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ABSTRACT  

This research aims to analyze and examine the adequacy of the log-logistic model for a 

covariate, right, and interval censored data by using various types of imputation methods. We 

started by incorporating a covariate to the log-logistic model with right and interval censored 

data and obtained its parameter estimates via maximum likelihood estimation (MLE). 

Performance of the parameter estimates using the left, mid, and right point imputation methods 

is assessed and compared at various sample sizes and censoring proportions via a simulation 

study. The best imputation method is chosen based on minimum values of standard error (SE), 

and root mean square error (RMSE). Also, newly proposed Modified Cox-Snell residuals based 

on the geometric mean (GMCS) and harmonic mean (HMCS) were compared with Cox-Snell 

(CS) and Modified Cox-Snell (MCS) residuals via simulation study by comparing the range of 

residual’s intercept, slope, and R-square at different settings. Conclusions are then made based 

on the simulation results. The proposed residual worked well with real data and provided simple 

and easy interpretation of the results using log(-log(estimated survivor function of residual)) 

versus log(residual) plot. The results show the data is fitted well with the log-logistic model and 

gender of patients is not giving any significant impact on the development of diabetic 

nephropathy. 
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ABSTRAK  

Tujuan kajian ini dijalankan adalah untuk menyiasat kebagusan penyuaian model log-logistik 

bagi data berkovariat dan data tertapis kanan dan selang menggunakan pelbagai kaedah imputasi 

yang berbeza. Analisis dimulakan dengan menggabungkan kovariat ke dalam model log logistik 

dengan data tertapis kanan dan selang dengan anggaran parameter model diperoleh melalui 

penganggaran kebolehjadian maksimum (MLE). Prestasi parameter yang dianggarkan melalui 

kaedah imputasi titik kiri, tengah dan kanan dibandingkan dengan sampel pelbagai saiz dan 

kadar tapisan berbeza melalui kajian simulasi. Kaedah imputasi terbaik dikenal pasti melalui 

nilai minimum ralat piawai dan punca min kuasa dua ralat. Di samping itu, reja baharu yang 

dicadangkan dinamakan sebagai reja Cox-Snell Terubah suai min Geometri dan reja Cox-Snell 

Terubah suai min Harmonik dibandingkan dengan reja Cox-Snell dan reja Cox-Snell Terubah 

suai melalui kajian simulasi menggunakan tetapan berbeza pada julat reja pintasan, kecerunan 

dan kuasa dua R. Kesimpulan seterusnya dibuat berdasarkan keputusan simulasi. Reja yang 

dicadangkan berfungsi dengan baik ke atas data sebenar dan memberikan tafsiran hasil yang 

mudah menggunakan plot log(-log(fungsi kemandirian teranggar untuk reja)) lawan log(reja). 

Hasil kajian menunjukkan data berkenaan adalah sesuai digunakan dalam model log-logistik 

dan jantina pesakit tidak memberikan kesan yang signifikan terhadap perkembangan nefropati 

diabetes. 

Kata kunci: log-logistik; kovariat; tertapis selang        
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1. Introduction 

Log-logistic (LL) model is one of the commonly used parametric survival models in handling 

survival analysis with non-monotonic hazard function. Non-monotonic hazard function occurs 

frequently in medical data, such as the curability of breast cancer study (Langlands et al. 1979), 

the AIDS infection rate study (Byers et al. 1988), and adjuvant chemotherapy regimes in breast 

cancer study (Faradmal et al. 2010). Besides the medical field, LL regression is widely used in 

other fields, i.e. in networking field, fitted delays transmission of sensory data to predict future 

times of arrival in networked telerobot (Gago-Benítez et al. 2013).  

Adnan and Arasan (2018) investigated the left-truncation and right-censoring effect on LL 

model, and the results showed that standard error (SE) of parameter estimates increases as 

truncation level and censoring proportions increases. They also showed that SE and RMSE 

decreases as sample size increases. Loh et al. (2017) studied inferential procedures for LL 

distribution with doubly interval censored data, and they stated that Wald outperformed the 

likelihood ratio and jackknife inferential procedures by using the results in coverage probability 

study. 

For LL model adequacy study, O’Quigley and Struthers (1982) studied both logistic and 

log-logistic models with censored survival data. They also applied residual plots in model 

checking to identify how well the model fit for the data. Silva et al. (2011) used residual plots 

to check violation of model assumption and existence of outlier for log-Burr XII model with 

censored data. They suggested that modified martingale-type residual can be applied to log-

Burr XII regression model with censored data by using the standard approach of residual 

analysis that commonly applied in standard linear regression models. Since LL model is a 

special case for log-Burr XII model, these residuals are also applicable for LL model adequacy 

checking. 

When compare to general linear model, residual for survival data is not easy to define and 

will be influenced by not only sample size, but also censoring proportion and censoring type in 

the survival data (Naslina et al. 2020). Cox-Snell residual is the most general practice to 

evaluate the model adequacy. In this research, newly proposed modified Cox-Snell residuals 

were applied in the log-logistic model with covariate, right and interval censored data by using 

the best imputation method that was obtained via simulation study. 

2. Methodology 

2.1.  The log-logistic (LL) model 

A single covariate log-logistic accelerated failure time model can be expressed as below:  

 

𝐼𝑛(𝑡) = 𝛽0 + 𝛽1𝑥 + 𝜎𝜀 (1)   

 

where 𝛽0  is the shape parameter, 𝛽1  is the single covariate, 𝑡  is the lifetime, 𝜎  is the scale 

parameter and ε indicates the error term which follows the standard log-logistic distribution. 

The log-logistic survivor function is as shown below: 

 

𝑆(𝑡, 𝑥, 𝛽, 𝜎) = [1 + 𝑒𝑥𝑝⁡(𝑧)]−1 (2)   

 

where 𝑧 =
𝑦−𝛽0−𝛽1𝑥

𝜎
⁡⁡ and 𝑦 = 𝐼𝑛(𝑡) 
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In this research, we were going to use three approaches to analyze interval censored data for 

comparison purpose. These three approaches are left, mid, and right imputations. Suppose there 

is a random sample of size n, let  𝑡𝑖 denotes as failure time of the 𝑖𝑡ℎ observation and 𝛿𝑖 its 

censoring indicator, then the general likelihood function of model with uncensored, right 

censored and interval censored lifetime data for left, mid, and right imputation methods are 

given by, 

 

𝐿(𝜃) = ∏ [𝑓(𝑡𝑖)]
𝛿𝐸𝑖[𝑆(𝑡𝑅𝑖)]

𝛿𝑅𝑖[𝑓(𝑡̃𝑖)]
𝛿𝐼𝑖𝑛

𝑖=1  (3)   

 

where 𝑡𝑅𝑖  is the right censored failure time, 𝑡̃𝑖  is the midpoint /right point /left point of an 

interval, 𝛿𝐸𝑖  = 1 if exact survival time is observed, 0 otherwise, 𝛿𝑅𝑖  = 1 if subject is right 

censored, 0 otherwise, and 𝛿𝐼𝑖  = 1 if subject is interval censored, 0 otherwise. 

 

The log-likelihood function using imputation methods for i = 1, 2, …, n observations with 

right and interval censored is, 

 
𝐼𝑛[𝐿(𝛽, 𝜎)] = ∑ 𝛿𝐸𝑖{−𝐼𝑛(𝜎) + 𝑧𝑖 − 2𝐼𝑛[1 + 𝑒𝑥𝑝(𝑧𝑖)]}

𝑛
𝑖=1 − 𝛿𝑅𝑖𝐼𝑛[1 + 𝑒𝑥𝑝(𝑧𝑖)] +

𝛿𝐼𝑖{−𝐼𝑛(𝜎) + 𝑧̃𝑖 − 2𝐼𝑛[1 + 𝑒𝑥𝑝⁡(𝑧̃𝑖)]} (4)   

 

where 𝑧̃ =
𝑦̃−𝛽0−𝛽1𝑥

𝜎
, and 𝑦̃ = 𝐼𝑛(𝑡̃) 

2.2.  Residuals in survival analysis 

Cox-Snell (CS) residual is one of the most widely used residual in survival analysis for 

uncensored data, it can be defined as a negative natural log of survival probability for individual 

i when the survival function has been estimated. The formula is shown as below:  

 

rCi = H̑(ti) = - log (S̑(ti)) (5)   

 

When dealing with censored data, modified Cox-Snell (MCS) residual is used. Crowley and 

Hu (1977) stated that CS residual is biased when dealing with censored data, and MCS residual 

can remedy this issue. Instead of adding an unity of exponential for censored observations, 

median of excess residual is suggested, where log(2) = 0.693 should be added for censored data. 

In this research, we proposed 2 modifications to the CS residual as given in the following. 

2.2.1. Modified Cox-Snell residual based on geometric mean (GMCS) 

Let G be geometric mean of uncensored CS residual.  

 

𝐺 = (∏ 𝑥𝑖
𝑛
𝑖=1 )

1

𝑛 (6)   

 

Habib (2012) stated that geometric mean is useful in dampen the inflation effect and perform 

better than the median in the estimation of the scale parameter of the LL distribution. Hence, 

GMCS residual was proposed and can be written as below, 

 

𝑟𝐺𝑖
∗ = {

𝑟𝐶𝑖                   for observed event time 

𝑟𝐶𝑖 + 𝐺           for censored event time 
 (7)   
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2.2.2. Modified Cox-Snell residual based on harmonic mean (HMCS) 

Let H be harmonic mean of uncensored CS residual.  

 

⁡ 𝐻 =
𝑛

1

𝑥1
+

1

𝑥2
+⋯+

1

𝑥𝑛

 (8)   

Harmonic mean having same advantages as geometric mean, where both means are 

calculated based on all the observations, and they are not heavily impacted by sample 

fluctuation. Bian and Tao (2008) stated that harmonic mean is performing better than geometric 

mean in handling classification problem in Fisher’s linear discriminant analysis. This inspired 

us that harmonic mean should be another proposed solution to compare with geometric mean. 

The proposed HMCS residual can be written as below, 

 

𝑟𝐻𝑖

∗ = {
𝑟𝐶𝑖                   for observed event time 

𝑟𝐶𝑖 + 𝐻          for censored event time 
  (9)   

3. Simulation Study 

A simulation was conducted using N = 1000 replications with sample sizes n = 30, 50, 100, and 

200 to compare the performance of the MLE for the parameters of the LL model. Besides that, 

four levels of approximate censoring proportions (CP) were applied which are 0.05, 0.1, 0.2 

and 0.3. The values for parameters 𝛽0, 𝛽1, and⁡𝜎 were specifically set at 2.87, 0.05, and 0.5 

respectively to mimic the lung cancer data, and interval period is 4 months which was used to 

simulate 4 months follow up period for lung cancer patient. Let 𝐹(𝑡𝑖) = 𝑈 be CDF for LL 

distribution, where U is a uniform variable on (0,1), and the lifetime, 𝑡𝑖 was generated using 

inverse transformation, and can be written as below:  
 

𝑡𝑖 = 𝜎 (
1

𝑢𝑖
− 1)

−1
𝛽⁄

  (10)   

 

Interval censoring occurs when the lifetime of a subject is only known to fall within an 

interval [𝐿𝑖 , 𝑅𝑖 ], where 𝐿𝑖  and 𝑅𝑖  are knowns as left and right endpoints.  In this case, the 

imputation methods can be used to estimate the true lifetime. Left, mid, and right point 

imputation methods can be generated as 𝑌𝑖 = 𝐿𝑖 , 𝑌𝑖 =
𝐿𝑖+𝑅𝑖

2
, and 𝑌𝑖 = 𝑅𝑖  respectively. For 

performance study, a set of measures will be used to evaluate performance of parameters 

𝛽0, 𝛽1, and⁡𝜎. Standard error (SE), and root mean square error (RMSE) were used to evaluate 

the accuracy, precision, and stability of estimator’s performance. 

Best imputation method was chosen based on simulation results and applied in the next 

simulation study. Following that, four type of residuals were applied, which are CS, MCS, 

GMCS and HMCS residuals. Three selection criterions were used to compare performance of 

residuals, which are the intercept, slope and R-square values of the plot of log(-log S(t)) against 

log(t). Range of simulated intercept, slope and R-square were obtained, and residual that 

produce smaller range of desired value is preferred. 

4. Simulation Result and Discussion 

Figures 1 to 8 clearly show that the values of SE and RMSE for 𝛽0, 𝛽1⁡and 𝜎 decrease as the 

sample size increases but an opposite trend occurs as censoring proportions increases. The 
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results also show that left imputation method outperforms by having the lowest SE and RMSE 

value compared to midpoint and right imputation methods.  
 
 

   
            (a)           (b)          (c) 

Figure 1: Line plot of SE for (a) 𝛽̂0, (b)⁡𝛽̂1 and (c)⁡𝜎̂ at CP = 0.05 

 

    
            (d)           (e)          (f) 

Figure 2: Line plot of SE for (d) 𝛽̂0, (e)⁡𝛽̂1 and (f)⁡𝜎̂ at CP = 0.30 

 

   
            (g)           (h)          (i) 

Figure 3: Line plot of SE for (g) 𝛽̂0, (h)⁡𝛽̂1 and (i)⁡𝜎̂ at sample size = 30 

   
            (j)           (k)          (l) 

Figure 4: Line plot of SE for (j) 𝛽̂0, (k)⁡𝛽̂1 and (l)⁡𝜎̂  at sample size = 200 
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            (m)          (n)          (o) 

Figure 5: Line plot of RMSE for (m) 𝛽̂0, (n)⁡𝛽̂1 and (o)⁡𝜎̂ at CP = 0.05 
 

   
            (p)           (q)          (r) 

Figure 6: Line plot of RMSE for (p) 𝛽̂0, (q)⁡𝛽̂1 and (r)⁡𝜎̂ at CP = 0.30 
 

   
            (s)           (t)          (u) 

Figure 7: Line plot of RMSE for (s) 𝛽̂0, (t)⁡𝛽̂1 and (u)⁡𝜎̂ at at sample size = 30 
 

   
            (v)           (w)          (x) 

Figure 8: Line plot of RMSE for (v) 𝛽̂0, (w)⁡𝛽̂1 and (x)⁡𝜎̂ at sample size = 200 
 

Collett (1994) stated that model adequacy procedure is mainly based on residuals. This is 

because the residuals of each subject in the study can be calculated and the characteristics of 

the data can be identified. The plot of log(-log(S(t))) against log(t) is a commonly used method 

to evaluate model adequacy. If the model is fit correctly, then the CS residual should follows 
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exponential distribution with parameter one, exp(1). A well fit model should have an intercept 

that approaches to 0, and slope and R-square approach to 1. 

From Tables 1 to 3, we can clearly see that the range of intercept, slope, and R-square values 

decrease as sample sizes increase but there are having an opposite trend as censoring 

proportions increase. This result is applicable for all the four residuals, which again leads to the 

conclusion that the residuals perform well in model diagnosis when sample size is large and 

censoring proportion is small. 

When comparing the performance of the residuals, GMCS residual was found to perform 

the best when sample sizes are large based on the range of slope values (Table 2), but HMCS 

residual performs the best in small sample size. From the intercept and R-square values (Table 

1 and 3), we can observe that HMCS residual indicates better result compared to other residuals. 

Thus, we can conclude that HMCS residual outperforms all the other residuals. 

Table 1: Range of intercept for various residuals 

CP n 

Residuals 

CS MCS GMCS HMCS 

Min Max Min Max Min Max Min Max 

0.05 30 -0.3023 0.1161 -0.3034 0.0845 -0.2968 0.0845 -0.2815 0.0953 

50 -0.2874 0.0771 -0.2512 0.0494 -0.2305 0.0499 -0.1989 0.0632 

100 -0.2712 0.0488 -0.2009 0.0233 -0.1944 0.0262 -0.1776 0.0353 

200 -0.2021 0.0337 -0.1739 0.0058 -0.1651 0.0093 -0.1118 0.0222 

0.1 30 -0.5327 0.1465 -0.4882 0.0744 -0.4395 0.0797 -0.3454 0.0957 

50 -0.3960 0.0763 -0.3829 0.0338 -0.3537 0.0361 -0.2850 0.0473 

100 -0.3205 0.0405 -0.3316 -0.0031 -0.2989 0.0012 -0.2248 0.0337 

200 -0.2627 0.0279 -0.2788 -0.0365 -0.2523 -0.0291 -0.1609 0.0164 

0.2 30 -0.6625 0.1104 -0.8590 0.0354 -0.6959 0.0409 -0.5016 0.1029 

50 -0.6082 0.0943 -0.7249 -0.0223 -0.6576 -0.0151 -0.5955 0.0534 

100 -0.4108 0.0603 -0.5248 -0.0719 -0.4723 -0.0482 -0.3301 0.0180 

200 -0.3699 -0.0115 -0.4658 -0.1274 -0.4138 -0.0927 -0.2773 -0.0073 

0.3 30 -0.8620 0.1373 -1.1870 0.0045 -0.9353 0.0176 -0.6338 0.1312 

50 -0.7854 0.0687 -0.9711 -0.1086 -0.8643 -0.0778 -0.7126 0.0837 

100 -0.5535 0.0177 -0.7769 -0.1887 -0.6520 -0.1453 -0.4639 0.0075 

200 -0.4849 -0.0206 -0.6833 -0.2478 -0.5349 -0.2008 -0.3557 -0.0263 

Table 2: Range of slope for various residuals 

CP n 

Residuals 

CS MCS GMCS HMCS 

Min Max Min Max Min Max Min Max 

0.05 30 0.3374 1.2070 0.4603 1.3570 0.4603 1.3580 0.4603 1.3280 

50 0.3881 1.1810 0.5333 1.2340 0.5346 1.2400 0.5328 1.2120 

100 0.4979 1.1340 0.6568 1.1400 0.6581 1.1430 0.6448 1.1470 

200 0.5477 1.1010 0.7276 1.1230 0.7286 1.1250 0.6989 1.1270 

0.1 30 0.2629 1.3530 0.4603 1.3640 0.4603 1.3570 0.4603 1.3510 

50 0.3449 1.2480 0.5418 1.3110 0.5431 1.3170 0.5270 1.2680 

100 0.4261 1.1430 0.6635 1.1780 0.6670 1.1840 0.5924 1.1530 

200 0.4915 1.0980 0.7371 1.1550 0.7392 1.1620 0.6536 1.1610 

0.2 30 0.1980 1.3200 0.4640 2.0490 0.4643 1.9350 0.4440 1.3860 

50 0.2748 1.2320 0.5620 1.4430 0.5670 1.4520 0.5300 1.3360 

100 0.3400 1.1840 0.6484 1.3460 0.6545 1.3850 0.5450 1.2680 

200 0.4429 1.0700 0.7806 1.2000 0.7894 1.2140 0.6668 1.1980 

0.3 30 0.1676 1.3880 0.4542 2.1420 0.4565 2.0670 0.4410 1.5000 

50 0.2376 1.5290 0.5687 1.6990 0.5800 1.7810 0.4761 1.6080 

100 0.2916 1.1620 0.6508 1.5040 0.6575 1.5090 0.5252 1.4070 

200 0.4061 1.0390 0.7909 1.3610 0.8023 1.3820 0.5613 1.2640 
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Table 3: Range of R-square for various residuals 

CP n 

Residuals 

CS MCS GMCS HMCS 

Min Max Min Max Min Max Min Max 

0.05 30 0.6380 0.9947 0.6985 0.9947 0.6985 0.9947 0.6985 0.9947 

50 0.6537 0.9948 0.7487 0.9962 0.7473 0.9951 0.7445 0.9948 

100 0.6550 0.9969 0.7972 0.9963 0.7961 0.9965 0.8474 0.9969 

200 0.7568 0.9982 0.8362 0.9983 0.8359 0.9984 0.8769 0.9983 

0.1 30 0.5656 0.9947 0.6699 0.9947 0.6727 0.9947 0.6944 0.9947 

50 0.6053 0.9942 0.7337 0.9952 0.7305 0.9954 0.7442 0.9962 

100 0.6233 0.9968 0.7810 0.9972 0.7780 0.9972 0.8439 0.9968 

200 0.7256 0.9979 0.8275 0.9981 0.8264 0.9981 0.8975 0.9982 

0.2 30 0.5309 0.9946 0.6212 0.9925 0.6529 0.9929 0.6853 0.9944 

50 0.5461 0.9942 0.7396 0.9949 0.7296 0.9942 0.7537 0.9937 

100 0.6179 0.9960 0.7564 0.9971 0.7495 0.9967 0.8347 0.9964 

200 0.6913 0.9974 0.8793 0.9979 0.8804 0.9976 0.9354 0.9979 

0.3 30 0.5215 0.9900 0.5391 0.9907 0.5654 0.9895 0.6030 0.9937 

50 0.4847 0.9940 0.6986 0.9941 0.6950 0.9931 0.7749 0.9931 

100 0.6536 0.9943 0.6532 0.9950 0.6460 0.9954 0.8537 0.9955 

200 0.6870 0.9964 0.8611 0.9961 0.8626 0.9969 0.9358 0.9966 

5. Real Data Analysis 

The data was obtained from the Steno Memorial Hospital from Denmark, and it describes the 

survival time for Type I diabetes patients to develop diabetic nephropathy (DN), where DN is 

a sign of kidney failure for the diabetes patient. The data consist of 731 patients, and all patients 

had developed DN by the end of study or at time of admission. There is no right censored in 

the dataset, but there are 136 interval-censored observations. There were 454 males and 277 

females among 731 patients, gender (0 = male, 1 = female) and censoring indicator                          

(1 = developed DN, 0 = interval censored), where 18.6% of interval censored in the data.        

The left imputation technique was applied to the interval censored data. Following that, the 

non-parametric Kaplan Meier (KM) survivor function and S(t) based on the LL model were 

plotted on the same graph, and we can say that the LL distribution is appropriate for the diabetes 

data. 

 

 
Figure 9: Survival Curve 

 

LL model with and without covariate were generated, and p-value was used to conclude the 

effect of gender on survival time. Table 4 shows the R program output for the LL model, and 

the p-value for gender in model fitting is larger than alpha value of 0.05, which we can conclude 

that gender does not give impact to the survival time. The result is similar with Kim (2003) and 
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Zhao et al. (2008), which both articles concluded that gender of patients is not giving any 

significant impact on development of DN.  

 

 
Figure 10: Plot for log (-log(estimated survivor function of residual)) versus log (residual) 

 

Table 4:  Estimated parameters for LL model  

Type Parameters values Standard Error z-value p-value 

With 

Covariate 
Intercept, 𝛽̂0 2.6681 0.0290 92.139 0.000 

Gender, 𝛽̂1 -0.0416 0.0466 -0.894 0.371 

Log(scale), σ -0.9991 0.0323 -30.903 1.09 x 10-209 

Without 

Covariate 
Intercept, 𝛽̂0 2.652 0.0228 116.3 0.000 

Log(scale), σ -0.998 0.0323 -30.9 1.71 x 10-209 

 

Model adequacy diagnosis was carried out by using HMCS residual due to it is the best 

performing residual in the simulation study. Figure 10 shows plot for log(-log(estimated 

survivor function of residual versus log(residual), and the plot shows that there is a linear 

relationship between  log(-log(estimated survivor function of residual)) and log(residual) with 

slope = 0.79, and intercept = 0.02. These values are fall within the range of simulation study 

for sample size of 200 and censoring proportion of 20 percent. HMCS residual has range of 

intercept (-0.1380, 0.0419), and range of slope (0.6751, 1.3282) based on our simulation study.  

6. Conclusion 

The performance of the parameter estimates was evaluated at various sample sizes and 

censoring proportions via the value of standard error and root mean square error. In the case of 

right censored and interval censored simulation study, large sample sizes and small censoring 

proportions always provide more accurate estimation. In the simulation study which included 

interval censored data, left point imputation outperforms midpoint and right point imputations 

by having smallest values of standard error and root mean square error.        

Based on the model adequacy study, we found out that HMCS residual outperforms CS, 

MCS and GMCS residuals. When sample sizes are larger, range of simulated slope, intercept 

and R-square values are narrower, whereas increase in censoring proportions gave opposite 

results for all residuals. For the analysis of real data, we showed that the LL model fitted the 

diabetes data well. The preliminary analysis showed that survival probability of male patient is 

slightly higher than female, however, log-likelihood ratio test result showed that gender does 

not give significant impact on Type I diabetes patient to develop into diabetic nephropathy. 

In this paper, we only focused on LL model with single covariate, right and interval censored 

data. Hence, log-logistic model with more covariate can also be used in the future to see whether 
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similar results will be obtained. We can also investigate what is the impact on using dimension 

reduction method on large amount of covariate in LL model. Furthermore, time-dependent 

covariate that vary over time can also be incorporated. 
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