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Vibrational Analysis of Microtubules Embedded within Viscoelastic 
Medium using Orthotropic Kelvin like Model 

(Analisis Getaran Bermikrotubul Tertanam dalam Medium Likat Kenyal 
menggunakan Model seperti Ortotropisme Kelvin)
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ABSTRACT

Microtubules, the key components of cytoskeleton of all living cells, are important for maintaining the cell shape and 
transporting the cellular organelles. Understanding the mechanics of microtubules is very important for these functions. 
Mechanics of these components are greatly affected when they are embedded in cells. To understand the mechanical 
properties of microtubules in living cells, we developed an orthotropic-Kelvin like model and investigated the vibrational 
behavior when they are embedded in surrounding elastic medium. We considered them as orthotropic elastic shell and 
its surrounding elastic matrix as Kelvin model. We found that due to mechanical coupling of these components with the 
elastic medium, the flexural vibration is increased and radial frequencies in all modes are increased considerably while 
other vibrational modes are not affected that much.
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ABSTRAK

Mikrotubul merupakan komponen utama sita rangka bagi semua sel hidup dan adalah penting untuk mengekalkan bentuk 
sel dan membawa organel sel. Memahami mekanik mikrotubul adalah sangat penting bagi fungsi tersebut. Mekanik 
untuk komponen ini adalah sangat terkesan apabila mereka terbenam di dalam sel. Untuk memahami sifat mekanik 
mikrotubul dalam sel hidup, kami telah membangunkan model seperti Ortotropik-Kelvin dan mengkaji tingkah laku getaran 
apabila ia dibenamkan di persekitaran medium kenyal. Kami menganggap ia sebagai kelongsong kenyal Ortotropik dan 
persekitaran matrik kenyal sebagai model Kelvin. Kami telah mendapati bahawa kesan daripada gandingan mekanik 
oleh komponen ini dengan medium kenyal dan getaran lentur adalah meningkat dan frekuensi radial di dalam semua 
mod adalah meningkat dengan ketara manakala mod-mod getaran yang lain tidak begitu banyak yang terkesan.
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INTRODUCTION

Cytoplasm is present in all living cells with a complicated 
network of proteins fibers that extend throughout the 
cytoplasm from nucleus to cell membrane (Hardin 2015). 
This system of cytoskeleton of different organisms consists 
of similar proteins network. In eukaryotes, the cytoskeleton 
is a dynamic structure consists of three major proteins 
fibers, microtubules (MTs), actin-filaments (F-actin) and 
intermediate filaments (IFs) which are responsible for the 
fast growth or disassembly depends upon the requirements 
of the cell at a certain period (Chung-Davidson et al. 2010).
Among the three proteins fibers, MTs are the stiffest 
components of cytoskeleton, which are largely responsible 
for cell shape and structure to the cell (Kreider & Blumberg 
2005). Structurally, MTs are hollow cylinders with inner 
and outer diameters of 13 nm and 25 nm, respectively, 
whose length can vary from tens of nanometers to hundreds 
of microns (Feldhendler 2002). The basic structural 
units of MTs are tubulin dimmers of proteins bonded 
together longitudinally to form 13 parallel protofilaments 
(Morehouse et al. 2000; VanBuren et al. 2002).

	 The roles of the cytoskeleton MTs include mechanical 
support, organization of the cytoplasm, transport, motility 
and in helping chromosome separation (Shah et al. 1998; 
Sharma et al. 2019). In developing neurons, MTs are 
known as neurotubules and they can adapt the dynamics 
of F-Actin, another component of the cytoskeleton (Zhao 
et al. 2017). MTs play a role in movement of chromosomes 
during cell division and creation of mitotic spindle. In 
compliant with IF and F-actin, MTs are responsible for 
stabilization of the cell (Morehouse et al. 2000; Zheng 
et al. 1993). Moreover, MTs translate and act as electrical 
transmissions lines to input the information carried by 
electrophysiological impulses that enter into the brain 
cortex (Adames & Cooper 2000; Forbes et al. 2006; 
Zhang et al. 2003). MTs vibrate while performing above 
mentioned functions, therefore vibration of MTs has been 
the main topic of interest for many researchers (Leonova 
et al. 2003; Shen & Andrews 2011; Sirenko et al. 1996). 
In these studies, vibration of MTs is discussed considering 
it as free, i.e. without medium. Their results indicate that 
frequencies of vibration for different modes are less than 
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experimentally found results while MTs are in natural 
medium (Felgner et al. 1997). As mechanical properties of 
MTs are greatly affected when they embedded in the elastic 
medium (Brangwynne et al. 2006; Nogales et al. 1999), 
therefore, the mechanics of MTs, when coupled with elastic 
medium, has been the topic of numerous researchers 
during the last decade (Taj & Zhang 2012, 2011; Zhou et 
al. 2010). Wang et al. (2006), discussed the vibration of 
free MTs using orthotropic elastic shell model, because the 
longitudinal bond between tubulin dimmers along the PF is 
much stronger than the lateral bond between αβ –tubulin 
dimmers along the PF is much stronger than the lateral bond 
between the adjacent PFs (Schoutens 2005; Taj & Zhang 
2014), in particular, modulus of elasticity in longitudinal 
direction is much stronger than the circumferential and 
shear modulus by few orders of magnitude (Nogales et al. 
1999), therefore, it is suggested that instead of isotropic 
elastic shell model, it is better to use ‘orthotropic elastic 
shell model’ for MTs more accurately. Moreover, a good 
agreement has been found between ‘orthotropic elastic 
shell model’ and discrete data and experimental findings 
in the literature (Leonova et al. 2003; Shen & Andrews 
2011). Later, Taj and Zhang (2012), used the same model 
to study dispersion relation of MTs within medium using 
Pasternak model for the medium. But as we know that 
MTs are embedded in cytoplasm which is compose of 
viscous and elastic component, therefore, it is better to 
model the surrounding medium by Kelvin model (Meyers 
& Chawla). By combining orthotropic elastic shell model 
with Kelvin model, we developed ‘orthotropic elastic 
kelvin like model’ to study the vibrational behavior of 
embedded MTs.
	 Some details of orthotropic elastic shell model 
and Kelvin model are given in the next section and 
combination of these two models is used to obtain 
‘Orthotropic elastic Kelvin like model’. While in the 
subsequent section, orthotropic elastic Kelvin like model 
is used to analyze the vibration of MTs in viscoelastic 
medium and results obtained are compared to those, 
based on vibration of MTs in the free medium. Finally at 
the end, the results obtained are summarized.

METHODS

ORTHOTROPIC ELASTIC SHELL MODEL

MTs are formed by 13 parallel PFs joined together laterally. 
The basic units of these PFs are tubulin dimmers joined 
together strongly along the PF. While the bonds between  
these dimmers in lateral direction are not too much strong 
as compared with the bonds along the PF. Moreover, the 
longitudinal bond between αβ –tubulin dimmers along the 
PF is much stronger than the lateral and circumferential one 
(Van Buren & Erskine 2002). On the basis of these ideas, 
it is suggested that an orthotropic elastic shell model is 
developed to study the mechanical properties of MTs rather 
than the isotropic elastic shell model (Sirenko et al. 1996).

	 The expression for orthotropic elastic shell model 
is written by using four independent material constants, 
longitudinal modulus Ex, circumferential modulus Eθ, 
shear modulus, Gxθ and piosson ratio, vx along longitudinal 
direction (Kiyoi et al. 1999; Schoutens 2005). Other 
material constants such as Poisson ratio, vθ along 
circumferential direction, in plane stiffnesses Kx, Kθ and 
Kxθ along longitudinal, circumferential and shear direction 
and three effective bending stiffnesses Dx, Dθ and Dxθ along 
longitudinal, circumferential and shear direction can be 
written by using these material constants such as,

	

	 	 (1)

h and h0 are equivalent and effective thicknesses of cross 
section of MTs (Yang et al. 2006). Therefore, for these 
thicknesses h and h0 ‘orthotropic elastic shell model’ 
depends upon four material constants Ex, Eθ, Gxθ and vx as 
given in Table 1 for MTs.
	 Orthotropic MTs within viscoelastic medium are 
modeled by the governing equations (Pet-Soede et al. 1999) 
and (Burton & Forbes 1960)

 

(2)
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x and θ are axial and circumferential coordinates, 
respectively; u, v and w are axial, circumferential and 
radial (inward positive) deflection, respectively; ρ is the 
mass density; and r is the average radius of MTs. The other 
constants are defined as,

	 , 

	  ,  

	   and  . 	 (3)

 is longitudinal sound speed. Thus, for the 

given h and h0, the orthotropic elastic shell model for MTs 
is characterized by four parameters Ex (or SL), vx, α and β. 
Orthotropic shell model reduces to isotropic shell model 
if the parameters α and β are given by,

	 α = 1 and β = (1 – v)/2 = 0.35

KELVIN VOIGT MODEL

The Kelvin Voigt model can be represented purely by a viscous 
damper and purely elastic spring connected in parallel. 
	 For the viscoelastic medium of MTs, the model takes 
the form:

	 Px = – Ku – η 	

	 Pθ = –Kv – η 

	 Pw = – Kw – η 	 (4)

Px, Pθ, Pw are the pressures around the MTs in longitudinal, 
circumferential and radial direction, respectively, exerted 
by the surrounding viscoelastic medium. K and η are the 
elastic and viscous coefficients, respectively. The negative 
sign indicates that the pressures are in opposite to the 
vibration amplitude. The specific values of viscoelastic 

parameters, K and η are shown in Table 2 (Boykov et al. 
2004; Meyers & Chawla 1999).

ANALYSIS OF VIBRATION OF MTS IN VISCOELASTIC MEDIUM

Considering MTs as simply supported at both the ends, the 
solution of governing (2) is of the form,

	 u(x, θ, t) = U.Coskxx.Cosnθ.eiωt

	 v(x, θ, t) = V.Sinkxx.Sinnθ.eiωt

	 w(x, θ, t) = W.Sinkxx.Cosnθ.eiωt	 (5)

U, V and W represent the vibration amplitude in longitudinal, 
circumferential and radial direction respectively, kx is the 
wave vector and is the angular frequency which is related 
to frequency f by the relation, ω = 2πf.
	 On substitution of (4) and (5) in (2) we obtained the 
following algebraic equations,

{ξ – Ω2 + n2β +n2βγ + k2}U + {–nβk – nkαv1}V 
+ {–n2βγk + γk3 + kαv1}W = 0 {–nβk – nkαv1}U + 
{ξ – Ω2 + n2α + βk2 + 3βγk2}V + {–nα – 3nβγk2 – 
nγk2αv1} W = 0 {–n2βγk + hγk3 + kαv1}U + {–nα 
– 3nβγk2 – nγk2αv1}V + {ξ– Ω2 + α + αγ – 2n2αγ + 
n4αγ + 4n2βγk2 + γk4 + 2n2γρk2αv1}W = 0
	 (6)

where Ω =  is dimensionless frequency, k = rkx is 
dimensionless wave vector. Moreover,

	
  
is the nondimensional elastic and viscous parameter. The 
frequency determinant of the system (6) is of the form,

 	 H(n, k, Ω)3×3 	 (7)

H is the coefficient matrix of system (6). The nontrivial 
solution of system (6) exists for unknown U, V and W 
only when

TABLE 1. Numerical values of material constants

Parameters Symbols 		   Numerical values
Young’s modulus	
Circumferential Modulus
Shear Modulus
Poisson’s ratio in axial direction
Mass density per unit volume
Equivalent thickness
Effective thickness	

Ex
Eθ
Gxθ
vx
ρ
h
h0

0.5-2.0 Gpa
1-4 Mpa
1 Mpa

 0.3
 1.47 g/
2.7 nm
1.6 nm

Orthotropic MTs within viscoelastic medium are modeled by the governing equations (Pet-Soede et al. 1999) 
and (Burton & Forbes 1960)
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	 det[H(n, k, Ω)3×3] = 0	 (8)

	 Solving (8), one gets Ω as the function of n and k with 
elastic and viscous effect as ξ. The frequency f is calculated 
by the relation,  f = Ω

RESULTS

MTs embedded within surrounding elastic matrix 
(viscoelastic medium) are analyzed to determine the 
vibrational behavior under the influence of foundation 
parameters (elastic and viscous) E and η and the obtained 
results are summarized in the form of tables and figures 
as follows:
	 Table 3 shows the comparisons of the numerical results 
for all three modes of frequencies in longitudinal, radial and 
torsional directions for free medium and within medium 
for orthotropic microtubules.

DISCUSSION

Figure 1 shows the dispersion curves for embedded and 
free MTs between dimensionless frequencies and wave 
vector k for axisymmetric mode n = 0,when E = 4.32×104 

kg/m2s, and η = 2.538×104 kg/m2s. The minimum value of 
longitudinal frequency is 0.415613GHz, radial frequency 
is 0.414408GHz and torsional is 0.414528GHz and the 
maximum value of longitudinal frequency is 3.02849GHz, 
radial frequency is 0.425151GHz and for torsional mode 
it is 0.483036GHz, while for n = 0, E = 0 and η = 0 the 
minimum value of longitudinal, radial and torsional mode 
are 0.031635, 0.009999 and 0.00031659, respectively, 
and the maximum value of longitudinal frequency is 
3.00000GHz, radial frequency is 0.0949747GHz and for 
torsional mode it is 0.298174GHz. These results show that 
maximum eigen frequency for longitudinal and torsional 
modes, when n = 0 is not affected considerably but radial 
mode is affected with considerable amount. 

TABLE 3. Frequency modes for embedded microtubules for n=0, 1, 2, 3, 4

n=0  Free medium Within medium
Frequency Minimum Maximum  Frequency Minimum Maximum
L- mode
R- mode
T- mode

0.0316348
0.000316582

 0.009999

2.99999
0.0949747
0.298174

L- mode
R- mode
T- mode

0.415613
0.414408
0.414528

3.02849
0.425151
0.483036

n=1 Free medium Within medium
Frequency Minimum Maximum Frequency Minimum Maximum
L- mode
R- mode
T- mode

0.0447234
0.00019369
0.0331761

3.00017
0.100003
0.259947

L- mode
R- mode
T- mode

0.416814
0.414407
0.415733

3.02865
 0.426303
0.489189

n=2 Free medium Within medium
Frequency Minimum Maximum  Frequency Minimum Maximum
L- mode
R- mode
T- mode

0.0707259
0.00236568
0.0649495

3.00067
 0.113826
0.292426

L- mode
R- mode
T- mode

0.420399
 0.414414
0.419328

3.02915
0.429756
0.507195

n=3 Free medium Within medium
Frequency Minimum Maximum Frequency Minimum Maximum
L- mode
R- mode
T- mode

0.100033
0.00660
0.09540

3.0015
0.1338257

0.3397

L- mode
R- mode
T- mode

 0.42631
0.41446
0.42535

3.0299
0.4355
0.5358

n=4 Free medium Within medium
Frequency Minimum Maximum Frequency Minimum Maximum
L- mode
R- mode
T- mode

0.130434
0.0126219
0.126922

3.00267
0.157696
0.396638

L- mode
R- mode
T- mode

 0.43445
0.4146

 0.433408

 3.03113
0.443398
0.573633

TABLE 2. Viscoelastic material parameters

Parameters Symbols Numerical values
Elastic coefficient	
Viscous coefficient	

K
η

111.59±49.9 kg/ms2

55.96±38.02 kg/ms2
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FIGURE 1. Effect of elastic medium on vibration of microtubules. Dotted lines for orthotropic model and solid 
lines for orthotropic Kelvin - like model for n=0 (L: Longitudinal modes, T: Torsional modes, R: Radial modes)

For n=2 and 3 similar behavior is shown which is indicated in the figures and above tables

FIGURE 2. Effect of elastic medium on vibration of MTs. Dotted lines for orthotropic model and solid 
lines for present model for n=1 (L: Longitudinal modes, T: Torsional modes, R: Radial modes)

FIGURE 3. Effect of Elastic medium on vibration of MTs. Dotted lines for Orthotropic model and 
solid lines for present for n=2 (L: Longitudinal modes, T: Torsional modes, R: Radial modes)
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	 When n = 1 minimum value for three modes in case 
of present model are L=0.416814GHz, R=0.414407GHz 
and T= 0.415733GHz while the maximum values are 
L=3.02865GHz, R=0.426303GHz and T= 0.489189GHz 
which is different from the previous orthotropic elastic 
shell model for free microtubule especially for radial and 
circumferential modes (Figures 2-4).  

CONCLUSION

We found that the Elastic modulus (E) and viscosity 
(η) both affected radial mode more than torsional and 
longitudinal mode of vibration. This is because of the 
fact that flexural rigidity of MTs is increased with the 
coupling of surrounding matrix. It is clear from the figures 
that the dynamic behavior of the embedded MTs in the 
viscoelastic foundation is very sensitive to the foundation 
parameters. Obtained results have been evaluated against 
those available in the literature for free microtubules. Our 
theoretical and numerical results confirm the experimental 
findings by Leonova et al. (2003). Therefore, surrounding 
matrix affects the vibration of MTs during its transportation 
of cellular organelles and other functioning. So obtained 
minimum and maximum values of eigen frequencies 
are helpful in many biological problems to overcome 
malfunctioning of cell structure and other functional 
problems in cytoskeleton.
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