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ABSTRACT

This paper presents the condition for uniqueness, the stability analysis, and the bifurcation analysis of a mathematical 
model that simulates a radiotherapy cancer treatment process. The presented model was the previous cancer treatment 
model integrated with the Caputo fractional derivative and the Linear-Quadratic with the repopulation model. The 
metric space analysis was used to establish the conditions for the presence of unique fixed points for the model, 
which indicated the presence of unique solutions. After establishing uniqueness, the model was used to simulate the 
fractionated treatment process of six cancer patients treated with radiotherapy. The simulations of the cancer 
treatment process were done in MATLAB with numerical and radiation parameters. The numerical parameters were 
obtained from previous literature and the radiation parameters were obtained from reported clinical data. The solutions 
of the simulations represented the final volumes of tumors and normal cells. Subsequently, the initial values of the model 
were varied with 200 different values for each patient and the corresponding solutions were recorded. The continuity 
of the solutions was used to investigate the stability of the solutions with respect to initial values. In addition, the value 
of the Caputo fractional derivative was chosen as the bifurcation parameter. This parameter was varied with 500 
different values to determine the bifurcation values. It was concluded that the solutions are unique and stable, hence the 
model is well-posed. Therefore, it can be used to simulate a cancer treatment process as well as to predict outcomes of 
other radiation protocols.  
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ABSTRAK

Kertas ini membentangkan syarat keunikan, analisis kestabilan, dan analisis bifurkasi terhadap model matematik 
bagi simulasi proses rawatan kanser radioterapi. Model yang digunakan adalah model rawatan kanser terdahulu 
yang disepadukan dengan terbitan pecahan Caputo dan Kuadratik-Linear dengan model populasi semula. Analisis 
ruang metrik digunakan untuk menentukan syarat-syarat kehadiran titik tetap unik untuk model, yang menunjukkan 
kehadiran penyelesaian unik. Setelah keunikan ditentukan, model ini digunakan bagi simulasi proses rawatan 
berbahagi terhadap enam pesakit kanser yang dirawat dengan radioterapi. Simulasi proses rawatan kanser dilakukan 
dalam MATLAB dengan parameter berangka dan parameter radiasi. Parameter berangka diperoleh daripada kajian 
sebelumnya dan parameter radiasi diperoleh daripada data klinikal yang dilaporkan. Penyelesaian simulasi mewakili 
isi padu tumor terakhir dan sel normal. Selanjutnya, nilai-nilai awal model telah dipelbagaikan dengan 200 nilai 
yang berbeza untuk setiap pesakit dan penyelesaian yang berpadanan direkodkan. Keselanjaran penyelesaian telah 
digunakan untuk mengkaji kestabilan penyelesaian terhadap nilai-nilai awal. Selain itu, nilai terbitan pecahan 
Caputo dipilih sebagai parameter bifurkasi. Parameter ini dipelbagaikan dengan 500 nilai yang berbeza untuk 
menentukan nilai-nilai bifurkasi. Didapati bahawa, penyelesaian adalah unik dan stabil, maka model adalah teraju 
rapi. Oleh itu, model boleh digunakan bagi simulasi proses rawatan kanser serta meramalkan hasil keputusan protokol 
radiasi yang lain. 

Kata kunci: Kuadratik-Linear; radioterapi; terbitan pecahan Caputo

INTRODUCTION

Cancer, as a result of its high mortality rate, can be regarded 
as the disease of the century. In a country like Malaysia, 
ovarian cancer is a major cause of death among women 

(Lokman et al. 2017). It was reported that lung, bowel, 
prostate, and female breast cancer were the most common 
worldwide, and about 100,000 new cases of cancer were 
detected in Malaysia between the period of 2007-2012 
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(Khalid et al. 2018). Consequently, research activities in 
cancer treatment have attracted scholars from multiple 
disciplines. Cancer treatment implies the elimination of 
cancerous cells from the body of the patient, with little or 
no damage to the normal tissues. However, the treatment 
of cancer is only possible if the cellular characteristics of 
the normal and cancerous cells are understood. 

In every living organism, the healthy development of 
such an organism is sustained by the cellular interactions 
of billions of cells and the biological signals controlling 
such interactions. Unfortunately, when such cellular 
interactions collapse as a result of a disruption in the 
biological signals, there will be an onset of uncontrolled 
proliferation of cells in the organism. This uncontrolled 
proliferation of cells activates the cancer disease in 
the organism (Nawrocki & Zubik-Kowal 2015). These 
uncontrolled cancerous cells can become invasive and 
overrun neighboring tissues, thereby forming a tumor. If 
the tumor is not treated medically, it will certainly lead to 
the death of the patient.

The clinical procedures used in treating and 
managing cancer patients include surgery, chemotherapy, 
radiotherapy, and immunotherapy. At times, two 
treatment procedures can be combined for a patient. In this 
article, the focus is only on radiotherapy. Radiotherapy is 
a very effective way of managing cancer, it can be used 
for both curative and palliative intent. It is also the most 
cost-effective because it accounts for only about 5% of 
the entire cost of treatment (Barnett et al. 2009). During 
radiotherapy, the rapidly proliferating cancerous cells in 
the cancer region are targeted and destroyed by radiation 
doses. However, these radiation doses cannot distinguish 
between cancer and normal cells during the destruction, 
therefore untargeted normal cells are also destroyed 
(Rashid et al. 2018). The elimination of cancerous cells 
is of benefit to the patient while the destruction of normal 
cells can be detrimental to the patient (Emami 2013). 
Mathematically, the treatment status can be measured 
by the population of eliminated cancer cells while the 
side-effects’ status can be measured by the population of 
destroyed normal cells. Therefore, the knowledge of the 
decline in the populations of the cells during radiotherapy is 
very significant in analyzing the status of cancer treatment. 
Consequently, in analyzing these population dynamics, 
the use of mathematical models is very useful. 

The use of mathematical models in cancer modeling 
has always taken different approaches. Some models 
addressed cancer at the molecular or cellular level while 
some used the continuum mechanics approach by treating 
the tumor as a system. This article focused on models 
applying the system approach. The pioneers of the system 
approach include Belostotski and Freedman (2005), they 
formulated a cancer treatment model based on the Lotka-
Volterra model. The model examined the dynamics and 

interaction between the normal and cancer cells under 
the effect of radiation. However, the model assumed that 
the radiation only affected the cancer cells. Subsequently, 
they modified the model by representing the effect of 
radiation on the normal cells with a perturbation constant 
(Freedman & Belostotski 2009). 

Liu and Yang (2014) further explored the modified 
model and presented a periodic cancer treatment model. 
For the periodic model, conditions for the coexistence 
of the normal and cancer cells were established. In 
addition, Dokuyucu et al. (2018) presented the fractional 
version of the model by introducing the Caputo-Fabrizio 
fractional derivatives into the cancer treatment model. The 
condition for existence and uniqueness of solutions of 
the fractional version was established. Awadalla et al. 
(2019) also presented a fractional version by introducing 
the Hadamard fractional derivative into the model and 
subsequently established the condition for the uniqueness 
of solutions for it. Although the previous researchers had 
contributed significantly to the development of the cancer 
treatment model, the model has remained descriptive and 
analytic. 

The previous models, mentioned earlier, were 
descriptive because they described the cancer treatment 
process with mathematical equations. The process 
includes the changes in the populations of the normal and 
cancer cells. The decline in the cancer cells’ population 
signifies treatment while the decline in normal cells’ 
population will indicate the extent of side effects. For 
the previous models, the existence and uniqueness 
of solutions were established. However, the proof of 
existence and uniqueness of solutions for models only 
give analytic results. Also, some of these models used 
empirical data for numerical analysis. Although showing 
the existence of unique solutions and analyzing with 
empirical data is interesting mathematically, such analytic 
results are of little or no relevance to clinicians. In other 
words, the main objective of a model is to predict the 
outcome of a process by using initial values. As regards 
to cancer treatment models, the expected outcome is the 
final populations of the normal and cancer cells, and the 
initial values are the initial populations of the cells. The 
initial population of cancer cells can be obtained from the 
initial volume of the tumors. The authors of the previous 
models failed to provide this expected outcome in their 
works, hence there exists a gap between the model and its 
use clinically. This gap was addressed in our previous work.

In our previous work (Farayola et al. 2020a, 2020b), 
an improved model was used to simulate the radiotherapy 
treatment process of cancer patients. The improved 
model was obtained by introducing the Caputo fractional 
derivative and the Linear-Quadratic with the repopulation 
model into the previous model. The improved model used 
the Caputo fractional derivative because the MATLAB code 
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FDE12.m, used for solving and simulating the fractional 
differential equation, only works with Caputo fractional 
derivative. The results of the simulations gave the final 
populations of cells, from which the final volumes of 
tumors and normal cells were obtained. However, the 
stability of the solutions was not ascertained. Also, it was 
not established if any of the model parameters causes a 
bifurcation in the stability of the solutions.      

Therefore, in this article, the integrity of solutions 
obtained from simulating the cancer treatment process 
was investigated. This was done by first establishing 
the uniqueness of solutions for the improved model. 
Secondly, the results of simulations, of the treatment 
process of cancer patients, with different initial values 
were obtained. The parameters and clinical data of the six 
cancer patients used by Farayola et al. (2020a) were used 
to obtain a solution for each patient. Thereafter, the initial 
values of each patient were varied, and the new solutions 
were recorded. Then, the stability of the solutions was 
investigated. The existence, uniqueness, and stability 
of solutions were used to determine the well-posed 
characteristic of the model.

Finally, the value of the Caputo fractional derivative 
was chosen as the bifurcation parameter. This value 
was chosen because it is the most sensitive controllable 
model parameters (Farayola et al. 2020a, 2020b). The 
bifurcation parameter was varied for each patient and 
the bifurcation value for each patient was obtained. This 
value is the point at which the stability of the solutions 
changes and the model changes either quantitatively or 
qualitatively.   

MATERIALS AND METHODS

This section presents the method of stability and 
bifurcation analysis. It contains such steps as the definition 
of differential operators, the formulated model, the model 
parameters, the proof of uniqueness, the stability of 
solutions, and the bifurcation analysis. 

DIFFERENTIAL OPERATORS

 The differential operators include the general definition of 
derivatives which covers classical derivative, integration, 
and the fractional derivative. Also defined, was the 
fractional derivative introduced by Caputo, as well as the 
fractional integral. 
Definition 1 The Grunwald fractional derivative is given 
by (1) (Wheeler 1997). The expansion of (1) gives the 
general definition of a derivative given by (2). 
    
 (1)
 

(2)

The value of m in (1) and (2), in which (2) is an 
expansion of (1), determines the class of the derivative. 
When  m  is a positive integer, then the derivative 
becomes a classical derivative with the property of 
locality. If m is a negative integer, the derivative 
becomes integral and has the property of non-locality. 
Lastly, when m  is a fraction, the derivative becomes a 
fractional derivative with the property of non-locality. 
The main advantage of the fractional derivative is its 
non-locality where the derivative covers the entire points 
in the interval, unlike classical derivatives where the 
derivative only covers a limited number of points. Since 
cancer treatment by radiotherapy is a process that covers 
several fractionated dose schedules over an interval, it is 
imperative to use the fractional derivative that takes into 
consideration all the points within the interval.

Furthermore, the question of the physical meaning 
or geometrical interpretation of fractional derivative has 
been an open problem for many years. This question 
was correctly explained by Du et al. (2013) that the 
real physical meaning of fractional derivative is that the 
fractional-order is an index or measure of the memory of 
a process. When the order is zero, nothing is memorized, 
this gives the function. But when the order is 1, nothing is 
forgotten (instantaneous change), this gives the classical or 
integer-order derivative. Many physical processes operate 
between these two extremes, for instance, viscoelastic 
materials operate between elasticity (order of zero, which 
obeys Hooke’s law) and viscosity (order of 1, which obey 
Newton’s vicious law). Therefore, a viscoelastic material 
should be modeled with a fractional-order between 0 and 
1. This explanation was corroborated with experimental 
results. Also, Du et al. (2013) showed how this fractional-
order indicates the memory pattern in biological and 
psychological processes, which was also corroborated 
with experimental results. Since the cancer treatment 
process is a biological process incorporating memory 
over an interval, then it is more correct to model it with a 
fractional derivative. In the numerical simulations done in 
this article, the interval was interpreted with 0 to T, while 
the fractional-order signifies the memory of the process. 
However, if a classical derivative was used, the interval 
will still be interpreted with 0 to T, but the memory of 
the process will be incorrect because the process is not 
instantaneous.           

There are various definitions of fractional derivatives, 
but the definition of Caputo was used in this article. 
Definition 2 The Caputo fractional derivative is given by 
(3) (Abuasad & Hashim 2018; Caputo & Fabrizio 2015)

    (3)
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Definition 3 The fractional integral of order µ  is given 
by (4) (Losada & Nieto 2015)
 
 (4)

where ( )µM is the normalization function such that 
( ) ( ) 110 == MM

The Caputo-Fabrizio fractional integral (4) was obtained 
by using the Caputo-Fabrizio fractional derivative, which 
was an exponential function of the Caputo fractional 
derivative.   

THE MATHEMATICAL MODEL

This section presents the formulated model to be 
analyzed. The cancer treatment model represents the 
biological process of radiotherapy. During radiotherapy, 
the populations of cells are affected by the proliferation of 
cells which increases their populations, the competition 
for resources between cancer and normal cells which 
reduces their populations, and the effect of radiation 
doses which also decreases their populations. After 
some days during treatment, the cancer cells will start 
repopulating which adds to the population of the cancer 
cells. The model parameters were used to represent 
the biological processes. The model variables were the 
populations of the cells and the time for treatment. The 
previous cancer treatment model and the improved 
model are given in the following subsections. 

THE PREVIOUS CANCER TREATMENT MODEL

The previous cancer treatment model assumed that 
cancer and normal cells are in the same region competing 
for body resources. Let the populations of normal and 
cancer cells be denoted by ( )tu1  and ( )tu2 , respectively, 
the model is given by (5) and (6)  (Belostotski & 
Freedman 2005; Freedman & Belostotski 2009).
   
 (5)

                        
   (6)

where 21 ,uu  are the populations of normal and cancer 
cells respectively; 21 ,αα  are the respective proliferation 
coefficients; 21 , KK  are the respective carrying capacities; 

21 ,ββ  are the respective competition coefficients; ( )tD  
is the strategy of radiotherapy; and is the perturbation 
constant.

THE IMPROVED CANCER TREATMENT MODEL

The improved model was obtained by integrating the 
Caputo fractional derivative and the Linear-Quadratic 
with the repopulation model into the previous cancer 
treatment model. The integrated Caputo fractional 
derivative gave the changes in the populations of the 
cells over the entire treatment time while the Linear-
Quadratic with the repopulation model accounted for the 
population decline of the cells as a result of radiation. 
The improved model is given by (7) and (8) (Farayola et 
al. 2020a).

  (7)

 

    (8)

where µ
T

C D0  is the Caputo fractional derivative; α  is the 
yield rate for lethal lesions;β  is the yield rate for sublethal 
lesions; dT  is the total time of treatment (number of days); 

KT  is the “kick-off” time for the repopulation of the cancer 
cells; PT  is the effective doubling time of the cancer cells; 
( )ts  is the time-varying fractionated dose rate; λ  is the 

repair time constant defined as ( )

2
1
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T

 ; T is the total time for 

radiotherapy, and 
2

1T  is the half time for repair.
The explanation of these model parameters for the cancer 
treatment process was summarised in the following 
subsection. 

THE MODEL PARAMETERS
Biologically, the two cells proliferate but the cancer 
cells proliferate much more than the normal cells. The 
proliferation rate, or coefficients, of the normal and cancer 
cells, were represented by 1α  and 2α . However, the 
proliferation of cells is bounded by the population carrying 
capacities represented by 1K  and 2K . Also, the two cells 
compete for body resources which causes a reduction in 
the populations. This was represented by the competition 
coefficients 1β and 2β . The cells’ population decay due to 
radiation was represented by the linear-quadratic with the 
repopulation model (Bertuzzi et al. 2013; Fowler 2006; 
Jones 1999; Lee et al. 1995; O’Rourke et al. 2009) with 
the appropriate radiation parameters. 

The radiation parameters include the administered 
fractionated radiation dose represented by ( )ts  measured 
in Grays (Gy), the yield rate of cells destroyed by single-
track action of radiation (lethal lesions) represented by α  
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the yield rate of cells destroyed by double-track action 
of radiation (sub-lethal lesions) represented by β , the 
repair time of sub-lethal lesions in between fractionated 
doses represented by λ , the half time for the repair 
time represented by  

2
1T , the number of days for the 

treatment represented by dT , the effective doubling time 
which determines the proliferation coefficient of cancer 
cells represented by pT , the number of days before the 
cancer cells will start repopulating represented by KT , 
and perturbation constant that accounted for the reduced 
radiation effect on the normal cells represented by ε .

In continuation, the model variables are the 
populations of the cells and the time for treatment. The time 
for treatment includes the time for the administration of a 
fractionated dose represented by t , and summation of these 
fractionated dose’s time represented by T . The populations 
of cells were represented by ( )tu1  and ( )tu2 . The initial 
populations of the cells can be obtained from the volumes 
of the tumors because 1 cm3 contains approximately 1 
billion cells (Benzekry et al. 2014). The final populations 
of cancer and normal cells are the expected solutions of 
the improved model, equation (7) and (8), which can be 
used to obtain the final volumes of the tumors and the 
normal cells. In the next sub-section, the condition for the 
uniqueness of the solution was established.  

UNIQUENESS OF SOLUTIONS

The model equations (7) and (8) were written in a 
simplified form given by (9) and (10).
    

(9)

(10)

Since (9) and (10) are similar, a general form of the 
equations given by (11) was used for the proof. 

1=iε  when 2=i                                                           (11)
where

 

Lemma 1 ( ) Xtui ∈ , ( )dX ,  is a complete metric space.
Proof In the model, final populations of the cells ( )tui  
are bounded by the carrying capacities ( ) ii Ktu ≤ . Also, 

the results of numerical simulations showed that the 
final populations, ( )tui , are uniformly continuous and 
convergent (Farayola et al. 2020a, 2020b). Since the 
populations, ( )tui , are uniformly continuous, convergent, 
and bounded. This indicates that the functions converge 
to limits in ( )dX , . Therefore, ( )dX ,  is a complete metric 
space.
Theorem 1 Let ( )dX ,  be a complete metric space and 

XXT →:  be a contraction mapping there exists 10 <≤ k  
such that   ( ) ( )2121 ,, xxkdTxTxd   for all Xxx ∈21 , . Then T  
has a unique fixed point.
The equation (11) can be written as a fixed-point equation   
Tu = u where T  is the integral operator. In this case, T   
was the fractional integral.
Hypothesis If T  has a unique fixed point Xu∈ , then (11) 
has a unique solution ( )tui  (Borisut et al. 2018). 
Proof By using (4), (12) was obtained
  

                   (12)

For simplicity, we chose a kernel, (13), to represent the 
function of ( )tu  and t in (11).

   (13)

Therefore, (12) became (14)
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By choosing L as the Lipschitz constant, the inequality 
(17) became (18)
   

(18)
  

 (19)

Let ( )
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Lipschitz constant in (20) and (21).  
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When 10 <≤ k , T has a unique fixed point u, and 
(11) has a unique solution ( )tui . Therefore, if the condition 
k  is satisfied, the model (7) and (8) will have unique 
solutions which are the final populations of the cells. In 
the next sub-section, the stability of the solutions was 
established. 

STABILITY OF SOLUTION

The stability of solutions with respect to initial values 
was ascertained by solving the model (7) and (8) with 
different initial values. The values used for the computation 
were obtained from previous literature. The values of 
the proliferation coefficients 21 ,αα , the competition 
coefficients 21 ,ββ , and the perturbation constant ε  were 

obtained from Belostotski and Freedman (2005). The 
values of radiation parameters were obtained from reported 
clinical data of six patients treated with radiotherapy. 
The obtained values were fractionated dose ( )ts and the 
radiosensitivity values βα ,  from Belfatto et al. (2016). The 
repopulation parameters KT and the rate of repopulation 
were obtained from Fowler (2006). It was assumed 
that each fractionated treatment ( )t  took 15 min and the 
summation of the fractionated times gave T .  The repair 
rate constant λ  was obtained from Bertuzzi et al. (2013). 
The initial populations of cells were obtained by scaling 
the initial tumor volumes of the six patients (Belfatto et 
al. 2016). It was assumed that the initial populations of 
normal and cancer cells were equal.

The values of the numerical values of the parameters 
were presented in Table 1. Also, Table 2 gave a summary 
of the clinical data of the patients and the scaled values 
of the initial populations of the cells. Finally, Table 3 
gave the results of each simulation of the model which 
provided the scaled final populations of the cells. The 
actual populations of cells can be obtained by multiplying 
the scaled populations by 1×1011 and when the result is 
divided by 1 billion (1×109) cells, the answer is the final 
volumes of tumors and normal cells. The simulated final 
volumes of tumors obtained from Table 3 were compared 
with the reported final volumes of the tumors in Table 
2. The results coincided with Patients 2 and 4 while 
the other patients had errors 0.01 cm3. After obtaining 
simulated results for each patient, the initial populations 
of cells for each patient were varied and the corresponding 
solutions were obtained, and the computational process 
was presented in the next subsection.
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TABLE 1. Numerical parameters

Numerical parameters Numerical values

9.7041 x 10-4

0.3396
0.0433
0.2385

1
1

0.0008
0.3

0.03

(mins) 15
(mins) 15
(days) 28

Rate of repopulation 0.6
 

1α

2α
1β

2β

1K

2K

ε
α

β

( )1−Gy  

( )2−Gy  

( )1−Gy  

( )2−Gy  

t
2

1T

KT
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TABLE 2. Clinical data of cancer patients treated with radiotherapy

Patient Initial vol. cm3 Final vol. cm3 Fractionated dose (Gy) Number of fractions Total dose (Gy) Initial pop.
1

2

3

4

5

6

24.1

17.4

28.4

18.8

30.6

12.6

3.59

8.61

5.67

4.36

5.74

6.11

2

2

1.8

1.8

1.8

1.8

25

25

25

28

28

25

50

50

45

50.4

50.4

45

0.241

0.174

0.284

0.188

0.306

0.126

TABLE 3. Radiation parameters and results of each simulation

Radiation parameters Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

s(t) 2 2 1.8 1.8 1.8 1.8
No. of fractions 25 25 25 28 28 25

T (mins) 375 375 375 420 420 375

 µ 0.1993 0.1863 0.1588 0.1532 0.1566 0.1508
 Td(days) 35 35 35 38 38 35

Initial µ1 0.241 0.174 0.284 0.188 0.306 0.126

Final µ1 0.0358 0.0861 0.0568 0.0436 0.0575 0.0612

Initial µ2 0.241 0.174 0.284 0.188 0.306 0.126

Final µ2 0.2387 0.1729 0.2817 0.1868 0.3033 0.1255

COMPUTATIONAL PROCESS

Four arrays with dimensions (200,1) were created in 
MATLAB for each patient. The first two arrays were used 
to store the different initial populations of the normal 
and cancer cells. The initial populations of cells of the 
patients were varied as follows; Patient 1 (0.231 - 0.251), 
Patient 2 (0.164 - 0.184), Patient 3 (0.274 - 0.294), Patient 
4 (0.178 - 0.198), Patient 5 (0.296 - 0.316), and Patient 6 
(0.116 - 0.316). The step size was 0.0001 in each case. The 
model, equations (7) and (8) were solved in MATLAB with 

each initial population. The Caputo fractional derivative 
in (7) and (8) was solved with the fractional differential 
equation code (FDE12.m) (Diethelm 2003; Diethelm & 
Freed 1998; Diethelm et al. 2004; Garrappa 2010; Hairer 
et al. 1985). The other parameters were left unchanged 
for each simulation. The solutions for each simulation were 
stored in the other two arrays. The process was repeated 
for each patient. Therefore, each patient had 200 solutions 
(final populations of cells). The results are presented in 
Figures 1-6.

are presented in Figures 1-6. 

  
FIGURE 1. Solutions with initial populations (0.231 - 0.251) 

 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

FIGURE 1. Solutions with initial populations (0.231 - 0.251)
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FIGURE 2. Solutions with initial populations (0.164 - 0.184) 

FIGURE 3. Solutions with initial populations (0.274 - 0.294)

 

 
FIGURE 2. Solutions with initial populations (0.164 - 0.184)  

 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 

 
FIGURE 4. Solutions with initial populations (0.178 - 0.198)   

 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

FIGURE 4. Solutions with initial populations (0.178 - 0.198)
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The results of the simulations showed the solutions 
(final populations of cells) were continuous with respect 
to initial values. This implies that the solutions obtained 
from the model (7) and (8) were stable with respect to 
initial values.   

BIFURCATION ANALYSIS

Apart from the initial values, the solutions are also 
affected by changes in the parameters. Therefore, it is 
important to perform a bifurcation analysis by choosing 

a bifurcation parameter. The bifurcation parameter is the 
one that causes a change in the stability of the solutions 
either qualitatively or quantitatively and the bifurcation 
value is the point at which the stability changes. The 
chosen bifurcation parameter was the value of the Caputo 
fractional derivative because it is the most sensitive 
controllable model factor (Farayola et al. 2020a, 2020b). 
The other parameters were not changed because the 
radiation parameters were clinical data while the numerical 
parameters depend on the type of cancer. 

FIGURE 5. Solutions with initial populations (0.296 - 0.316)

FIGURE 6. Solutions with initial populations (0.116 - 0.316)

 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 
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The bifurcation analysis was done numerically by 
simulating different solutions with different values of the 
Caputo fractional derivative. The computation was also 
done in MATLAB in a similar way as the stability analysis. 
The bifurcation parameter was changed 500 times which 
implied 500 solutions for each patient. The changes were 
as follows; Patient 1 (0.1801 - 0.2300), Patient 2 (0.1701 

- 0.2200), Patient 3 (0.1401 - 0.1900), Patient 4 (0.1401 - 
0.1900), Patient 5 (0.1401 - 0.1900), and Patient 6 (0.1401 
- 0.1900). The step size for each patient was 0.0001. The 
bifurcation values for the patients were as follows; Patient 
1 (0.2029), Patient 2 (0.2016), Patient 3 (0.1621), Patient 
4 (0.1562), Patient 5 (0.1595), and Patient 6 (0.1577). The 
results of the simulations are presented in Figures 7-12.

 

      
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

FIGURE 7. Solutions with Caputo fractional derivatives (0.1801 - 0.2300)   

FIGURE 8. Solutions with Caputo fractional derivatives (0.1701 - 0.2200)
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____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 

FIGURE 9. Solutions with Caputo fractional derivatives (0.1401 - 0.1900)

FIGURE 10. Solutions with Caputo fractional derivatives (0.1401 - 0.1900)

FIGURE 11. Solutions with Caputo fractional derivatives (0.1401 - 0.1900)
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The results showed that the bifurcation parameter 
only affected the solutions for the cancer cells. Before 
the bifurcation value, the solutions exhibited stability. 
However, after the bifurcation value, the quality of 
solutions for the cancer cells became unreliable and the 
solutions gave the final populations of cancer cells as 
approaching zero. Therefore, the model is only reliable 
qualitatively before the bifurcation values. In order 
to avoid bifurcation values, a regression equation that 
approximates good values for the Caputo fractional 
derivative was presented in our previous work (Farayola 
et al. 2020a).  

RESULTS AND DISCUSSION

The cancer treatment by radiotherapy process is aimed at 
reducing the population of cancer cells while sparing the 
normal cells. However, treatments are mostly partial and 
there is always an incomplete elimination of the cancer 
cells with an unintended elimination of some normal cells. 
The use of the improved cancer treatment model can be of 
great use because the populations of the destroyed normal 
and cancer cells can be simulated. The simulated results 
can be used to determine the expected final volumes of 
tumors and normal cells. The model was used to simulate 
the cancer treatment process of six patients with the results 
presented in Table 3. By converting the simulated final 
populations of cells in Table 3 into volumes, the final 
volumes of tumors of the patients were 3.58 cm3, 8.61 cm3, 
5.68 cm3, 4.36 cm3, 5.75 cm3, and 6.12 cm3. Also, the final 

volumes of normal cells were 23.87 cm3, 17.29 cm3, 28.17 
cm3, 18.68 cm3, 30.33 cm3, and 12.55 cm3. The simulated 
final volumes were compared with the reported clinical 
data in Table 2, and they coincided with the clinical 
data for Patients 2 and 4 while the other patients had 
an error of 0.01 cm3 each. Furthermore, the percentage 
of the destroyed cancer cells signified the mathematical 
interpretation of cancer treatment while the percentage 
of the destroyed normal cells signified the extent of side-
effects. Therefore, the model can be used to analyze the 
treatment process and predict the outcome of treatment 
protocols. However, it is also important to investigate the 
integrity of the solutions of the model.

After establishing the conditions for the uniqueness 
of solutions for the model, it is correct to conclude that 
the results from the simulations were unique solutions. 
These unique solutions were also shown to be stable with 
respect to initial values. This implied that changes in the 
initial values will not increase the errors in the output. 
Therefore, the initial populations of cells (initial volume 
of tumors) will not compromise the stability of the model. 
This analysis showed that the improved model, (7) and 
(8), is well-posed. This is because the solutions obtained 
from the model are unique and stable. As a result, the model 
can simulate a cancer treatment process and can be used to 
analyze the extent of treatment and side effects of patients.      

Furthermore, the bifurcation analysis performed 
on the most sensitive controllable model factor, which 
was the Caputo fractional derivative, showed that at 

FIGURE 12. Solutions with Caputo fractional derivatives (0.1401 - 0.1900)

 
 

____Sol1(t) final pop. of Normal cells 
____Sol2(t) final pop. of Cancer cells 
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the bifurcation values the model was no longer reliable 
qualitatively. The solutions obtained for the final volumes 
of the tumors of the patients at the bifurcation values 
were as follows;  2.06 cm3, 1.51 cm3, 3.74 cm3, 2.59 cm3, 
4.07 cm3, and 1.74 cm3. These values were not in line 
with the clinical data. After the bifurcation values, the 
model’s solutions for the final populations of cancer cells 
approached zero. Therefore, the integrity of the model 
is not guaranteed after the bifurcation values. Also, the 
bifurcation parameter did not affect the solutions of the 
normal cells.          

CONCLUSION

In this article, the improved cancer treatment model 
was presented. The presented model was formulated 
by integrating the Caputo fractional derivative and 
the Linear-Quadratic with the repopulation model into 
the previous cancer treatment model. The biological 
interpretation of the model parameters and variables were 
also presented. Thereafter, the condition for the uniqueness 
of solutions for the model was established. The model was 
then used to simulate the treatment process of six cancer 
patients treated with radiotherapy. The model parameters 
and variables were obtained from previous literature. From 
the results of the simulations, the final volumes of tumors 
and normal cells were obtained. The stability of these 
solutions with respect to initial values was ascertained.  
Furthermore, the bifurcation analysis of the model was 
done with the use of a bifurcation parameter. 

The chosen bifurcation parameter was the value of the 
Caputo fractional derivative. It was shown that the model 
exhibited stability before the bifurcation values. After 
these values, the quality of the solutions from the model 
was no longer guaranteed. Finally, it was concluded that 
the improved model is well-posed because the solutions 
are unique and stable. Therefore, the model can simulate 
a cancer treatment process and predict the outcomes of 
other radiation protocols.    
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