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ABSTRACT

Analysis and modeling of a complex physical system, particularly EEG signals involved vague and uncertain 
information. The approach introduced by Kosanovic using temporal fuzzy set to model a complex system particularly 
the EEG signal does not address the problem of uncertainty for the time of occurrence. In this paper, an ordered discrete 
Z-number is used to construct temporal discrete Z-number to assess EEG signal data of an epileptic seizure for the first 
time. The proposed temporal discrete Z-number is able to accommodate the problem of uncertainty with regards to the 
time of occurrence for a given seizure by using and modifying the method for measuring the uncertainty of Z-number.
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ABSTRAK

Pemodelan dan analisis sesuatu sistem yang kompleks, khususnya tentang kesamaran dan kebolehpercayaan 
melibatkan maklumat isyarat EEG itu sendiri. Pendekatan yang diperkenalkan oleh Kosanovic menggunakan set kabur 
temporal bagi memodelkan sesuatu sistem yang kompleks tidak menangani masalah ketidakpastian masa kejadian 
akan maklumat yang tercerap. Dalam makalah ini, nombor-Z diskret tertib digunakan bagi membina nombor-Z 
diskret temporal untuk menganalisis isyarat EEG yang tercerap ketika serangan sawan, diperkenalkan buat julung 
kalinya. Nombor-Z diskret temporal mampu menangani masalah ketidakpastian berhubung dengan pemasalahan masa 
kejadian bagi sesuatu serangan sawan dengan menggunakan pengubahsuaian yang dibuat terhadap kaedah mengukur 
ketidakpastian bagi nombor-Z. 

Kata kunci: Ketidakpastian; nombor-Z; nombor-Z diskret; set kabur; sistem dinamik

INTRODUCTION

Electroencephalography (EEG) is a method used in 
clinical studies for analyzing the electrical activity of the 
brain. It is among the available methods used to identify 
abnormalities of the brain (Fauziah 2008). In particular, 
EEG plays significant diagnostic roles in epilepsy and 
provides supporting evidence of seizure disorder 
(Sharmila & Geethanjali 2019). Hence, the analysis of 
EEG signals recorded during a seizure is crucial. 

A universal method for signal and system analysis 
using fuzzy set was introduced in Kosanovic (1996), by 
utilizing temporal fuzzy set (TFS) to model the dynamic 
motion of EEG signals. Fuzzy information space, which 
is based on the membership functions of its temporal 
fuzzy set, is then constructed by Kosanovic. However, the 
proposed concept (TFS) does not address the uncertainty 
time of occurrence. The concept of Z-number was 
introduced by Zadeh (2011) to accommodate fuzziness 
and uncertainty of information concurrently. 

A method for measuring uncertainty of fuzzy sets 
is developed (Kang et al. 2018). Kang modified Kosko’s 

work (Kosko 1990) which is a distance-based fuzziness 
measure of the fuzzy set. Moreover, using the proposed 
approach, a method for measuring uncertainty for 
Z-numbers (discrete and continuous) is constructed where 
Z-number is viewed as a unique fuzzy structure with 
inherent uncertainty.

The motivation of this study is to propose a more 
general method for assessing EEG signals based on 
Z-number and to address the issue of uncertainty with 
respect to the time of occurrence. In this paper, the concept 
of temporal discrete Z-number (TDZ) is introduced for 
the first time to model complex system, particularly to 
serve as a tool for assessing EEG signal data of epileptic 
seizures, and it has the ability to model the uncertainty 
with respect to the time of occurrence. 

PRELIMINARIES

Definition 1 (Casasnovas & Riera 2006) A fuzzy 
number A of the real line R with membership function
𝜇𝜇𝐴𝐴: ℝ ⟶ [0,1] is a discrete fuzzy number if its support 
is finite, i.e. there exist {x1, ..., xn}∈ R with x1  < x2 < ... < 
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xn, such that supp(A) = {x1, ..., xn} and there exist natural 
numbers s, t with 1 < s < t < satisfying the following 
conditions:

1.  µA(xi) = 1  for any natural number i with s < i < t

2.  µA(xi) < µA(xj) for each natural number i, j with 1 
< i < j < s

3.  µA(xi) > µA(xj) for each natural number i, j with t 
< i < j < n

Definition 2 (Mendel & John 2002) A (general) type-
2 fuzzy set E, is characterized by a type-2 membership 
function µE(x,u), where x ∈ X and 𝐽𝐽𝑥𝑥 ⊆ [0,1]: 

Definition 2 (Aliev et al. 2015) A discrete Z-number 
is an ordered pair Z = AB where A is a discrete fuzzy 
number playing a role as a fuzzy constraint on values that 
a random variable X may take:

X is A

and B is a discrete fuzzy number with a membership 
function µB : {b1, ..., bn}→[0,1], {b1, ..., bn} 𝐽𝐽𝑥𝑥 ⊆ [0,1]:   
playing the role of a fuzzy constraint on the probability 
measure of A: P(A) is B.

Definition 3 (Abdullahi et al. 2020) Let ZD be 
a discrete Z-number and let �̅�𝑍𝐷𝐷.  be a set of discrete 
Z-numbers, i.e. ZD∈ �̅�𝑍𝐷𝐷. . The pair (ZD,≺ ) is called an 
ordered discrete Z-number, if there exists a relation ≺ , 
such that (�̅�𝑍𝐷𝐷. , ≺ ) is totally ordered.

Definition 4 (Kosanovic 1996) Let (R,dR) and (M, dM) 
be metric spaces, where (M,≺ ) is linearly ordered set 
with the minimal element α0∈M and linear order≺  
Let RM be a set of all functions h: M → R. A dynamic 
system is a collection g(α, ρ, β) of the transformation 
of the space R x M, (ρ, β)∈R x M into RM,  g (., ρ, β)∈RM, 
satisfying the following conditions:

a)  g(α, ρ, α0) = ρ
b)  g(α, ρ, α0) is defined for all α0,
c)  g(α, ρ, α0) is unique, i.e.g[α2, g(α1, ρ, α0), α1]        

= g(α2, ρ, α0) for all α1, α2

d)  g(α, ρ, β) is continuous in all arguments.

Point (ρ, β)∈R x M is called an initial point. The 
function g (., ρ, β), for a fixed (ρ, β) is called a motion. 
The set of points X = {g(α, ρ, β): α∈M}, for a fixed 
(ρ, β), is called a trajectory of this motion. The set of 
ordered pairs Xα = {(v, α):v = g(α, ρ, β), α∈M} for a 

fixed (ρ, β), is called an augmented trajectory of the 
motion.

Time is one of the significant features in some 
real-world problems, which is monotonic and it is a 
fundamental aspect for modeling dynamic information 
and systems, such as in the realms of decision making, 
traffic, weather, medicine, economics, and signal 
analysis. Time has two forms of representation which are; 
time interval and time instance. Time interval represents 
the range between two points in time while time instance 
represents a point in time. Most of the temporal models 
are based on either one of these forms (Rangasamy 
2009). It was mentioned in Nagypál and Motik (2003) 
and Rangasamy (2009) that temporal information is not 
crisp, but it is uncertain and vague. 

TEMPORAL DISCRETE Z-NUMBER

Basically, a temporal discrete Z-number is a discrete 
Z-number created from a universal set whose elements are 
ordered in time. Therefore, if the universe is an ordered 
set, it may contain an ordered discrete Z-number 𝑍𝑍≺  
with corresponding membership function 𝜇𝜇𝑍𝑍≺(∙).  The 
elements in the universe S are ordered via linear ordering 
relation ≺ , where 𝜇𝜇𝑍𝑍≺(∙) = (𝜇𝜇𝐴𝐴(∙), 𝜇𝜇𝐵𝐵(∙)) , such that  µA(∙)  
and µB(∙)  are the membership functions of components 
of temporal discrete Z-number.

A family of temporal discrete Z-number is 
constructed based on the idea of temporal fuzzy set 
introduced by Kosanovic (1996), to model dynamic 
motions of complex physical systems such as EEG. 
Unlike Kosanovic’s work, this proposed structure 
addresses the issue of uncertainty time of occurrence. 
There are two approaches to the construction of temporal 
discrete Z-number. The first method is based on the 
inverse principle, which is explained as follows;

Let analyze a physical system determined by an 
ordinary differential equation 
        

(1)

where t∈T = [t0, ∞), s∈Fp and G(∙,∙)  is a real-valued 
vector function that is Lipschitz continuous on a 
rectangle Γ ⊂ 𝑇𝑇 × 𝐹𝐹𝑝𝑝.  The unique solution of equation 
(1), given initial conditions (t0, s0) is written in vector 
form as 
       
                                   st = S(t)                                       (2)

such that S(∙)  is the state space trajectory for a particular 
initial condition (t0, s0). By considering an observation 
interval T0 = (t0, t1), and utilizing the state space trajectory 
S(.), a universe of objects can be generated S* = S(T0) 
with its elements st in temporal form. Given an arbitrary 
discrete Z-number Z1∈S*, the vector function creates a 

.

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝐹𝐹(𝑠𝑠, 𝑡𝑡)   

𝐸𝐸 = {((𝑥𝑥, 𝑢𝑢), 𝜇𝜇𝐸𝐸(𝑥𝑥, 𝑢𝑢))|∀𝑥𝑥 ∈ 𝑋𝑋, ∀𝑢𝑢 ∈ 𝐽𝐽𝑥𝑥 ⊆ [0,1]}, 0 ≤ 𝜇𝜇𝐸𝐸(𝑥𝑥, 𝑢𝑢) ≤ 1. 

 
𝐸𝐸 = {((𝑥𝑥, 𝑢𝑢), 𝜇𝜇𝐸𝐸(𝑥𝑥, 𝑢𝑢))|∀𝑥𝑥 ∈ 𝑋𝑋, ∀𝑢𝑢 ∈ 𝐽𝐽𝑥𝑥 ⊆ [0,1]}, 0 ≤ 𝜇𝜇𝐸𝐸(𝑥𝑥, 𝑢𝑢) ≤ 1. 

 

,
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discrete Z-number Z2 in T0 through the inverse principle. 
Therefore, the membership function of Z2 is defined as

such that                                             and      
𝜇𝜇𝑍𝑍1 (𝑟𝑟) = (𝜇𝜇𝐴𝐴1 (𝑟𝑟), 𝜇𝜇𝐵𝐵1 (𝑟𝑟)) ∀𝑡𝑡 ∈ 𝑇𝑇0 belong to the inverse image of r, that 

isis ∀𝑡𝑡 ∈ 𝑆𝑆−1(𝑟𝑟).  The symbol ≺  means that the universe 
S* is ordered in time. The developed discrete Z-number 
Z2, created from the dynamic trajectory S* is a temporal 
discrete Z-number since the observation interval T0 is 
ordered in time.

The temporal discrete Z-number generated from 
a discrete Z-number Z1 in (S*,≺ ) can be denoted as 𝑍𝑍≺  
and Z1 is simply denoted as Z. The membership functions 
𝜇𝜇𝑍𝑍≺ (𝑡𝑡) = 𝜇𝜇𝑍𝑍(𝑠𝑠𝑡𝑡) maps the observation interval T0 into [0,1]. 
Therefore, the effect of discrete Z-number  in the state 
space trajectory S* with respect to the general dynamic 
behavior can be measured at each time instant t∈T0 with 
the membership value
      

(4)

Obviously, membership functions of temporal 
discrete Z-numbers are functions of time now. In reality, 
the state space trajectory may not be available. Therefore, 
let examine a set of feature samples S, obtained from 
different signals, e.g. EEG signal during an epileptic 
seizure, over a time interval T. Samples of S exist in a 
feature space F that describes the process. The samples 
make up a feature space trajectory that is expressed in 
terms of a vector-valued function S:T → F, is, S = S(T). 
Now, let Z be a discrete Z-number that represents a 
property, e.g. stages of seizure, and µz(s) be the degree 
of seizure for a sample s∈S. Since the elements of S 
are ordered in time, a discrete Z-number 𝑍𝑍≺  in T can be 
created as
    

(5)

for all t∈T.
The temporal discrete Z-number is constructed to 

describe the regions of attraction in a space where the 
trajectory lies, which in general, is the feature space 
F, and the feature space trajectory (S,≺ ) such as the 
potential difference, frequency, and amplitude. Any of 
these can be considered as the feature space.

The temporal discrete Z-number constructed in 
(2) is not always applicable since it does not allow the 
membership values of a temporal discrete Z-number 
to depend completely on the time variable. i.e. the 
inverse principle of creating discrete Z-numbers via 
functional maps forces 𝜇𝜇𝑍𝑍≺ (𝑡𝑡1) = 𝜇𝜇𝑍𝑍(𝑠𝑠𝑡𝑡2), whenever 
the corresponding points Z1 Z2∈F are equal. This may 

not be acceptable in all cases, e.g. time-varying dynamic 
processes. In such cases there may be points in feature 
space  that are revisited at different time instants, e.g. 
there exist 𝑀𝑀 ⊂ 𝑇𝑇, 𝑒𝑒(𝑀𝑀) > 1 ,  and there exists S∈F such 
that 𝑠𝑠 = 𝑔𝑔(𝑡𝑡), 𝑡𝑡 ∈ 𝑀𝑀 , where e(∙)  returns the cardinality 
and g is the dynamic motion. 

Therefore, a temporal discrete Z-number can be 
derived from the basic principle as follows; Let consider 
a physical process represented by its motion, (F,dF) is 
a feature space that characterizes the dynamic process. 
It is a finite-dimensional real vector space 𝐹𝐹 = ℝ𝑝𝑝   with
𝑝𝑝 ∈ ℕ and (T,dT) represents time such that T = [t0, ∞]. The 
pair  is linearly ordered set with the minimal element. 
Both (F,dF) and (T,dT) are metric spaces with the 
standard Euclidean distance function.

Using Definition 4 of a dynamic system and 
letting s = Z, such that Z = (A, B) is an ordered discrete 
Z-number and by fixing (Z0, T0)∈Q X T then the 
corresponding motion g: T → F defined as g(t) = f (t, 
Z0, T0)𝜇𝜇𝑍𝑍1 (𝑟𝑟) = (𝜇𝜇𝐴𝐴1 (𝑟𝑟), 𝜇𝜇𝐵𝐵1 (𝑟𝑟)) ∀𝑡𝑡 ∈ 𝑇𝑇0  where f (t, Z0, τ) is the dynamic system 
that generates the physical process. The set of points S 
= {g(t): t∈T} is a trajectory of this motion and the set 
𝑆𝑆𝑡𝑡 = {(𝑍𝑍, 𝑡𝑡): 𝑍𝑍 = 𝑔𝑔(𝑡𝑡), 𝑡𝑡 ∈ 𝑇𝑇}  is the augmented trajectory 
of this motion. The set  is an ordered set since (Z,t)∈St  
is linearly ordered by applying the relation < on T. 
In other words, the EEG data can be analyzed piece by 
piece or by partitioning it.

Definition 5 Let (F,dF) and (T,dT) be metric spaces, 
where (T,≺ ) such as the potential difference, frequency, 
and ampli is a linearly ordered set with a minimal element 
t0∈T. Let 𝑆𝑆𝑡𝑡 ⊂ 𝐹𝐹 × 𝑇𝑇  be an augmented trajectory of a 
dynamic motion g∈FT defined for all t∈T. The relation
≺′.  on St X St, generated by g(∙) , is called a temporal 
ordering on St, and is defined as ∀ (𝑍𝑍1, 𝑡𝑡1), (𝑍𝑍2, 𝑡𝑡2) ∈  
𝑆𝑆𝑡𝑡  (𝑍𝑍1, 𝑡𝑡1) ≺′  (𝑍𝑍2, 𝑡𝑡2) ⟺  𝑡𝑡1 ≺ t, where Z1 and Z2 are 
ordered discrete Z-numbers. For any set 𝐾𝐾t ⊆ 𝑆𝑆t,  a pair 
(Kt ,≺′. ) is said to be a temporal set on St.

Definition 6 Let St be an augmented dynamic 
trajectory with appropriate temporal ordering ≺′. Let   
(Kt,≺′. ) be a temporal set on St. A discrete Z-number in 
the universe Kt is called a temporal discrete Z-number 
and is denoted as Zt = (At, Bt). 

The following Lemma, theorem, and corollary lead 
to temporal discrete Z-numbers as a class of ordered 
discrete Z-numbers.

Lemma 1 Let St be an augmented trajectory, then 
every temporal ordering ≺′.  on St is a partial ordering on 
St.

Proof Let C be an augmented trajectory with the 
temporal ordering ≺′. . Based on Definition 5 of temporal 
ordering, the relation  ≺′.  on St x St generated by ≺′.  has 
the relation

(3)𝜇𝜇𝑍𝑍1 (𝑡𝑡) = 𝜇𝜇𝑍𝑍1 (𝑟𝑟),  𝑟𝑟 ∈ (𝑆𝑆∗, ≺) 

𝜇𝜇𝑍𝑍1 (𝑡𝑡) = (𝜇𝜇𝐴𝐴1 (𝑡𝑡), 𝜇𝜇𝐵𝐵1 (𝑡𝑡)) 𝜇𝜇𝑍𝑍1 (𝑟𝑟) = (𝜇𝜇𝐴𝐴1 (𝑟𝑟), 𝜇𝜇𝐵𝐵1 (𝑟𝑟)) ∀𝑡𝑡 ∈ 𝑇𝑇0 

𝜇𝜇𝑍𝑍≺ (𝑡𝑡) = 𝜇𝜇𝑍𝑍(𝑠𝑠𝑡𝑡) 

𝜇𝜇𝑍𝑍≺ (𝑡𝑡) = 𝜇𝜇𝑍𝑍(𝑠𝑠𝑡𝑡), 𝑠𝑠𝑡𝑡 ∈ (𝑆𝑆, ≺)  

(𝑍𝑍1, 𝑡𝑡1) ≺′  (𝑍𝑍2, 𝑡𝑡2), ⟺ 𝑡𝑡1 ≺ 𝑡𝑡2 
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Now, we want to show that its reflexive, antisymmetry 
and transitive for any (Z1, t1), (Z2, t2), (Z3, t3) ∈St for t1, 
t2 t3 ∈t.

1. Reflexive: (Z1, t1) ≺′.  (Z1, t1) is true since (T,≺ ) 
is linearly ordered.

2. Antisymmetry: Suppose (Z1, t1) ≺′.  (Z2, t2) and 
(Z2, t2) ≺′. (Z1, t1), this impliest t1

≺  t2 and t2 
≺ 𝑡𝑡1 ⟹ 𝑡𝑡1 = 𝑡𝑡2  since (T,≺ ) is linearly ordered. 
Therefore, (Z1, t1) = (Z2, t2).

3. Transitive: Suppose (Z1, t1) ≺′. (Z2, t2) and 
(Z2, t2) ≺′. (Z3, t3), this implies t1≺ t2 and 
𝑡𝑡2 ≺ 𝑡𝑡3 ⟹ 𝑡𝑡1 ≺ 𝑡𝑡3  since 𝑅𝑅𝑡𝑡 ⊆ 𝑆𝑆𝑡𝑡  is linearly 
ordered. Therefore, (Z1, t1) ≺′.  (Z3, t3)  . 

Hence the temporal ordering ≺′.  on St is a partial ordering 
on St.           

Theorem 1 Let St be an augmented trajectory, then 
every temporal ordering ≺′.  on St is linearly ordering on 
St.

Proof By lemma 1, the temporal ordering ≺′.  on St 
is a partial ordering on St. For any distinct elements of St 
i.e. (Z1, t1) ≠ (Z2, t2), then there exist g(t1) = Z1 and g(t2) =  
Z2 when t1 ≠ t2. Since (T,≺ ) is linearly ordered, then  t1≺ 
t2 or t2≺ t1. This implies that (Z1, t1) must precedes (Z2, 
t2) i.e. (Z1, t1) ≺′.  (Z2, t2) or (Z2, t2) ≺′.  (Z1, t1). Hence, the 
temporal ordering ≺′.  on St is a linearly ordering on St. 

Corollary 1 Every temporal discrete Z-number is an 
ordered discrete Z-number.

Proof By Lemma 1 and Theorem 1 the pair (St,≺′.  is linearly ordered. Furthermore, by Definition 
5 of temporal ordering ≺′. is defined as (Z1, t1) ≺′.  (Z2, 
t2) ⟺ 𝑡𝑡1 ≺ 𝑡𝑡2 ∀ (𝑍𝑍1, 𝑡𝑡1), (𝑍𝑍2, 𝑡𝑡2) ∈ 𝑆𝑆𝑡𝑡 where Z1, Z2 are 
ordered discrete Z-numbers. For any 𝑅𝑅𝑡𝑡 ⊆ 𝑆𝑆𝑡𝑡  where  
(Rt,≺ ) is a temporal set on St, which is linearly ordered. 
By Definition 6, a discrete Z-number say Z∈Rt is called 
a temporal discrete Z-number. Therefore, this means that  
it must be an ordered discrete Z-number by Definition 5. 
Hence, we can simply say that by Lemma 1, Theorem 1, 
Definition 5 and 6, every temporal discrete Z-number is 
an ordered discrete Z-number.

Therefore, the time variable t in the temporal 
discrete Z-number is tracking the changes that occurred 
in the dynamic trajectory of the motion of an EEG signal 
at different time instant or intervals. These changes 
are represented by the membership function of the 
components of temporal discrete Z-number. Moreover, the 
time variable  is not active in any calculation process, that 
is,  is only serving as a representation variable.

METHOD OF MEASURING UNCERTAINTY FOR TEMPORAL 
DISCRETE Z-NUMBER

The method of measuring uncertainty for temporal 
discrete Z-number with respect to the time of occurrence 
is proposed by utilizing the method of measuring the 
uncertainty for Z-number presented in Kang et al. (2018). 
Temporal discrete Z-number is a discrete Z-number 
created from the universe whose ordered in time, 
therefore, the measure of uncertainty for TDZ will also 
serve as the measure of uncertainty about the time of 
occurrence of that particular TDZ.

The method of measuring uncertainty for linguistic 
temporal discrete Z-number with respect to the time of 
occurrence is defined as:

Definition 7 Let 𝑍𝑍𝑡𝑡𝑖𝑖  be a temporal discrete Z-number, 
then the uncertainty measure for 𝑍𝑍𝑡𝑡𝑖𝑖  is defined as:

     

(6)

where 0 < i <  n, H(Ati)  and H(Bti)  are the restriction and 
reliability given as

            
  (7)

such that 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∩ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) = min⁡{𝐴𝐴𝑡𝑡𝑖𝑖, 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐}, and 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) = max⁡{𝐴𝐴𝑡𝑡𝑖𝑖, 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐}  
= 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) = max⁡{𝐴𝐴𝑡𝑡𝑖𝑖, 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐}  and 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) = max⁡{𝐴𝐴𝑡𝑡𝑖𝑖, 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐}  the complementary set of 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) = max⁡{𝐴𝐴𝑡𝑡𝑖𝑖, 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐} . 
The N(∙)  is the sum and 𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖    is the cardinality of the 
discrete fuzzy number. The 𝐻𝐻(𝐵𝐵𝑡𝑡𝑖𝑖)   is defined in a similar 
manner. 

The term 1−𝑥𝑥𝐵𝐵𝑡𝑡𝑖𝑖
∗  in (6) is the inherent uncertainty, 

where                                                            is the defuzzification 
of the last maxima. The = {𝑥𝑥 ∈ 𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖 |𝜇𝜇𝐵𝐵𝑡𝑡𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔(𝐵𝐵𝑡𝑡𝑖𝑖)} is the height of the 
discrete fuzzy number = {𝑥𝑥 ∈ 𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖 |𝜇𝜇𝐵𝐵𝑡𝑡𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔(𝐵𝐵𝑡𝑡𝑖𝑖)} .

IMPLEMENTATION

The implementation process of the proposed concept, i.e. 
temporal discrete Z-number to analyze EEG signal data 
of an epileptic seizure involves two stages. However, 
firstly there is a need to establish a relationship between 
temporal Z-number and type-2 temporal fuzzy set. 
Then, we can apply a Z-number clustering algorithm, 
which is introduced in Aliev and Guirimov (2018) to 
estimate the membership function of temporal discrete 
Z-number. The final stage is to calculate the measure of 
uncertainty about the time of occurrence with respect 
to the membership function of the obtained temporal 
discrete Z-numbers.

The following definitions are motivated by the 
definitions of ordered fuzzy and temporal fuzzy sets 
outlined in Kosanovic (1996).

𝐻𝐻(𝑍𝑍𝑡𝑡𝑖𝑖) = [𝐻𝐻(𝐴𝐴𝑡𝑡𝑖𝑖) + 1
2 (𝐻𝐻(𝐵𝐵

𝑡𝑡𝑖𝑖) + 1 − 𝑥𝑥𝐵𝐵𝑡𝑡𝑖𝑖
∗ )]  

𝐻𝐻(𝐴𝐴𝑡𝑡𝑖𝑖) = 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖∩𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐)+|𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖|−1
𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖∪𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐)+|𝑋𝑋𝐴𝐴t𝑖𝑖|−1

  

−𝑥𝑥𝐵𝐵𝑡𝑡𝑖𝑖
∗  = {𝑥𝑥 ∈ 𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖 |𝜇𝜇𝐵𝐵𝑡𝑡𝑖𝑖 = ℎ𝑔𝑔𝑔𝑔(𝐵𝐵𝑡𝑡𝑖𝑖)} 
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Definition 8 Let E be a type-2 fuzzy set in the 
universe P with a corresponding membership function
𝜇𝜇𝐸𝐸: 𝑃𝑃 ⟶ [0,1]. A pair (E,≺ ) is called an ordered type-2 
fuzzy set if there exists a relation ≺  such that (P,≺ )  is a 
totally ordered set.

Basically, a temporal type-2 fuzzy set is a type-2 
fuzzy set generated from a universal set whose elements 
are ordered in time.

Definition 9 Let St be an augmented dynamic 
trajectory with appropriate temporal ordering ≺′. . Let 
(Kt,≺′. )  be a temporal set on St. A type-2 fuzzy set  in the 
universe Kt is called a type-2 temporal fuzzy set which is 
denoted as Et. 

Temporal discrete Z-numbers can be represented 
by type-2 temporal fuzzy set by using and modifying the 
method of representing Z-number by a type-2 fuzzy set 
as in Aliev and Kreinovich (2017). Basically, arithmetic 
operations on Z-number (discrete or continuous) are the 
same for temporal Z-number (discrete or continuous), 
since temporal Z-numbers are Z-numbers ordered with 
time. A similar process is adopted for type-2 and type-
2 temporal fuzzy sets. Consequently, Zadeh’s extension 
principle can be applied to temporal discrete Z-numbers 
as well.

APPLY Z-NUMBER CLUSTERING ALGORITHM

In most applications, the feature space trajectory is given 
by a set of samples or feature vectors uniformly distributed 
in time. Then, the estimation for membership function 
can be addressed as a pattern recognition problem. 

The region of attraction is obtained via partitioning the 
samples of the feature space trajectory into classes. Since 
the membership function of temporal discrete Z-number 
consists of fuzziness and probability, the conventional 
soft clustering methods such as fuzzy C-means cannot 
be considered. Hence, the Z-number clustering algorithm 
based on type-2 fuzzy set in Aliev and Guirimov (2018) 
is used for the purpose.

MEASURE THE UNCERTAINTY FOR TIME OF OCCURRENCE

By using the estimated membership functions of the 
components of temporal discrete Z-number, the measure 
of uncertainty for the time of occurrence can be determined 
using (6). The method is developed for measuring the 
uncertainty for Z-numbers (discrete or continuous) in the 
first place. Since temporal discrete Z-number is a discrete 
Z-number created from a universe whose elements are 
ordered with time, therefore, the measure of uncertainty 
for temporal discrete Z-number is also served as the 
measure of uncertainty for the time of occurrence for a 
given temporal discrete Z-number. 

NUMERICAL EXAMPLE
Some of the data used in this work are obtained from 
Aliev and Guirimov (2018) to illustrate the procedure for 
analyzing the EEG signal of an epileptic seizure. The data 
is listed in Table 1. By applying the mentioned Z-number 
clustering algorithm, one is able to partition the data 
into clusters.  They are represented by the membership 
function of temporal discrete Z-number. 

TABLE 1. Fragment of EEG signal data set of seizure

xi,1 xi,1
… …
1.05 0.774906
1.10 0.822311
1.15 0.87494
1.20 0.933029
1.25 0.996711
1.30 1.066098
1.35 1.141221
1.40 1.22203
1.45 1.308371
1.50 1.399982
1.55 1.496474
… …
4 7.386384
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Firstly, in order to obtain a type-2 temporal fuzzy 
set cluster, fuzzy fuzzifier is used as shown in Figure 1.

A type-2 membership function of one of the clusters 
(cluster 2) is described in Figure 2.

The membership function of the first component 
of temporal discrete Z-number; i.e. At is obtained as a 
centroid of type-2 data-to-cluster membership function 
as shown in Figure 3.

The second component of temporal discrete 
Z-number, i.e. Bt is determined by constructing 
a probability density function using the obtained 
membership function of At. Figure 4 demonstrates the 
probability density function.

Lastly, by computing the probability measure for 
At, the membership function of Bt is constructed and 
demonstrated in Figure 5.

Supposed the membership values for At and Bt with 
respect to  dimension are represented as follows,

and 

The membership values are then used to determine 
the measure of uncertainty for Zt in  dimension with 
respect to the time of occurrence using (6). Firstly, both 
H(𝐴𝐴𝑡𝑡𝑖𝑖)  and H(𝐵𝐵𝑡𝑡𝑖𝑖)  are calculated using (7);

and 

Then, by substituting H(𝐴𝐴𝑡𝑡𝑖𝑖)  and H(𝐵𝐵𝑡𝑡𝑖𝑖)  into (6), 
the uncertainty measure of temporal discrete Z-number 
is obtained;

Analogously, the measure of uncertainty for 𝑍𝑍𝑡𝑡𝑖𝑖   
in y dimension with respect to the time of occurrence is 
determined in the same manner earlier.

𝐴𝐴𝑡𝑡 = 0 5⁄ + 0.75 6⁄ + 1 7⁄ + 0.75 8⁄ + 0 9⁄  

and  

𝐵𝐵𝑡𝑡 = 0 0.1⁄ + 0.5 0.2⁄ + 0.75 0.3⁄ + 1 0.4⁄ + 0 0.5⁄  

 

𝐴𝐴𝑡𝑡 = 0 5⁄ + 0.75 6⁄ + 1 7⁄ + 0.75 8⁄ + 0 9⁄  

and  

𝐵𝐵𝑡𝑡 = 0 0.1⁄ + 0.5 0.2⁄ + 0.75 0.3⁄ + 1 0.4⁄ + 0 0.5⁄  

 

𝐻𝐻(𝐴𝐴𝑡𝑡𝑖𝑖) = 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∩ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖| − 1
𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖| − 1 

= 0 + 0.25 + 0 + 0.25 + 0 + 5 − 1
1 + 0.75 + 1 + 0.75 + 1 + 5 − 1 

= 0.5294 

 

𝐻𝐻(𝐵𝐵𝑡𝑡𝑖𝑖) = 𝑁𝑁(𝐵𝐵𝑡𝑡𝑖𝑖 ∩ 𝐵𝐵𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖| − 1
𝑁𝑁(𝐵𝐵𝑡𝑡𝑖𝑖 ∪ 𝐵𝐵𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖| − 1 

= 0 + 0.5 + 0.25 + 0 + 0 + 5 − 1
1 + 0.5 + 0.75 + 1 + 1 + 5 − 1 

= 0.5586 

 

𝐻𝐻(𝑍𝑍𝑡𝑡𝑖𝑖) = 1
2 [𝐻𝐻(𝐴𝐴

𝑡𝑡𝑖𝑖) + 1
2 (𝐻𝐻(𝐵𝐵

𝑡𝑡𝑖𝑖) + 1 − 𝑥𝑥𝐵𝐵𝑡𝑡𝑖𝑖
∗ )] 

= 1
2 [0.5294 +

1
2 (0.5757 + 1 − 0.4)] 

= 0.5586 

 

𝐻𝐻(𝐵𝐵𝑡𝑡𝑖𝑖) = 𝑁𝑁(𝐵𝐵𝑡𝑡𝑖𝑖 ∩ 𝐵𝐵𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖| − 1
𝑁𝑁(𝐵𝐵𝑡𝑡𝑖𝑖 ∪ 𝐵𝐵𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐵𝐵𝑡𝑡𝑖𝑖| − 1 

= 0 + 0.5 + 0.25 + 0 + 0 + 5 − 1
1 + 0.5 + 0.75 + 1 + 1 + 5 − 1 

= 0.5586 

 

𝐻𝐻(𝑍𝑍𝑡𝑡𝑖𝑖) = 1
2 [𝐻𝐻(𝐴𝐴

𝑡𝑡𝑖𝑖) + 1
2 (𝐻𝐻(𝐵𝐵

𝑡𝑡𝑖𝑖) + 1 − 𝑥𝑥𝐵𝐵𝑡𝑡𝑖𝑖
∗ )] 

= 1
2 [0.5294 +

1
2 (0.5757 + 1 − 0.4)] 

= 0.5586 

 

𝐻𝐻(𝐴𝐴𝑡𝑡𝑖𝑖) = 𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∩ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖| − 1
𝑁𝑁(𝐴𝐴𝑡𝑡𝑖𝑖 ∪ 𝐴𝐴𝑡𝑡𝑖𝑖𝑐𝑐) + |𝑋𝑋𝐴𝐴𝑡𝑡𝑖𝑖| − 1 

= 0 + 0.25 + 0 + 0.25 + 0 + 5 − 1
1 + 0.75 + 1 + 0.75 + 1 + 5 − 1 

= 0.5294 

 

FIGURE 1. Fuzzy fuzzifier membership function
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FIGURE 2. Type-2 data-to-cluster membership function for 
x and y dimension of cluster 2

FIGURE 3. Membership function of At for x and y dimension

FIGURE 4. Probability density function for x and y 
dimension
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CONCLUSION

The proposed concept is introduced to serve as a tool for 
modeling dynamic motions of complex physical systems 
particularly EEG signal data of epileptic seizures. It has 
the ability to measure the uncertainty with respect to 
the time of occurrence. Finally, a numerical example is 
presented to illustrate the procedure and feasibility of 
the proposed concept. 
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