
Sains Malaysiana 49(11)(2020): 2871-2880
http://dx.doi.org/10.17576/jsm-2020-4911-25

Simultaneous Flow of Two Immiscible Fractional Maxwell Fluids with the Clear 
Region and Homogeneous Porous Medium

(Aliran Serentak bagi Dua Bendalir Maxwell Pecahan tak Tercampur dengan Rantau Jernih dan Medium Berliang 
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ABSTRACT

One-dimensional transient flows of two layers immiscible fractional Maxwell fluids in a rectangular channel is in-
vestigated. The studied problem is based on a mathematical model focused on the fluids with memory described by a 
constitutive equation with time-fractional Caputo derivative. The flow domain is considered two regions namely one 
clear region and another filled with a homogeneous porous medium saturated by a generalized Maxwell fluid. Semi-
analytical and analytical solutions to the problem with initial-boundary conditions and interface fluid-fluid conditions 
are determined by employing the integral transform method (the Laplace transform and the finite sine-Fourier trans-
form). Talbot’s algorithm for the numerical inversion of the Laplace transforms is employed. The memory effects and 
the influence of the porosity coefficient on the fluid motion are studied. Numerical results and graphical illustrations 
obtained using the Mathcad software are utilised to analyze the fluid behavior. The influence of the memory on the fluid 
motion is significant at the beginning of motion and it is attenuated as time passes by.

Keywords: Analytical and semi-analytical solutions; fractional Maxwell fluids; memory effects; simultaneous clear and 
porous medium; two-layered immiscible fluids

ABSTRAK

Aliran sementara satu dimensi bagi dua lapisan bendalir Maxwell pecahan yang tidak tercampur dalam saluran segi 
empat dikaji. Masalah yang dikaji berdasarkan model matematik yang berfokus pada bendalir dengan memori yang 
diperihalkan oleh persamaan juzuk dengan terbitan Caputo pecahan masa. Domain aliran dianggap dua rantau iaitu 
satu rantau jernih dan satu lagi diisi dengan medium berliang homogen yang tepu oleh bendalir Maxwell teritlak. 
Penyelesaian semi-analitik dan analitis untuk masalah dengan keadaan sempadan awal dan keadaan antara muka 
bendalir ditentukan dengan menggunakan kaedah penjelmaan kamiran (jelmaan Laplace dan jelmaan sinus-Fourier 
terhingga). Algoritma Talbot untuk songsangan berangka bagi jelmaan ‘Laplace’ digunakan. Kesan memori dan 
pengaruh pekali keliangan pada pergerakan bendalir dikaji. Hasil berangka dan ilustrasi grafik yang diperoleh 
menggunakan perisian Mathcad digunakan untuk menganalisis telatah bendalir. Pengaruh memori pada gerakan 
bendalir adalah signifikan pada awal gerakan dan ia dilemahkan apabila masa berlalu.

Kata kunci: Bendalir Maxwell pecahan; dua lapisan bendalir tak tercampur; kesan memori; penyelesaian analitik dan 
semi-analitik; serentak jernih dan medium berliang

INTRODUCTION

The study of simultaneous flow of two or more immiscible 
fluids in porous as well as in clear medium is significant 
due to its wide applications in science, medical, geophysics, 
industry, petroleum engineering, and hydrogeology (Bear 
2013; Dullien 2012; Lake 1989; Satpathi et al. 2003). 
Various applications include oil recovery, blood flow 
through capillary vessels, equipment cleaning, biofilms, and 

mucus flow in living cells, removal of carbon dioxide from 
the atmosphere, groundwater management, crude oil 
flow through pipelines, bubble generation in microfluidics 
and bubble trains flow in various complex porous systems.
Several researchers have studied the stability/instability 
of two-layer or multi-layer immiscible fluids flow (Gin & 
Daripa 2015; Papaefthymiou & Papageorgiou 2017; Ward 
et al. 2019). The linear stability of the viscoelastic two-
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layered plane Poiseuille and Couette flows have been first 
studied by Yih (1967) with the help of long-wave approach. 
He observed that both density and viscosity stratification 
can cause interfacial Kelvin-Helmholtz instability. Herve 
Le Meur (1997) has studied the uniqueness and the 
existence of the multi-layered Poiseuille/Couette fluid flow 
in pipes/channel and observed that interpolated Oldroyd 
derivative parameter and the viscosity ratios are significant 
for a unique solution. Kalogirou and Blyth (2019) have 
considered the Couette-Poiseuille flow of the two-layered 
superposed fluids to discuss stability. The fluid at the lower 
layer is populated with surfactants and these surfactants 
get adsorbed on the interface. It has been observed that if 
the thickness ratio is much higher than the fluid viscosity 
ratio and if the surfactant is sufficiently soluble, the flow 
is stable.

Kim et al. (2019) have worked on the two-layered 
immiscible Couette flow with the help of a hybrid method. 
The flow is between two parallel planes in which the 
upper plane is moving while the lower plane is kept 
stationary. It has been found that the viscosity ratio has 
strong effects on the fluid velocity than the surface energy. 
Khan et al. (2016) have investigated the heat transfer and 
the fluid velocity of the two-layer immiscible fluid in the 
presence of pressure type die. The first layer is filled with 
the inelastic fluid, namely, power-law fluid and the second 
layer are filled with the viscoelastic liquid (Phan-Thien–
Tanner fluids). It has been seen that the fluid velocity 
and the fluid temperature increase with the increase in 
the Deborah number. Other interesting results relating to 
simultaneous flow two or more fluids can be seen in Aliyu 
et al. (2017), Ashraf and Phirani (2019), Barannyk et al. 
(2015), Funahashi et al. (2018), Hisham et al. (2018), 
Joseph and Renardy (1995), Papaefthymiou et al. (2017) 
and Rauf et al. (2019).

The study of the viscoelastic fluid flows in the 
porous medium is of great interest for many industrial 
and engineering complex processes such as manufacturing 
processes of the composite materials, paper and textile 
coating, and optimization of the oil recovery. In Hansen 
et al. (2018), authors have worked on incompressible and 
simultaneous two-layered flow in a porous medium and 
have derived a set of equations which relates the seepage 
velocities of the fluid components on continuum level 
where differentiation make sense. The enhancement of 
thermal transport in Marangoni convective flows of a 
water-based hybrid nanofluid over a stretched/shrinked 
sheet has been investigated by Khashi’Ie et al. (2020). 
In their study, authors considered the presence of surface 
tension generated by the temperature gradient at the 
wall surface. Using software MATLAB, authors have 
determined dual numerical solutions for velocity and 
temperature. The influence of system parameters on the 
heat transfer and fluid motion was analyzed.

Modelling of complex systems with the fractional 
order differential and integral operators have applications 
in many fields of science such as geophysics, biology, 
demography, bioengineering, physics, and mathematics 
(Caputo & Fabrizio 2015). There exist many fractional 
differential operators in literature such as Caputo-Fabrizio 
fractional derivative (Caputo & Fabrizio 2015), Riemann-
Liouvillefractional integral/derivative (Podlubny 1999), 
Caputo fractional derivative (Caputo 1967) and Yang-
Srivastava-Machado fractional derivative (Xiao-Jun 
2016), are some of the examples of the fractional-order 
differential operators used in viscoelasticity, mass and heat 
transport processes. Hristov (2017) studied the transient 
space-fractional diffusion with power-law super diffusivity 
modelled by the Riemann-Liouville fractional derivative. 
Liu and Pan (2019) have developed a numerical algoritm 
for a class of fractional differential equations with 
variable order. Authors used the Legendre polynomial 
method for the startining solutions of the studied equations.
In this paper, we have studied the simultaneous flow of 
the two immiscible fractional Maxwell fluids between 
two parallel plates. We have divided the region between 
two parallel plates into two simultaneous layers. The 
upper layer is porous whereas the lower layer is clear 
with no porosity effect. We have considered an unsteady, 
incompressible and one dimensional fully developed 
flow which is generated by the movement of the boundary 
walls and the time-dependent pressure gradient within the 
fluid layers.

Moreover, we have considered the linear interfacial 
fluid-fluid condition between two consecutive layers. To 
find analytical solutions for velocities we have used finite 
Fourier sine transform in conjunction with the Laplace 
transformation. A semi-analytical solution for velocity 
field is recovered with the help of Laplace transform 
and Talbot’s algorithms used for the numerical Laplace 
inversion.

MATERIALS AND METHODS

BASIC CONSTITUTIVE EQUATIONS

The constitutive equation of the upper convected Maxwell 
fluid is (Malek et al. 1993).

                          (1)

where p  represents the pressure;τ represents the Cauchy 
stress tensor; I represents the unit tensor; and σ is the 
extra-stress tensor given by the equation
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In (2), v, λ, µ , ∇v, and the T  index are the velocity field, 
the relaxation time, the fluid viscosity, the velocity gradient 
tensor, and the transposition operation, respectively.

For the Maxwell fluid upper convected model, the 
generalized constitutive equation with time-fractional 
Caputo derivative is (Friedrich 1991; Hristov 2019)

( ) ( ) , 0 1Tc
tD Aα ασ λ σ λ σ σ σ µ α + + ⋅∇ − ∇ − ∇ = < ≤ v v v ,    (3)

w h e r e  t h e  C a p u t o  d e r i v a t i v e  o p e r a t o r  
( , , , ),0 1c

tD x y z tασ α< ≤  is defined as (Caputo 1967)

                 (4)
     

                                                               
 (5)

δ -being Dirac’s distribution.
It is clear from (4) and (5) that, for 1,α =  the fractional 
constitutive (3) leads to the classical constitutive (2) and 
for 0,λ =  (3) leads to the Newtonian fluid. For the one-
dimensional flow with the extra-stress tensor and the 
velocity field given by

(6)
where xe  represents the unit vector along the x-axis in the 
Cartesian coordinate system ,Oxyz  we get 

                                                            
(7)

                                                           (8)
                                                       

(9)

Let us consider a porous medium of permeability K  
saturated by a Maxwell fluid. By analogy with the 
constitutive (8), we can write the following filtration law 
as (Alishaev & Mirzadjanzade 1975; Khuzhayorov et al. 
2000; Nield 2000)

                                                             
(10)

Into (10), the velocity ,u averaged over the pore space, is 
related to Darcy’s velocity by 

                  
(11)

where ϕ  represents the porosity effects of the porous 
medium. In this work, we will consider a generalized form 
of the filtration law (10), namely (Govindarajan 2004)

                                                     
(12)

Generally, the fractional parameters corresponding 
to the shear stress, respectively to the filtration law are 
different. To simplify calculations, in this paper we 
considered these parameters equal.
 The local volume-average balance of linear momentum 
is given by (Vafai & Tien 1981; Xue & Nie 2008)

                                                   
  (13)

where r  represents the Darcy’s resistance.
 It has been observed that the pressure gradient p

x
∂
∂

 
given by (12) can be considered as a measure of the same 
flow resistance in the porous medium bulk (Khuzhayorov 
et al. 2000). Moreover, Darcy’s resistance r  in (13) is as 
well in effect a flow resistance measure caused by the solid 
matrix, from (12) we have

                                                         
(14)

 

Neglecting the pressure gradient p
x
∂
∂

 in the direction of the 
flow, (13) and (14) lead to the following equation of the 
linear momentum:

      
(15)

For a clear fluid (r=0) and zero pressure gradient p
x
∂
∂  

in 

the direction of the flow, (14) leads to the flow equation
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FIGURE 1. Flow geometry
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MATHEMATICAL MODELING

Let us consider the flow of an upper convected Maxwell 
fluid with generalized constitutive equation between 
two horizontal parallel impermeable plates situated in 
the plane 0,y =  respectively y h=  of the coordinate 
system .Oxyz  The clear generalized Maxwell fluid flows 
in the layer 00 y h h≤ ≤ ≤ . A porous layer of thickness 

0h h−  is attached to the upper plate and is saturated by a 
generalized Maxwell fluid (Figure 1 with non-dimensional 
parameters). At the instant 0,t =  both plates and the fluid 
are at rest. In this work, we investigate flows with the 
velocity field ( , ) ( , ) xy t u y t=v e  generated by the motion 
of the plate 0.y =  The governing equations of the fluid 
flow are given by Xue and Nie (2008)
For clear fluid region, 0[0, ]y h∈
             

 (17)

For porous medium region, 0[ , ]y h h∈

               (18)

Along with (17) and (18), the following initial and 
boundary conditions are considered:

              (19)
            

  (20)
            

  (21)

Using the following dimensionless quantities
       

      

(22)

Equations (17)-(21) become (neglecting the notation ̀ `*”)
                                            

 (23)
             

 (24)
             

 (25)
             

  (26)
            

  (27)

SOLUTION OF THE PROBLEM

Taking the Laplace transform to (23), (24), (26), (27) and 
using the initial conditions (25), we get
              

(28)
               

 (29)
             

  (30)
            

 (31)

where 
0

( , ) ( , ) stG y s G y t e dt
∞ −= ∫  denotes the Laplace transform 

of the function ( , )G y t .

SEMI-ANALYTICAL SOLUTION

The generic solution of (28) and (29) are
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It is not easy to apply the analytic method to 
compute the inverse Laplace transform of (32)-(35), 
since complicated expressions are involved in these 
equations. To overcome this issue, we have used two 
accuracy numerical algorithms, namely the improved 
Talbot algorithm (Dingfelder & Weideman 2015) and 
the fixed Talbot algorithm (Abate & Valko 2004) for 
the computation of the numerical inversion of Laplace 
transform.
Let 

0
( , ) ( , ) stG y s G y t e dt

∞ −= ∫ .  The Talbot algorithm 

(Bracewell 2000) for the Laplace transform inversion of 
the function ( , )G y s  is
                     

(36)

where
             

 (37)

Another method to approximate the function ( , )G y t  is 
the improved Talbot algorithm for the inverse Laplace 
transform and is given by (Lorenzo & Hartley 1999)
            

  (38) 

where
             

(39)

Here , , , ,Mα ν µ ξ  are parameters to be specified by 
the user.

ANALYTICAL SOLUTION FOR THE VELOCITY

To find the exact solution of velocities ( , )u y t  and ( , )v y t  
we will use the finite Fourier sine transform along with the 
Laplace transform. 
The finite Fourier sine transform of the function

( , ), , ,ϕ ≤ ≤ <y s a y b a b   is defined as (Russell & Charles 
1959)
           

  (40)

along with the inverse Fourier transform defined by
         

      (41)

With the application of finite Fourier sine transform (40) 
to (28) and (29) along with the boundary conditions (30) 

and (31), the transformed velocities take the form
              

(42)
            

 

(43)

Velocity function (42) can be written in equivalent form as
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Considering the following pair functions 1( )yψ  and 2 ( )yψ  
along with their inverse Fourier sine transform
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and taking the inverse Fourier sine transform to (45) we get
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where
            

 (51)

For the inverse Laplace transforms of the functions 
( , ), ( , )u y s v y s  and 0 0( , ) ( , )u d s v d s= we consider the 

following auxiliary functions,

           

    (52)

      
       

(53)

The generalized G-Lorenzo-Hartley function is defined by 
Lorenzo and Hartley (1999)

            (54)

The inverse Laplace transform of 1 ( )mH s  and 2 ( )mH s  takes 
the form

             (55)
             

(56)

where ( )tδ  is Dirac delta function.
Using (46), (49), (55) and (56), we can write the expressions 
for velocities ( , ), ( , )u y t v y t  as:
            

 

(57)                
       

(58)

w h e r e  
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0 0( , ) ( , )u d t v d t=  is given by              

                                                                            ,                (59)

where ( )A t  i s  an auxi l iary funct ion such that 
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FIGURE 2. The profiles of velocity for small values of the time t
and for different values of the fractional parameterα
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FIGURE 4. The profiles of the kernel ( , ) , [0,1]
(1 )
th t

α

α α
α

−

= ∈
Γ −  for 

different values of the time

FIGURE 3. The profiles of velocity for large values of the time t  
and for various values of the fractional parameterα
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NUMERICAL RESULTS AND DISCUSSION

Simultaneous one-dimensional flow of two layers 
unsteady immiscible generalized Maxwell fluids over a 
rectangular channel have been investigated. In a Cartesian 
coordinate system, the rectangular channel is determined 
by two parallel plates situated at 0y = , respectively, y h=
The plane wall at 0y =  has a translatory motion with 
velocity 0 1 0(0, ) ( ), 0= >u t U f t U  being a continuum function 
of exponential order to infinity and 1(0) 0f = . The plate at 
plane y h=  is at rest.

In this problem, the generalization consists into 
consideration of the fractional constitutive equation of 
Maxwell fluids based on Caputo time-fractional derivative.  

It is clear from the constitutive (8) that the shear 
stress xyσ is given by

therefore, the history of the velocity gradient influences 
the shear stress. Such type of flow is the so-called flow 
with memory.

In the flow channel have been considered two regions, 
namely the clean region 0[0, ]y d∈ , in which flows a 

fractional Maxwell fluid and the region 0[ , ]y d d∈ , filled 
with a porous medium saturated by another fractional 
Maxwell fluid. On the solid boundaries, the no-slip 
condition is considered, while at the fluid-fluid interface 

0y d= , the velocity and shear stress are considered 
continuous.

Semi-analytical solutions of the problem with initial, 
boundary and interface conditions have been determined 
by employing the Laplace transform along with the Talbot 
algorithms for the numerical inverse Laplace transforms. 
Using finite sine-Fourier transform and Laplace transform, 
the analytical solutions of the same problem have been 
determined. 

To study the influence of shear stress dumping and 
the porous medium on the fluid velocity we have analyzed 
the particular case in which the motion of the bottom plate 
is an oscillation motion with the dimensionless velocity 

(0, ) cos( ) 1u t t= − . The flows regions are determined by 
0 0.4d = and 0.8d = .

 The dimensional parameters used in this study are 
0 00.05( ), 0.025( ), 0.008( / ), 0.5, 0.0005.h m h m U m s λ ν= = = = =  

Numerical results presented in Figures 2 to 5 were obtained 

FIGURE 5. The profiles of velocity for 0.5α =  and different values 
of the porosity parameter .γ

. 
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fractional Maxwell fluid and the region 0[ , ]y d d∈ , filled 
with a porous medium saturated by another fractional 
Maxwell fluid. On the solid boundaries, the no-slip 
condition is considered, while at the fluid-fluid interface 

0y d= , the velocity and shear stress are considered 
continuous.

Semi-analytical solutions of the problem with initial, 
boundary and interface conditions have been determined 
by employing the Laplace transform along with the Talbot 
algorithms for the numerical inverse Laplace transforms. 
Using finite sine-Fourier transform and Laplace transform, 
the analytical solutions of the same problem have been 
determined. 

To study the influence of shear stress dumping and 
the porous medium on the fluid velocity we have analyzed 
the particular case in which the motion of the bottom plate 
is an oscillation motion with the dimensionless velocity 

(0, ) cos( ) 1u t t= − . The flows regions are determined by 
0 0.4d = and 0.8d = .

 The dimensional parameters used in this study are 
0 00.05( ), 0.025( ), 0.008( / ), 0.5, 0.0005.h m h m U m s λ ν= = = = =  

Numerical results presented in Figures 2 to 5 were obtained 

with the Mathcad software. Figures 2 and 3 illustrate the 
graphs for the velocity profiles versus the spatial coordinate 
y at different time instant and for various values of 

fractional parameter .α
 As expected, the fluid behavior is significantly 
different for small values of the time t , respectively for 
large values of the time t . This fact is due to the variation 
in time of the Caputo kernel which is presented in Figure 
4. It is observed from Figure 4 that the Caputo kernel 
increases with the fractional parameter and small values of 
the time t . The kernel of the fractional derivative attains a 
maximum value for 0.4 0.5α< < . For large values of the 
time t , the derivative kernel decreases with α ; for values 
close to 1, the values of a kernel are very small, therefore, 
the damping of the velocity gradient will be weaker.
 Figure 2 plotted the profiles of velocity for small 
values of the time t  and different values of the fractional 
parameter, namely { }0.4,0.6,0.8,0.9,1.0α ∈ . It is seen 
from this figure that Maxwell fluids with generalized 
fractional constitutive equation have a slower motion 
compared to the ordinary Maxwell fluids corresponding to 

1α = . This behavior is due to the new relationship between 
shear stress and the shear rate in which the velocity gradient 
is damped by the Caputo kernel. As it is observed in Figure 
3, the velocity of fluid is not significantly influenced by 
the memory effects at large values of the time t. According 
with the variation of the derivative kernel (Figure 4), the 
damping of the velocity gradient is much lower for large 
values of the time t; therefore, the influence of the fractional 
parameter on the fluid velocity is almost insignificant.

The influence of the non-dimensional porosity 
parameter γ on the fluid velocity is presented in Figure 
5, for the fractional parameter 0.5α =  and the time 

{ }0.25,0.65t∈ At small values of the time t , the velocity 
of fractional fluids is increasing with the porosity 
parameter, while, at large values of the time t  the fluid 
velocity is decreasing with the porosity parameter.  

REFERENCES

Abate, J. & Valkó, P.P. 2004. Multi‐precision Laplace transform 
inversion. International Journal for Numerical Methods in 
Engineering 60(5): 979-993.

Alishaev, M.G. & Mirzadjanzade, A.K. 1975. For the calculation 
of delay phenomenon in filtration theory. Izvestiya Vysshikh 
Uchebnykh Zavedeniy. Neft’i Gaz 6: 71-78.

Aliyu, A.M., Baba, Y.D., Lao, L., Yeung, H. & Kim, K.C. 2017. 
Interfacial friction in upward annular gas-liquid two-phase 
flow in pipes. Experimental Thermal and Fluid Science 
84(2017): 90-109.

Ashraf, S. & Phirani, J. 2019. Capillary displacement of viscous 
liquids in a multi-layered porous medium. Soft Matter 15(9): 
2057-2070.

Barannyk, L.L., Papageorgiou, D.T., Petropoulos, P.G. & Vanden-
Broeck, J.M. 2015. Nonlinear dynamics and wall touch-up 

in unstably stratified multilayer flows in horizontal channels 
under the action of electric fields. SIAM Journal on Applied 
Mathematics 75(1): 92-113.

Bear, J. 2013. Dynamics of Fluids in Porous Media. New York: 
Courier Corporation. pp. 1-1757.

Bracewell, R.N. & Bracewell, R.N. 1986. The Fourier Transform 
and Its Applications (Vol. 31999). New York: McGraw-Hill. 
pp. 1-368.

Caputo, M. 1967. Linear models of dissipation whose Q is 
almost frequency independent II. Geophysical Journal 
International 13(5): 529-539.

Caputo, M. & Fabrizio, M. 2015. A new definition of fractional 
derivative without singular kernel. Progress in Fractional 
Differentiation and Application 1(2): 1-13.

Dingfelder, B. & Weideman, J.A.C. 2015. An improved 
Talbot method for numerical Laplace transform inversion. 
Numerical Algorithms 68(1): 167-183.

Dullien, F.A. 2012. Porous Media: Fluid Transport and Pore 
Structure. London: Academic Press. pp. 1-567.

Friedrich, C.H.R. 1991. Relaxation and retardation functions of 
the Maxwell model with fractional derivatives. Rheologica 
Acta 30(2): 151-158.

Funahashi, H., Kirkland, K.V., Hayashi, K., Hosokawa, S. & 
Tomiyama, A. 2018. Interfacial and wall friction factors of 
swirling annular flow in a vertical pipe. Nuclear Engineering 
and Design 330: 97-105.

Gin, C. & Daripa, P. 2015. Stability results for multi-layer radial 
Hele-Shaw and porous media flows. Physics of Fluids 27(1): 
012101.

Govindarajan, R. 2004. Effect of miscibility on the linear 
instability of two-fluid channel flow. International Journal 
of Multiphase Flow 30(10): 1177-1192.

Hansen, A., Sinha, S., Bedeaux, D., Kjelstrup, S., Gjennestad, 
M.A. & Vassvik, M. 2018. Relations between seepage 
velocities in immiscible, incompressible two-phase flow in 
porous media. Transport in Porous Media 125(3): 565-587.

Hisham, M.D., Rauf, A., Vieru, D. & Awan, A.U. 2018. Analytical 
and semi-analytical solutions to flows of two immiscible 
Maxwell fluids between moving plates. Chinese Journal of 
Physics 56(6): 3020-3032.

Hristov, J. 2017. Transient space-fractional diffusion with a 
power-law super diffusivity: Approximate integral-balance 
approach. Fundamenta Informaticae 151(1-4): 371-388.

Hristov, J. 2019. Response functions in linear viscoelastic 
constitutive equations and related fractional operators. 
Mathematical Modelling of Natural Phenomena 14(3): 305.

Joseph, D.D. & Renardy, Y.Y. 1995. Fundamentals of two-fluid 
dynamics. Journal of Fluid Mechanics 282: 405-405.

Kalogirou, A. & Blyth, M.G. 2019. The role of soluble surfactants 
in the linear stability of two-layer flow in a channel. Journal 
of Fluid Mechanics 873: 18-48.

Khashi’Ie, N.S., Arifin, N.M., Pop, I. & Nazar, R. 2020. Thermal 
Maranrgoni flow past a permeable stretching/shrinking sheet 
in a hybrid Cu-Al2O3/water nanofluid. Sains Malaysiana 
49(1): 211-222. 

Khan, Z., Islam, S., Shah, R.A. & Khan, I. 2016. Flow and heat 
transfer of two immiscible fluids in double-layer optical 
fiber coating. Journal of Coatings Technology and Research 
13(6): 1055-1063.

. 



2880 

Khuzhayorov, B., Auriault, J.L. & Royer, P. 2000. Derivation of 
macroscopic filtration law for transient linear viscoelastic 
fluid flow in porous media. International Journal of 
Engineering Science 38(5): 487-504.

Kim, Y., Choi, H., Park, Y.G., Jang, J. & Ha, M.Y. 2019. 
Numerical study on the immiscible two-phase flow in a nano-
channel using a molecular-continuum hybrid method. Journal 
of Mechanical Science and Technology 33(9): 4291-4302. 

Lake, L.W. 1989. Enhanced Oil Recovery. Englewood Cliffs, 
New Jersey: Prentice Hall. 

Le Meur, H. 1997. Non-uniqueness and linear stability of the 
one-dimensional flow of multiple viscoelastic fluids. ESAIM: 
Mathematical Modelling and Numerical Analysis 31(2): 
185-211.

Liu, J. & Pan, D. 2019. Study on numerical solution of a variable 
order fractional differential equation based on symmetric 
algorithm. Sains Malaysiana 48(12): 2807-2815.

Lorenzo, C.F. & Hartley, T.T. 1999. Generalized Functions for 
the Fractional Calculus. NASA. pp. 1-17.

Malek, J., Nečas, J. & Růžička, M. 1993. On the non-Newtonian 
incompressible fluids. Mathematical Models and Methods in 
Applied Sciences 3(1): 35-63.

Nield, D.A. 2000. Modelling fluid flow and heat transfer in a 
saturated porous medium. Advances in Decision Sciences 
4(2): 165-173.

Papaefthymiou, E.S. & Papageorgiou, D.T. 2017. Nonlinear 
stability in three-layer channel flows. Journal of Fluid 
Mechanics 829(2017): 1-12.

Podlubny, I. 1999. Fractional Differential Equations, Vol. 198 
of Mathematics in Science and Engineering. New York and 
London: Academic Press. 

Rauf, A., Mahsud, Y. & Siddique, I. 2019. Multi-layer flows of 
immiscible fractional Maxwell fluids in a cylindrical domain. 
Chinese Journal of Physics 67(2020): 265-282.

Russell, T.W.F. & Charles, M.E. 1959. The effect of the less 
viscous liquid in the laminar flow of two immiscible liquids. 
The Canadian Journal of Chemical Engineering 37: 18-24.

Satpathi, D.K., Kumar, B.R. & Chandra, P. 2003. Unsteady-
state laminar flow of viscoelastic gel and air in a channel: 

Application to mucus transport in a cough m a c h i n e 
simulating trachea. Mathematical and Computer Modelling 
38(1-2): 63-75.

Vafai, K. & Tien, C.L. 1981. Boundary and inertia effects on flow 
and heat transfer in porous media. International Journal of 
Heat and Mass Transfer 24(2): 195-203.

Ward, K., Zoueshtiagh, F. & Narayanan, R. 2019. Faraday 
instability in double-interface fluid layers. Physical Review 
Fluids 4(4): 043903.

Xiao-Jun, X.J., Srivastava, H.M. & Machado, J.T. 2016. A 
new fractional derivative without singular kernel. Thermal 
Sciences 20(2): 753-756.

Xue, C. & Nie, J. 2008. Exact solutions of Rayleigh-Stokes 
problem for heated generalized Maxwell fluid in a porous 
half-space. Mathematical Problems in Engineering 1(2008): 
1-10.

Yih, C.S. 1967. Instability due to viscosity stratification. Journal 
of Fluid Mechanics 27(2): 337-352.

Abdul Rauf * & Ali Majeed
Department of Computer Science and Engineering
Air University Multan Campus
Multan, 60000
Pakistan

Qammar Rubbab 
Department of Mathematics
The Woman University Multan
Pakistan

Dumitru Vieru
Department of Theoretical Mechanics
Technical University of Iasi 700050
Romania

*Corresponding author; email: attari_ab092@yahoo.com

Received: 2 December 2019
Accepted: 31 May 2020


