Electrodeposited WO₃/Au Photoanodes for Photoelectrochemical Reactions
(Pengelektroendapan Fotoanod WO₃/Au untuk Tindak Balas Fotoelektrokimia)

LORNA JEFFERY MINGGU*; NURUL AKMAL JAAFAR, KIM HANG NG, KHUZAIMAH ARIFIN & ROZAN MOHAMAD YUNUS

ABSTRACT
This work aims to study the effect of gold (Au) loading on the photoelectrochemical behavior of tungsten trioxide (WO₃) photoelectrodes. The WO₃ film has been fabricated via electrodeposition method with constant potential on fluorine doped tin oxide (FTO) glass substrate. The Au nanoparticle loading on WO₃ films surface was also prepared by constant potential electrodeposition. Due to the small amount of Au loading, the band gap values of the plasmonized WO₃ remained around 2.6 eV. However, during the photoelectrochemical analysis, the photoactivity of the plasmonized WO₃ photoelectrodes improved >100% with a minimal amount of Au loading compared to the pristine WO₃. The photocurrent generation was further enhanced with the presence of organic donors (methanol and formic acid). The photocurrent achieved 3.74 mA/cm² when 1.0 M of formic acid was added. Plausible charge transfer mechanism was suggested.

Keywords: Au nanoparticles; electrodeposition; photoelectrochemical; waste degradation; WO₃ films

INTRODUCTION
Fossil fuel consumption is the main source of carbon dioxide and other greenhouse gases which contributes to global warming. The emission of greenhouse gases keeps increasing due to the increasing population and demand for high quality of life. In the search for another energy from renewable sources, hydrogen is the most promising alternative to replace the current use of fossil fuels (Yan et al. 2017). Different from fossil fuel as an energy source, hydrogen is an energy carrier and its source exists in many different compounds such as methane and water. Despite this, hydrogen carries high energy in its molecules more than in coal and gasoline (Alenzi et al. 2010). Hydrogen oxidation in fuel cell produces energy of about ~140 KJg⁻¹ meanwhile consumption of gasoline via conventional combustion generates only ~43 KJg⁻¹ (Kwong et al. 2012). Moreover, the consumption of hydrogen gas in fuel cell is environmentally friendly as water is the only byproduct (Wang et al. 2011). However, at present, the hydrogen gas is mainly produced via steam reforming process. This process requires huge amount of energy and also gives out carbon dioxide as the byproduct (Zhang & Tang 2012). Hence, generation of hydrogen gas from renewable sources is gaining new urgency.

Photoelectrochemical (PEC) hydrogen production is an ideal method to replace the current method. Since the first report by Fujishima and Honda (1972), semiconductor materials such as TiO₂ have become the main interest in this field. Recently, many other semiconductors have been studied, such as WO₃, ZnO, Fe₂O₃, BiVO₄ and Cu₂O (Chen et al. 2020a; Ng et al. 2018). The design and fabrication of highly efficient photocatalyst for this
application is a very challenging task. The selection of semiconductors must fulfill several criteria such as: small band gap energy to absorb visible light; suitable band edges (the conduction band should be more negative than the valence band should be more positive than water oxidation potential); high charge mobility and long charge carrier diffusion length; and strong catalytic activity; good stability; and sustainability and low cost (Li & Wu 2015). Though not all criteria were satisfied, tungsten trioxide (WO₃) becomes our interests and it is a great semiconductor material to replace the commonly used TiO₂. It is an n-type semiconductor with strong resistance against photocorrosion (Zhang et al. 2011). Also, the band gap energy value of WO₃ is much smaller (2.5-2.8 eV) (Han et al. 2012; Lianos 2011) compared to TiO₂ (3.0-3.2 eV) (Lee & Jo 2016; Zhu et al. 2016), which allows the WO₃ to absorb the blue part of visible light and the ultraviolet region in the solar spectrum. Theoretically, the solar-to-hydrogen efficiency of WO₃ is 4.8%, which is much higher compared to TiO₂ (1.3%) (Li et al. 2013a).

Though WO₃ has fulfilled most of the criteria, the photocurrent generation of this material during photoelectrochemical water splitting remained unsatisfied. Thus, several modifications techniques on the photocatalyst were reported, including doping (Ng et al. 2013; Sheng et al. 2017), layers or junction (Minggu et al. 2014; Zhu et al. 2013), nanostructure fabrication (Chakrapani et al. 2009), and noble metal loading on the photocatalyst surface (Hu et al. 2016; Jun et al. 2020; Lui et al. 2019; Ng et al. 2017). Recently, the loading of noble metals (such as Pt, Ag and Au) has received much interest as minimal amount of the noble metals loaded on the surface of the photocatalyst able to increase the photoactivity significantly. The noble metal is known to efficiently trapping electrons which inhibit the recombination of the charges and assist in charge transfer (Li et al. 2013b; Nishanthi et al. 2015; Verma et al. 2013). Besides, the said noble metals also improved the photoelectrochemical activity and some works reported that noble metals can extend the absorption of light of large-band-gap semiconductors (TiO₂ and ZnO) to visible range due to surface plasmon resonance effect (SPR) in which the free valence electrons in the noble metal nanoparticles were excited by visible light (Haro et al. 2014; Jana et al. 2014; Peerakiatkha John et al. 2015). Ag is the most commonly used noble metal in this photoelectrochemical applications as it is lower cost compared to the others. However, recently Au have been extensively studied due to its higher work function and it demonstrates a higher atmospheric stability and resistance towards oxygen (Chen et al. 2020b; Verma et al. 2016).

Besides, the WO₃ is also an active photocatalyst used in photodegradation of organic compounds under light irradiation (Aslam et al. 2014; Raptis et al. 2017). Since the degradation of the organic compounds is thermodynamically more favorable compared to water, these organic materials can act as electron donors at the electrode/electrolyte interface, which inhibit the photocharges electron-holes recombination in the aqueous electrolyte (Tee et al. 2017). Such donors include small chain organic acids and alcohols such as methanol and glycerol. The photocurrent was enhanced during PEC process as the donor efficiently suppressed the recombination of electron-holes, resulting in higher H₂ production rate.

In this work, we report the photoelectrochemical (PEC) properties of Au loaded WO₃ film fabricated by electrodeposition method with contant-potential. The introduction of Au nanoparticles on WO₃ films surface have greatly increased the PEC activities in the electrolyte. Meanwhile, the presence of organic compounds in the electrolyte further enhance the photocurrent generation.

EXPERIMENTAL DETAILS

MATERIALS

Sodium tungstate dihydrate (Na₃WO₄·2H₂O, Sigma Aldrich), hydrogen peroxide (H₂O₂, Merck), nitric acid (HNO₃, Merck), gold chloride solution (HAuCl₄, Sigma Aldrich), methanol (CH₃OH, Merck), formic acid (CHOOH, Sigma Aldrich), sodium sulfate (Na₂SO₄, Sigma Aldrich), acetone (C₆H₁₂O₆, Merck) and ethanol (C₂H₅OH, Merck) were used as received, and doubly distilled water was used along the experiment.

FABRICATION OF WO₃ FILMS WITH AU LOADING

Prior to preparation of WO₃ films, the fluorine-doped-tin oxide (FTO) glass was sonically cleaned with ethanol, acetone and distilled water sequentially for 5 min and dried at room temperature. Then, the WO₃ films were electrodeposited onto the FTO glass in a three-electrode system where FTO glass is connected as working electrode, platinum foil as counter electrode, and saturated calomel electrode (SCE) as reference electrode. These electrodes were placed in a beaker with equal distance in the acidic peroxy-tungstate solution that serves as the electrolyte. The potential was fixed at -0.6 V (vs. SCE) with a duration of 20 min. The resulting films were rinsed with copious amount of doubly distilled water to remove clogged ions and dried at room temperature. After that, the films were calcined in furnace at 350 °C for 30 min and cut into small size. These small pieces of WO₃ films were used as a substrate for Au nanoparticle deposition via constant-potential electrodeposition method, in a three-electrode-system containing 0.05 mM of HAuCl₄ solution. The Au deposition was carried out under constant
potential of -0.245 V (vs. SCE) for 1, 5, 10, and 15 s. The resulting films were rinsed with doubly distilled water and dried at room temperature. Lastly, they were made into photoelectrodes by connecting the copper wires onto the FTO glass using conductive silver paint, as mentioned in previous study (Minggu et al. 2010). They were left for overnight before the epoxy resin was applied to enhance the connection. Glass tube was installed to protect the wires from the surrounding electrolyte solution. The photoelectrodes were sealed properly as the exposed silver paste and FTO glass may cause the undesired side reactions.

CHARACTERIZATION

Morphological study of the samples was carried out using field emission scanning electron microscope (FESEM, Merlin) and the chemical composition was studied using energy dispersive X-ray analysis (EDX). Meanwhile, the optical characterization was carried out using a UV-Vis spectrophotometer (PerkinElmer Lambda 35). The absorption spectra were used for Tauc plot and the calculation involved is based on relation below (Hong et al. 2011):

\[(\alpha h\nu)^n = A(h\nu - E_g)\]

where \(\alpha\) is the optical absorption coefficient; \(h\nu\) is the light energy; \(A\) is a constant; \(E_g\) is the optical band gap. The value of \(n = 0.5\) for indirect band gap and \(n = 2\) for direct band gap materials. Because of \(\text{WO}_3\), has an indirect band gap, Tauc plot of \((\alpha h\nu)^{0.5}\) was plotted and its extrapolation on \(x\) intercepts gives the optical band gap value.

PHOTOELECTROCHEMICAL ANALYSIS

The photoelectrochemical measurement of the films were performed in a conventional three-electrode system with annealed \(\text{WO}_3\) or \(\text{WO}_3/\text{Au}\) photoelectrode as the working electrode, platinum as counter electrode, and SCE as reference electrode. A supporting electrolyte of 0.5 M Na\(_2\)SO\(_4\) solution was used to facilitate the ionic transfer efficiently. Prior to photocurrent measurement, the photoelectrodes were immersed in the supporting electrolyte and purged with nitrogen gas for 30 min. The scan rate was set as 0.05 V/s throughout the experiments. The analysis was carried out under Xenon lamp as simulated solar light source with light intensity of 100 mW/cm\(^2\). Also, methanol and formic acid were added into the system as organic sacrificial donor during the tests.

RESULTS AND DISCUSSION

Figure 1 shows the morphology and the cross-sectional profiles of the \(\text{WO}_3\) and \(\text{WO}_3/\text{Au}\) photoelectrodes. The \(\text{WO}_3/\text{Au}\) (1s) and \(\text{WO}_3/\text{Au}\) (5s) photoelectrodes show similar morphology to the typical dense \(\text{WO}_3\) prepared via electrodeposition method. However, the electrodeposited Au nanoparticles were not observable on the \(\text{WO}_3\) surface. To determine the presence of Au nanoparticles on the \(\text{WO}_3\) surface, EDX analysis (Figure 2) was carried out. Based on the results, the Au peaks are detected but not quantifiable in wt. %. This indicated that the Au nanoparticles were deposited onto the surface of \(\text{WO}_3\) film in a very small amount. In our other study, the Au is visible when using higher Au concentration in the electrodeposition solution (Ng et al. 2017). The elemental mapping shows that the Au was distributed homogeneously across the surface of \(\text{WO}_3\).

FIGURE 1. FESEM images of (a) \(\text{WO}_3/\text{Au}\) (1s) and (b) \(\text{WO}_3/\text{Au}\) (5s) at 30kx magnification and (c) \(\text{WO}_3\) at 10kx magnification with their cross-sectional profiles
UV-Vis absorption spectroscopy was employed to estimate the optical band gap (E_g) of the WO$_3$ films with different Au nanoparticles loading. From the spectra (Figure 3), all the WO$_3$ samples absorbed light with a wavelength smaller than 475 nm. This indicated that the band gap energy of the WO$_3$ produced is ~2.6 eV and it is similar with previous reports (Rao et al. 2014; Yang et al. 2015). Meanwhile, the Au nanoparticles on the FTO glass substrate showed a plasmonic absorption at 560 nm (inset of Figure 3). However, no obvious UV-Vis absorption of Au nanoparticles on WO$_3$ samples was observed and this may be due to the low amount of Au loading. The peaks above 450 nm are interference fringes commonly observed for WO$_3$ sample (Amer et al. 2019; Johansson et al. 2012). Tauc plot of $(\alpha h\nu)^{0.5}$ vs energy was plotted (Figure 3(b)) where an extrapolation was made by drawing a straight line along the linear portion of curves to the x-axis. The intercept between the x-axis with the straight line gives the optical band gap value. From the extrapolation, the band gaps of all samples are the same, which was found to be ~2.6 eV. The Au loading does not affect the band gap of WO$_3$ film.

FIGURE 2. EDX spectra and mapping of (a) WO$_3$/Au (1s) and (b) WO$_3$/Au (5s)

FIGURE 3. (a) UV-Vis spectra of WO$_3$ and WO$_3$/Au 1, 5, 10 and 15 s electrodeposition time of Au. (b) Tauc plots of WO$_3$/Au (1 s) and (c) WO$_3$/Au (15 s)
Photocurrent measurement of photoelectrode were carried out in conventional three electrode systems under 100 mW/cm² simulated solar light. The photocurrent density versus applied potential was obtained by employing linear sweep voltammograms (Figure 4(a)). Anodic photocurrent suggested that the WO₃ and WO₃/Au photoelectrodes are serving as photoanodes. Apparently, the addition of Au nanoparticles on the WO₃ surface improve the photocurrent generation without affecting the I/V profile of the WO₃. This suggested that the photocatalytic behavior of the WO₃ photoelectrode remained. The highest photocurrent generation was achieved by WO₃/Au (1s) photoelectrode. As the Au nanoparticles can serve as a catalyst in oxygen evolution reaction (OER), they can mediate and improve the rate of the hole transfer from WO₃ to water (Cheng 2015). The holes from the WO₃ will be injected into the Au nanoparticles, and transferred to the electrode/electrolyte interface, with a prolonged lifetime of photogenerated electron-hole pairs. Thus, the addition of Au loading enhanced the photoactivity of the WO₃ photocatalyst. Meanwhile, higher Au loading leads to the decrease of photocurrent generation. The Au nanoparticles may have covered the photoactive sites of the photocatalyst which hinders the contact between the photoactive sites with the electrolytes (Lui et al. 2019; Zhang et al. 2015). Moreover, the excess of Au loading will serve as electron-hole recombination center (Haro et al. 2014; Jun et al. 2020).

To understand the plasmonic behavior of Au nanoparticles on the WO₃ surface, photoelectrochemical tests were also carried out with several wavelength cut-off filters. The bare WO₃ photoelectrode generated photocurrent with the light irradiation <500 nm (Figure 4(b)). This is due to the band gap of WO₃ which only allows the light absorption at this region (as discussed in UV-Vis part). With the presence of Au nanoparticles, the photocurrent generation was extended to 600 nm. This was due to the plasmonic enhancement of photocatalytic water splitting reaction.
There are three mechanisms suggested to explain the plasmonic effect on photocatalytic water-splitting reaction (Mi et al. 2016). They are: light scattering effect, hot electron injection, and plasmon resonance energy transfer (PRET). Based on the previous studies, the light scattering effect can only be detectable when the size of the Au nanoparticles is larger than 50 nm (Zhang et al. 2014). In this work, the size of the electrodeposited Au nanoparticles is less than 50 nm. Therefore, only hot electron injection and PRET mechanisms may contribute to the significant improvement of photocurrent generation in WO₃/Au photoelectrodes.

In the hot electron injection mechanism (Figure 5(a)), the hot electrons generated during the light irradiation was injected into the conduction band of WO₃. Together with the electron generated by the WO₃, they travel across the external circuit and reduce the H⁺ ions at the Pt cathode. Meanwhile, for the PRET mechanism (Figure 5(b)), the plasmonic resonance of Au nanoparticles enhance the electromagnetic field of the neighboring WO₃, resulting in enhanced generation of electron-hole pairs. Thus, more electrons are generated and travel across the external circuit to reduce H⁺ ions. Here, it is possible that both hot electron injection mechanism and the PRET mechanism happened. This is because the WO₃/Au photoelectrode generated a much higher photocurrent density in the wavelength range of 500-600 nm (Figure 5(b)), as well as in the range of smaller wavelength (<450 nm) where the band edge absorption of WO₃ and the plasmonic absorption of Au nanoparticles overlapped (Ng et al. 2017; Ye et al. 2017).

FIGURE 5. Plasmonic enhancement of WO₃/Au via (a) hot electron injection and (b) plasmon resonance energy transfer (PRET) mechanism.
The Au-modified WO₃ photoelectrodes were also tested for photodegradation of organic compounds. In this study, methanol and formic acid were used as they are the simplest organic compounds with one carbon atom. The photocurrent generation was summarized in Table 1. In the presence of organic compounds, we found that the I/V profile of the WO₃ remained similar, but a higher photocurrent density was recorded. These organic compounds tend to be oxidized more easily compared to water. Therefore, they can serve as hole scavengers which consumes the photogenerated holes in photoanodes and prevents the electron-holes recombination. Slower rate of recombination allows more electrons available to be transported to the cathode (Zhang et al. 2007). Thus, the efficiency of the photocatalyst in the production of H₂ will be improved.

Without the presence of O₂, the degradation of these compounds will produce H⁺ ions and CO₂ gas, and the H⁺ will be reduced at the cathode to form H₂. The overall reactions as follow (Oros-Ruiz et al. 2013):

\[
\begin{align*}
\text{CH}_3\text{OH}_{(\text{liq})} & \rightarrow \text{H}_2\text{CO}_{(\text{gas})} + \text{H}_2(\text{gas}) \quad (4) \\
\text{H}_2\text{CO}_{(\text{gas})} + \text{H}_2\text{O}_{(\text{liq})} & \rightarrow \text{H}_2\text{CO}_2(\text{liq}) + \text{H}_2(\text{gas}) \quad (5) \\
\text{H}_2\text{CO}_2(\text{liq}) & \rightarrow \text{CO}_2(\text{gas}) + \text{H}_2(\text{gas}) \quad (6)
\end{align*}
\]

We also noticed that the photocurrent generation from the degradation of formic acid was higher compared to that of methanol. This might be due to the formic acid (pKₐ = 3.75) (Kim et al. 1996) is more readily to deprotonate compared to methanol (pKₐ = 15.5) (Zhu et al. 2009). As a result, the deprotonated formate ions that carry negative charge may be attracted to the surface of WO₃, and oxidized by the positive holes. Hence, higher photocurrent generation was recorded.

Table 1. The effect of Au nanoparticles loading towards the photoelectrochemical properties of the WO₃ photoanodes

<table>
<thead>
<tr>
<th>Photoelectrodes</th>
<th>Charge density*, mC/cm²</th>
<th>Photocurrent density**, mA/cm² (1.0 V/SCE)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Without donor</td>
</tr>
<tr>
<td>WO₃</td>
<td>-</td>
<td>0.61</td>
</tr>
<tr>
<td>WO₃/Au (1 s)</td>
<td>0.255</td>
<td>1.35</td>
</tr>
<tr>
<td>WO₃/Au (5 s)</td>
<td>0.0833</td>
<td>1.13</td>
</tr>
<tr>
<td>WO₃/Au (10 s)</td>
<td>0.1444</td>
<td>0.76</td>
</tr>
<tr>
<td>WO₃/Au (15 s)</td>
<td>0.1833</td>
<td>0.70</td>
</tr>
</tbody>
</table>

*The total charge density recorded during the electrodeposition of Au nanoparticles at 0.245 V vs. SCE

**0.5 M Na₂SO₄ as supporting electrolyte

CONCLUSION

In this study, we investigated the plasmonic behavior of Au nanoparticles on the WO₃ photoelectrode for water splitting reaction. The photocurrent improved >100% with a minimal amount of Au loading. This is suggested to be attributed by the hot electron injection and plasmon resonance energy transfer effects, which enhanced charge generation of the WO₃ photoelectrode. The photocurrent generation was further improved with the addition of sacrificial donors. It achieved 3.74 mA/cm² when 1.0 M of formic acid was added.

ACKNOWLEDGEMENTS

The authors would like to thank Universiti Kebangsaan Malaysia for providing the facilities and research grant GUP-2017-065 and PP-SELFUEL-2020.

REFERENCES

