A Novel Chemometrics Method for Halal Authentication of Gelatin in Food Products
(Kaedah Baru Kemometrik untuk Pengesahan Halal Gelatin dalam Produk Makanan)

NURFARHANA HASSAN, TAHIR AHMAD*, NORHIDAYU M. ZAIN & AZMIRUL ASHAAR

ABSTRACT
The issue of halal authenticity of food and pharmaceutical products has become a concern to Muslims due to fraud and unknown sources of ingredients. The most common non-halal ingredient found in some food products and also in capsule medicine is porcine gelatin. Other sources of gelatin are bovine and fish. Numerous methods have been developed to identify between bovine, porcine, and fish gelatins due to the concern on the halal authenticity issue. Fourier transform infrared (FTIR) spectroscopy is one of the established techniques in food adulteration analysis. However, further analysis using chemometrics method is required due to the large similarities of the gelatin spectra. This paper introduces a novel chemometrics method using Fuzzy Autocatalytic Set (FACS) to determine the FTIR spectra of bovine, porcine, and fish gelatins. The unique dominant regions for these gelatins were identified. The bovine, porcine, and fish gelatins possessed different dominant region when compared to each other. The FACS method offers simple and rigorously computational procedure to differentiate bovine, porcine, and fish gelatins for halal authentication purposes.

Keywords: Chemometrics; FTIR; fuzzy graph; gelatin; halal authentication

ABSTRAK

Kata kunci: FTIR; gelatin; graf kabur; halal; kemometrik

INTRODUCTION
Halal food and beverages markets are expanded globally and their sizes are expected to increase over the coming years due to the growing demand from Muslims consumers (Tuah 2019). According to Al - Qaradawi (1994), the Quran has stated that Muslims must consume only Halal products. However, concern on halal authenticity of food and pharmaceutical products has become a rising issue due to fraud, mislabeling and unknown ingredients used in some of the products. One of the non-halal ingredients commonly found in food products is porcine gelatin. Gelatin is a protein substance that is usually used as ingredient in food products such as sweets, pastry, and dairy products (Brown 2018). It is also used in pharmaceutical industries for capsule manufacturing (Prager 2018). Gelatin is extracted from collagen of animal bone or skin. Other sources of gelatin include bovine and fish. Most major suppliers of gelatin are from non - Islamic countries, mainly European countries (Bajpai 2019). Hence, the Halal industry is concerned with the types of gelatin used in the gelatin-based product.
The sources of gelatins can be differentiated using suitable detection methods. According to Hermanto (2013), the different sources of gelatins can be differentiated through analysis on their intramolecular structures. Numerous studies have been published to identify the sources of gelatins (Hassan et al. 2018). Some of the methods that were used to differentiate the gelatins involve biochemical, chromatography, electrophoresis, and spectroscopy techniques.

Hidaka and Liu (2003) applied pH drop method to investigate the different effect of bovine and porcine gelatins on calcium phosphate precipitation. The method was able to differentiate the gelatins based on the different induction time and peak concentrations in transformation of hydroxyapatite (HAP). Other biochemical methods used by several other researchers to differentiate the gelatins include enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) (Al-Kahtani et al. 2017; Jannat et al. 2018; Venien & Levieux 2005). However, these methods are time-consuming and some processes require high end equipment (Hassan et al. 2018). Azilawati et al. (2015) applied high performance liquid chromatography (HPLC) method to differentiate between bovine, porcine, and fish gelatins. The differences between these gelatins were able to be identified with the aid of chemometrics method called principal component analysis (PCA). Several other researchers also performed HPLC with PCA method to analyze different sources of gelatins (Nemati et al. 2004; Widyaninggar et al. 2012). Another method that is used to differentiate the gelatins is sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Nur Azira et al. (2014, 2012) differentiated bovine and porcine gelatin using SDS-PAGE method described by Laemmli (1970). The method was able to differentiate the gelatins based on the differences between electrophoretic polypeptides of porcine and bovine gelatin, with the aid of PCA method to classify the gelatins according to their significant molecular weight regions. On the other hand, Cebi et al. (2016) and Hashim et al. (2010) applied FTIR spectroscopy with the aid of PCA method to identify the gelatin differences by analyzing the spectra. The FTIR spectroscopy method is proven to be an effective method in food adulteration analysis (Hashim et al. 2010). However, due to large similarities of the gelatin spectra, further analysis using chemometrics method is required to differentiate the gelatin.

In this paper, a novel chemometrics method using fuzzy graph approach namely, FACS is introduced to analyze the FTIR spectra of bovine, porcine, and fish gelatins. Dominant wavenumbers for each gelatin are identified and compared among them. This novel method is developed and introduced with an aim to differentiate between bovine, porcine, and fish gelatins for halal authentication purposes.

MATERIALS AND METHODS

SAMPLE PREPARATION

Three different gelatin samples of bovine (Sigma-Aldrich, St. Louis, MO, USA), porcine (Sigma-Aldrich, St. Louis, MO, USA), and fish (Sigma-Aldrich, St. Louis, MO, USA) were used in this study (Table 1). A total of 81 standard gelatin solutions were prepared at concentrations between 4% (w/v) and 20% (w/v) by dissolving the gelatin samples in distilled water at 45 °C for 20 min using ultrasonic bath (Fisher Scientific, Germany).

FTIR MEASUREMENT

A Spectrum Two FTIR spectrometer model (Perkin Elmer, USA) was used to obtain the gelatin spectra. The spectra of the gelatin were recorded within a range of 4000-450 cm$^{-1}$ with 4 cm$^{-1}$ resolution and 32 scans. A background spectrum was recorded before the gelatin samples measurement. The complete gelatin spectra were obtained by subtracting the background spectrum from the spectra of the gelatin. The results were presented in absorbance unit.

FACS METHOD

A novel chemometrics method using FACS was applied for analysis of chemical data obtained from the FTIR spectroscopy. The concept of FACS was introduced as a result of merger between fuzzy graph by Ahmad et al. (2010) and Autocatalytic Set (ACS) by Jain and Krishna (1998). Jain and Krishna (1998) first introduced the ACS concept to represent the dynamicity in a graph. The formal definition of ACS by Jain and Krishna (1998) is given as follows:

Definition 1 An ACS is a sub graph, each of whose nodes have at least one incoming link from a node belonging to the same sub graph.

Ahmad et al. (2010) introduced the concept of fuzziness into ACS and developed FACS defined as follows:

Definition 2 FACS is a sub graph each of whose nodes has at least one incoming link with membership value $\mu(e_i) \in [0,1]$, $\forall e_i \in E$. 

In this paper, the FACS method is used along with FTIR spectroscopy to analyze the spectra of bovine, porcine, and fish gelatins. Dominant wavenumbers for each gelatin are identified and compared among them. This novel method is developed and introduced with an aim to differentiate between bovine, porcine, and fish gelatins for halal authentication purposes.
The ACS graph can be represented in square matrix form called adjacency matrix, $C = (c_{ij})$, as shown in Figure 1. The entries, $c_{ij}$ of the matrix are equal to 1 if there is a link from $j$ to $i$, and zero otherwise. For FACS graph, the entries of the matrix are represented by the fuzzy membership values.

Chemometrics analysis using the FACS was performed by modeling the FTIR spectra of gelatins in a form FACS graph. The variables and interactions between the gelatin molecule and frequency of infrared light during the FTIR analysis are represented in a form of vertices and edges. Absorbance values at specific wavelength were described as the membership values. The FACS graph of the gelatin spectra was presented in a form of matrix and System Dynamic Variable Selection (SDVS©) by Ashaari et al. (2016) was used to compute the dominant absorbance. The difference between the gelatins was observed by determining the dominant wavenumber of each gelatin spectra.

![Figure 1. An ACS graph with 4 vertices](image)

**TABLE 1. General description of gelatin samples used in this study**

<table>
<thead>
<tr>
<th>Gelatin type</th>
<th>Company name</th>
<th>Batch no.</th>
<th>Gelatin type</th>
<th>Bloom value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gelatin bovine skin</td>
<td>Sigma</td>
<td>SLBN8199V</td>
<td>Type B</td>
<td>~225</td>
</tr>
<tr>
<td>Gelatin porcine skin</td>
<td>Sigma</td>
<td>SLBQ9498V</td>
<td>Type A</td>
<td>~300</td>
</tr>
<tr>
<td>Gelatin cold water fish skin</td>
<td>Sigma</td>
<td>SLBQ3114V</td>
<td>Solid</td>
<td>Not stated</td>
</tr>
</tbody>
</table>

**RESULTS AND DISCUSSION**

**FTIR ANALYSIS**

The FTIR spectra of bovine, porcine, and fish gelatins are shown in Figure 2. The gelatin spectra have very similar patterns with major peaks observed at four Amide regions, 3600-3200 (Amide A), 1700-1600 (Amide I), 1560-1335 (Amide II) and 1330-670 cm$^{-1}$ (Amide III).

Amide A absorption peak contains contributions from N-H stretching vibration of hydrogen bond and O-H stretch. The absorption band at Amide I region corresponds to the C=O stretching of Amide group with in-phase bending of N-H bond and minor stretching of C-N. The Amide I region is widely used for protein structural analysis due to the distinct presence of protein features at Amide I frequency (Müllertz et al. 2016). For Amide II band, the absorption arises from N-H bending and C-N stretching. At Amide III region, the band displayed low intensity peaks due to the loss of triple helix state of collagen during its denaturation to gelatin (Muyonga et al. 2004). The absorption band at the Amide III region contains contributions from N-H bending in plane and C-N stretching. Absorption bands at these Amide regions contain various information of
different functional groups within its overlapping bands. The sensitivity and capability of FTIR spectroscopy method in dealing and differentiating samples with various concentrations are also studied. As a result, the spectra of each bovine, porcine, and fish gelatin displayed a well-arranged band according to its sequence of concentrations (Figure 3). This result showed that FTIR method is sensitive and capable in differentiating samples with various concentrations.

FACS ANALYSIS

The FTIR spectra of bovine, porcine, and fish gelatins showed very similar patterns and only small differences were observed in Amide II and III regions. The gelatin spectra were converted to a form of FACS graph for further analysis (Figure 4). The set of vertices, \( V = \{v_1, v_2, v_3, \ldots, v_{n-1}, v_n\} \) represents the wavelength location while the set of edges, \( E = \{e_1, e_2, e_3, \ldots, e_{n-1}, e_n\} \) represents the transition of the molecule to the next wavelength. Absorbance values at specific wavelength were described as the membership values. Possible presence of impurities during the chemical experiment were also included in the FACS graph. The impurities were considered as ghost elements that may cause interference during absorption of light in FTIR analysis.

The spectra at Amide II and III regions were selected for further evaluation using SDVS©. The FACS graph of Amide II and Amide III regions were converted into matrix form with dimension of 16 × 16 and 26 × 26, respectively. The absorbance values and possible presence of impurities at the selected Amide wavenumbers were described as the membership value and entries of the matrix. Each matrix was evaluated using SDVS© to find the dominant matrix. The dominant matrix obtained from the SDVS© indicates the dominant wavenumbers. The differences between the gelatins were determined based on the unique and dominant wavenumber regions of each gelatin. The result of dominant wavenumbers in Amide II region is shown in Table 2. The differences between the three gelatins were observed at dominant matrix with dimension of 6 × 6 for Amide II region. The result showed that bovine gelatin spectra has unique and dominant wavenumbers at 1480-1474 cm\(^{-1}\), while porcine and fish gelatin spectra has unique and dominant wavenumbers at 1448-1441 and 1496-1490 cm\(^{-1}\), respectively. For analysis on Amide III region, the dominant wavenumbers for bovine were identified from dominant matrix of 9 x 9 while for porcine and fish, the dominant wavenumbers were identified from dominant matrix of 8 x 8 and 6 x 6, respectively. The dominant wavenumbers that were identified from the respective matrices are 1252-1249 and 1232-1228 cm\(^{-1}\) for bovine, 680-678 cm\(^{-1}\) for porcine, and 1303-1302 and 1283-1280 cm\(^{-1}\) for fish gelatin.

The unique and dominant wavenumbers for bovine, porcine, and fish gelatin spectra were successfully identified. These dominant wavenumbers indicate that there exist presence of unique and different functional groups in each bovine, fish, and non-halal porcine gelatins. In other words, each gelatin possesses its own signature and characteristics, which are different from each other.

![FIGURE 2. FTIR spectra of bovine, porcine, and fish gelatins](image-url)
FIGURE 3. Concentration-dependent FTIR spectra of a) bovine gelatin (B.G), b) porcine gelatin (P.G) and c) fish gelatin (F.G)

FIGURE 4. FACS graph of FTIR spectra of gelatin
A novel chemometrics method using FACS to determine the FTIR spectra of bovine, porcine, and fish gelatins was successfully developed and implemented. The differences between bovine, fish, and non-halal porcine gelatin were successfully identified based on the dominant wavenumbers observed for each gelatin. The three gelatins were identified to be unique and different from each other. The unique and dominant wavenumbers indicate that each of the gelatins has unique characteristic that differentiate them from each other. The FACS method offers simple and rigorously computational procedure to differentiate bovine, porcine and fish gelatin for halal authentication purposes.

ACKNOWLEDGEMENTS
This work has been supported by UTM COE GRANT, 04G05 and MyBrainSc scholarship from the Ministry of Education, Malaysia.

TABLE 2. Dominant output matrix with respective wavenumber regions for bovine, porcine and fish gelatin spectra at Amide II region

<table>
<thead>
<tr>
<th>Gelatin</th>
<th>Output Matrix</th>
<th>Wavenumber region (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine</td>
<td>0.0569 0.0569 0.0567 0.0567 0.0565 0.0563</td>
<td>1560 1559 1558 1557 1555 1554</td>
</tr>
<tr>
<td></td>
<td>0.0527 0.0523 0.0520 0.0514 0.0491 0.0484</td>
<td>1544 1543 1542 1541 1539 1538</td>
</tr>
<tr>
<td></td>
<td>0.0420 0.0413 0.0406 0.0399 0.0387 0.0379</td>
<td>1528 1527 1526 1525 1523 1522</td>
</tr>
<tr>
<td></td>
<td>0.0311 0.0307 0.0303 0.0299 0.0285 0.0272</td>
<td>1512 1511 1510 1509 1507 1506</td>
</tr>
<tr>
<td></td>
<td>0.0234 0.0236 0.0238 0.0241 0.0247 0.0250</td>
<td>1480 1479 1478 1477 1475 1474</td>
</tr>
<tr>
<td></td>
<td>0.0263 0.0264 0.0265 0.0267 0.0268 0.0268</td>
<td>1464 1463 1462 1461 1459 1458</td>
</tr>
<tr>
<td>Porcine</td>
<td>0.0586 0.0575 0.0568 0.0558 0.0548 0.0547</td>
<td>1560 1559 1558 1557 1554 1553</td>
</tr>
<tr>
<td></td>
<td>0.0492 0.0479 0.0466 0.0458 0.0471 0.0464</td>
<td>1544 1543 1542 1541 1538 1537</td>
</tr>
<tr>
<td></td>
<td>0.0413 0.0402 0.0390 0.0379 0.0356 0.0351</td>
<td>1528 1527 1526 1525 1522 1521</td>
</tr>
<tr>
<td></td>
<td>0.0296 0.0291 0.0288 0.0282 0.0270 0.0260</td>
<td>1512 1511 1510 1509 1506 1505</td>
</tr>
<tr>
<td></td>
<td>0.0251 0.0253 0.0255 0.0258 0.0254 0.0247</td>
<td>1464 1463 1462 1461 1458 1457</td>
</tr>
<tr>
<td></td>
<td>0.0242 0.0239 0.0236 0.0233 0.0226 0.0223</td>
<td>1448 1447 1446 1445 1442 1441</td>
</tr>
<tr>
<td>Fish</td>
<td>0.0549 0.0548 0.0549 0.0551 0.0551 0.0550</td>
<td>1560 1559 1558 1557 1556 1554</td>
</tr>
<tr>
<td></td>
<td>0.0513 0.0506 0.0500 0.0492 0.0483 0.0474</td>
<td>1544 1543 1542 1541 1540 1538</td>
</tr>
<tr>
<td></td>
<td>0.0420 0.0413 0.0405 0.0398 0.0391 0.0375</td>
<td>1528 1527 1526 1525 1524 1522</td>
</tr>
<tr>
<td></td>
<td>0.0309 0.0302 0.0296 0.0289 0.0281 0.0260</td>
<td>1512 1511 1510 1509 1508 1506</td>
</tr>
<tr>
<td></td>
<td>0.0230 0.0228 0.0226 0.0224 0.0223 0.0219</td>
<td>1496 1495 1494 1493 1492 1490</td>
</tr>
<tr>
<td></td>
<td>0.0230 0.0232 0.0233 0.0233 0.0233 0.0233</td>
<td>1464 1463 1462 1461 1460 1458</td>
</tr>
</tbody>
</table>

REFERENCES


Nurfarhana Hassan & Tahir Ahmad*  
Department of Mathematical Sciences  
Faculty of Science  
Universiti Teknologi Malaysia  
81310 Skudai, Johor Darul Takzim  
Malaysia

Tahir Ahmad*  
Department of Mathematical Science  
Faculty of Science  
Universiti Teknologi Malaysia  
81310 Skudai, Johor Darul Takzim  
Malaysia

Norhidayu M. Zain  
Islamic Civilization Academy  
Faculty of Social Sciences and Humanities  
Universiti Teknologi Malaysia  
81310 Skudai, Johor Darul Takzim  
Malaysia

Azmirul Ashaari  
Azmans Hashim International Business School  
Universiti Teknologi Malaysia  
81310 Skudai, Johor Darul Takzim  
Malaysia

*Corresponding author; email: tahir@ibnusina.utm.my

Received: 26 January 2020  
Accepted: 22 March 2020