left(f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right)\left(b_{2}\right)\right\}\right\} \cup\right. \\ \left\{\begin{array}{l}\bigcap_{x a_{2}+\left(a_{1} b_{1}\right)+z=\left(a_{2} b_{2}\right)+z}\left\{\left(f_{A}^{-}\left(a_{1}\right) \cup\left(f_{A}^{-}\left(a_{2}\right) \cup g_{B}^{-}\left(b_{1}\right) \cup g_{B}^{-}\left(b_{2}\right)\right\}\right.\right.\end{array}\right\} \cup f_{A}^{-}(x)\end{array}\right\}\end{array}\right.$
$\subseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}\left(\mathrm{a}_{1} \mathrm{xa}_{1}\right) \cup \mathrm{g}_{\mathrm{B}}^{-}\left(\mathrm{a}_{1} \mathrm{xa}_{2}\right)\right\} \cup\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}\left(\mathrm{a}_{1} \mathrm{xa} \mathrm{a}_{2}\right)\right.$
$\cup \mathrm{g}_{\mathrm{B}}^{-}\left(\mathrm{a}_{1} \mathrm{xa}_{2}\right) \cup \mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x})$,
$\subseteq\left\{\mathrm{f}_{\mathrm{A}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x}) \cup \mathrm{g}_{\mathrm{B}}^{-}(\mathrm{x})\right\}$
$=f_{A}^{-}(x) \cup g_{B}^{-}(x)$
$=\left(f_{A}^{-} \tilde{U} g_{B}^{-}\right)(x)$.
Hence (2) hold. (2) \Rightarrow (3). This implication can be shown simply.
(3) $\Rightarrow(1)$. Let f_{A} is any DFS h-quasi-ideal of R, since C_{R} is DFS h-ideal, so $f_{A}=f_{A} \tilde{\cap} C_{R} \subseteq f_{A} \tilde{\diamond} C_{R} \tilde{\diamond} f_{A}$. Therefore, by Theorem 33, R is an h-hemiregular.

Lemma 35 (Yin \& Li 2008). If is a hemiring, then the following conditions are equivalent:
(i) R is h-hemiregular hemiring.
(ii) Both right h-ideal M and left h-ideal N of R are idempotent and $\overline{\mathrm{MN}}$ is an h-quasi-ideal of R .

Theorem 36 If R is a hemiring, then the following conditions are equivalent:
(i) R is h-hemiregular hemiring.
(ii) If f_{A} is DFS right h-ideal and g_{B} is DFS left h-ideal, then both f_{A} and g_{B} are idempotent and $f_{A} \tilde{\diamond} g_{B}$ is a DFS h-quasi-ideal of R.
$\operatorname{Proof}(\mathrm{i}) \Rightarrow(\mathrm{ii})$. If R is h-hemiregular hemiring and f_{A} is DFS right h-ideal of R, then $f_{A} \tilde{\diamond} f_{A} \widetilde{\subseteq} f_{A} \tilde{\diamond} C_{R} \widetilde{\subseteq} f_{A}\left(f_{A}\right.$ being DFS right h-ideal: by Lemma 18). Also, by Theorem 32, $f_{A} \widetilde{\subseteq} f_{A} \tilde{\diamond} g_{B}$. Thus $f_{A}=f_{A} \tilde{\diamond} f_{A}$ implies that f_{A} is an idempotent. Similarly, g_{B} is an idempotent. Now using Theorem 32, $f_{A} \tilde{\diamond} g_{B}$ $=f_{A} \tilde{\cap} g_{B}$. Since by Theorem 26, $f_{A} \tilde{\cap} g_{B}$ is a DFS h-quasiideal of R, therefore $f_{A} \tilde{\delta} g_{B}$ is a DFS h-quasi-ideal of R.
(ii) \Rightarrow (i). Suppose A is any right h-ideal, then by Corollary $25, C_{A}$ is DFS right h-ideal of R. Therefore, by hypothesis $C_{A}=C_{A} \tilde{\Delta} C_{A}$, so by Theorem 12, $C_{A}=C_{\bar{A}}$, hence A is idempotent. Similarly, B is also idempotent. Also, $C_{A} \tilde{\diamond} C_{B}$
$=C_{\overline{A B}}$ follows that $A B$ is a DFS h-quasi-ideal of R. Hence, using Lemma 35, R is h-hemiregular hemiring.

CONCLUSION

Due to the diverse application of both hemirings and soft sets, the new investigations using soft structures in hemirings are becoming the central focus for researchers. The present research achieved another milestone in the hemiring theory by developing double-framed soft h-ideal theory in hemirings. More precisely, this research introduced double-framed soft left h-ideals, DFS right h-ideals, DFS h-bi-ideals and DFS h-quasi-ideals of hemirings. Double-framed soft including sets and characteristic double-framed soft functions are used to provide the bridge between ordinary h-ideals and doubleframed soft h-ideals of hemirings. An important class of hemirings i.e. h-hemiregular hemirings are characterized by the properties of the aforementioned double-framed soft h-ideals of hemirings which yields several characterization theorems of hemirings. The research at hand will further motivate the researcher to apply the concept of doubleframed soft sets in other algebraic structures which will ultimately be applied in various applied fields of science.

REFERENCES

Acar, U., Koyuncu, F. \& Tanay, B. 2010. Soft sets and soft rings. Comput. Math. Appl. 59: 3458-3463.
Aho, A.W. \& Ullman, J.D. 1976. Introduction to Automata Theory. Languages and Computation. Reading: Addison Wesley.
Ali, M.I., Shabir, M. \& Naz, M. 2011. Algebraic structure of soft sets associated with new operations. Comput. Math. Appl. 61: 2647-2654.
Ali, M.I., Feng, F., Min, W.K. \& Shabir, M. 2009. On some new operations in soft set theory. Comput. Math. Applic. 57: 1547-1553.
Atagun, A.O. \& Sezgin, A. 2011. Soft substructures of rings, fields and modules. Comput. Math. Appl. 61: 592-601.
Benson, D.G. 1989. Bialgebra: Some foundations for distributed and concurrent computation. Fundam. Inf. 12: 427-486.
Cagman, N. \& Enginoglu, S. 2011. FP-soft set theory and its applications. Ann. Fuzzy Math. Inform. 2: 219-226.
Çagman, N. \& Enginoglu, S. 2010a. Soft matrix theory and its decision making. Comput. Math. Appl. 59: 3308-3314.
Çagman, N. \& Enginoglu, S. 2010b. Soft set theory and uni-int decision making. Eur. J. Oper. Res. 207: 848-855.
Conway, J.H. 1971. Regular Algebra and Finite Machines. London: Chapman and Hall.
Droste, M. \& Kuich, W. 2013. Weighted definite automata over hemirings. Theoretical Computer Science 485: 38-48.
Feng, F. 2011. Soft rough sets applied to multicriteria group decision making. Ann. Fuzzy Math. Inform. 2: 69-80.
Feng, F., Liu, X.Y., Leoreanu-Fotea, V. \& Jun, Y.B. 2011. Soft sets and soft rough sets. Inform. Sci. 181: 1125-1137.
Feng, F., Jun, Y.B., Liu, X. \& Li, L. 2010. An adjustable approach to fuzzy soft set based decision making. J. Comput. Appl. Math. 234: 10-20.
Feng, F., Jun, Y.B. \& Zhao, X. 2008. Soft semirings. Comput. Math. Appl. 56: 2621-2628.

Golan, J.S. 1999. Semirings and Their Application. Dodrecht: Kluwer Academic Publication.
Hebisch, U. \& Weinert, H.J. 1998. Semirings: Algebraic Theory and Applications in the Computer Science. Singapore: World Scientific.
Henriksen, M. 1958. Ideals in semirings with commutative addition. Am. Math. Soc. Not. 6: 321.
Iizuka, K. 1959. On the Jacobson radical of a semiring. Tohoku Math. J. 11: 409-421.
Jun, Y.B. 2008. Soft BCK/BCI-algebras. Comput. Math. Applic. 56: 1408-1413.
Jun, Y.B. \& Ahn, S.S. 2012. Double-framed soft sets with applications in BCK/BCI-algebras. J. Appl. Math. p. 15.
Jun, Y.B. \& Park, C.H. 2008. Applications of soft sets in ideal theory. Inform. Sci. 178: 2466-2475.
Jun, Y.B., Muhiuddin, G. \& Al-roqi, A.M. 2013. Ideal theory of BCK/BCI-algebras based on double-framed soft sets. Appl. Math. Inf. Sci. 7(5): 1879-1887.
Jun, Y.B., Lee, K.J. \& Khan, A. 2010. Soft ordered semigroups. Math. Logic Q. 56: 42-50.
Jun, Y.B., Lee, K.J. \& Park, C.H. 2009. Soft set theory applied to ideals in d-algebras. Comput. Math. Applic. 57: 367-378.
Jun, Y.B., Lee, K.J. \& Zhan, J. 2009. Soft p-ideals of soft BCIalgebras. Comput. Math. Applic. 58: 2060-2068.
Khan, A., Izhar, M. \& Sezgin, A. 2017. Characterizations of Abel Grassmann's groupoids by the properties of double-framed soft ideals. International Journal of Analysis and Applications 15(1): 62-74.
Khan, A., Izhar, M. \& Khalaf, M.M. 2017. Double-framed soft LA-semigroups. Journal of Intelligent \& Fuzzy Systems 33(6): 3339-3353.
Khan, A., Jun, Y.B., Shah, S.I.A. \& Ali, M. 2015. Characterizations of hemirings in terms of cubic h-ideals. Soft Comput. 19: 2133-2147.
Kuich, W. \& Salomma, A. 1986. Semirings, Automata, Languages. Berlin: Springer.
Ma, X. \& Zhan, J. 2014. Characterizations of hemiregular hemirings via a kind of new soft union sets. Journal of Intelligent \& Fuzzy Systems 27: 2883-2895.
Ma, X., Zhan, J. \& Davvaz, B. 2016. Applications of soft intersection sets to hemirings via SI-h-bi-ideals and SI-h-quasi-ideals. Filomat 30(8): 2295-2313.
Maji, P.K., Roy, A.R. \& Biswas, R. 2002. An application of soft sets in a decision making problem. Comput. Math. Applic. 44: 1077-1083.
Maji, P.K., Biswas, R. \& Roy, A.R. 2003. Soft set theory. Comput. Math. Applic. 45(4-5): 555-562.
Majumdar, P. \& Samanta, S.K. 2008. Similarity measure of soft sets. New Mathematics and Natural Computation 4(1): 1-12.
Molodtsov, D. 1999. Soft set theory-First results. Comput. Math. Applic. 37(4-5): 19-31.
Molodtsov, D., Leonov, V.Y. \& Kovkov, D.V. 2006. Soft set technique and its applications. Nechetkie Sistemy i Myagkie Vychisleniya 1(1): 8-39.
Roy, A.R. \& Maji, P.K. 2007. A soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics 203: 412-418.
Sezer, A.S. 2014. A new approach to LA-semigroup theory via the soft sets. J. Intell. \& Fuzzy Syst. 26: 2483-2495.
Sezgin, A. \& Atagun, A.O. 2011. On operations of soft sets. Comput. Math. Appl. 61: 1457-1467.
Torre, D.R.L. 1965. On h-ideals and k-ideals in hemirings. Publ. Math. Debrecen. 12: 219-226.

Vandiver, H.S. 1934. Note on a simple type of algebra in which cancellation law of addition does not hold. Bull. Am. Math. Soc. 40: 914-920.
Xiao, Z., Gong, K., Xia, S. \& Zou, Y. 2010. Exclusive disjunctive soft sets. Comput. Math. Appl. 59: 2128-2137.
Yin, Y. \& Li, H. 2008. The characterizations of h-hemiregular hemirings and h-intra hemiregular hemirings. Information Sciences 178: 3451-3464.
Zhan, J. \& Maji, P.K. 2014. Applications of soft union sets to -semisimple and h-quasi-hemiregular hemirings. Hacettepe Journal of Mathematics and Statistics 43(5): 815-825.
Zhan, J. \& Jun, Y.B. 2010. Soft BL-algebras based on fuzzy sets. Comput. Math. Applic. 59: 2037-2046.
Zhan, J. \& Dudek, W.A. 2007. Fuzzy h-ideals of hemirings. Inf. Sci. 177: 878-886.
Zou, Y. \& Xiao, Z. 2008. Data analysis approaches of soft sets under incomplete information. Knowledge-Based Systems 21: 941-945.

Faiz Muhammad Khan* \& NieYufeng
Department of Applied Mathematics
School of Natural and Applied Sciences
Northwestern Polytechnical University Xi'an, Shaanxi
PR China

Hidayat Ullah Khan
Department of Mathematics
University of Malakand
Lower Dir Chakddara, KP
Pakistan

Asghar Khan
Department of Mathematics
Abdul Wali Khan University Mardan
Mardan, KP
Pakistan

Faiz Muhammad Khan
Department of Mathematics and Statistics
University of Swat, KP
Pakistan
*Corresponding author; email: faiz_zady@yahoo.com
Received: 21 February 2019
Accepted: 23 December 2019

