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ABSTRACT

The coefficient of variation is widely used as a measure of data precision. Confidence intervals for a single coefficient 
of variation when the data follow a normal distribution that is symmetrical and the difference between the coefficients 
of variation of two normal populations are considered in this paper. First, the confidence intervals for the coefficient 
of variation of a normal distribution are obtained with adjusted generalized confidence interval (adjusted GCI), 
computational, Bayesian, and two adjusted Bayesian approaches. These approaches are compared with existing ones 
comprising two approximately unbiased estimators, the method of variance estimates recovery (MOVER) and generalized 
confidence interval (GCI). Second, the confidence intervals for the difference between the coefficients of variation of 
two normal distributions are proposed using the same approaches, the performances of which are then compared with 
the existing approaches. The highest posterior density interval was used to estimate the Bayesian confidence interval. 
Monte Carlo simulation was used to assess the performance of the confidence intervals. The results of the simulation 
studies demonstrate that the Bayesian and two adjusted Bayesian approaches were more accurate and better than the 
others in terms of coverage probabilities and average lengths in both scenarios. Finally, the performances of all of the 
approaches for both scenarios are illustrated via an empirical study with two real-data examples.

Keywords: Bayesian approach; coefficient of variation; difference; normal distribution; simulation

ABSTRAK

Pekali variasi digunakan secara meluas sebagai ukuran ketepatan data. Selang kepercayaan untuk pekali variasi 
tunggal apabila data mengikuti taburan normal yang simetris dan perbezaan antara pekali variasi dua populasi normal 
dipertimbangkan dalam makalah ini. Pertama, selang kepercayaan untuk pekali variasi sebaran normal diperoleh dengan 
selang kepercayaan umum yang disesuaikan (GCI disesuaikan), pengiraan, Bayesian dan dua pendekatan Bayesian yang 
disesuaikan. Pendekatan ini dibandingkan dengan pendekatan sedia ada yang terdiri daripada dua penganggar yang 
tidak berat sebelah, kaedah pemulihan anggaran varians (MOVER) dan selang kepercayaan umum (GCI). Seterusnya, 
selang kepercayaan untuk perbezaan antara koefisien variasi dua taburan normal diusulkan menggunakan pendekatan 
yang sama, persembahannya kemudian dibandingkan dengan pendekatan yang ada. Selang ketumpatan posterior 
tertinggi digunakan untuk menganggar selang keyakinan Bayesian. Simulasi Monte Carlo digunakan untuk menilai 
prestasi selang kepercayaan. Hasil kajian simulasi menunjukkan bahawa pendekatan Bayesian dan dua Bayesian 
yang disesuaikan lebih tepat dan lebih baik daripada yang lain daripada segi kebarangkalian liputan dan panjang 
purata dalam kedua-dua senario tersebut. Akhirnya, prestasi semua pendekatan untuk kedua-dua senario digambarkan 
melalui kajian empirik dengan dua contoh data sebenar.

Kata kunci: Pendekatan Bayesian; pekali variasi; perbezaan; simulasi; taburan normal

INTRODUCTION

The coefficient of variation is defined as the ratio of the 
standard deviation to the mean (and thus is unit free) 
and is used as a measure of the precision and repeatability 
of a data series. The coefficient of variation has been 
applied in many fields, such as business, climatology, 

science, medicine, economics, life insurance, environment, 
among others. For instance, the coefficient of variation has 
been used as a measure of precision within and between 
laboratories in science (Tian 2005), for the measurement of 
blood samples taken from different laboratories (Chow et 
al. 1998), to evaluate the variability in strength of building 



262 

materials in engineering and the physical properties of 
composite materials (Lim et al. 2018), and to measure the 
prevalence of smoking in tobacco controlled environments 
(Bernat et al. 2009). Moreover, using the coefficient of 
variation has been mentioned in other studies (McKay 
1932; Singh 1993). Moreover, control charts are often used 
to monitor the coefficient of variation in quality control 
applications (Kang et al. 2007; Menzefricke 2010; van Zyl 
& van der Merwe 2017; Zhang et al. 2018).

Several researchers have considered the statistical 
inference of using the coefficient of variation of a normal 
distribution. For instance, Doornbos and Dijkstra (1983) 
conducted a multi sample test for the equality of coefficients 
of variation in normal populations. Weerahandi (1995) 
introduced exact statistical methods for the coefficient 
of variation of a normal distribution. Vangel (1996) 
presented confidence intervals for the coefficient of 
variation of a normal distribution. Fung and Tsang (1998) 
reviewed several parametric and non‐parametric tests for 
the equality of coefficients of variation for k populations. 
Wong and Wu (2002) presented small sample asymptotic 
inference for the coefficient of variation for normal and 
non-normal models. Tian (2005) developed an approach 
using the concepts of generalized variables for confidence 
interval estimation and hypothesis testing for the common 
coefficient of variation based on several independent 
normal samples. Verrill and Johnson (2007) studied the 
confidence bounds and hypothesis testing for normal 
distribution coefficients of variation. Taye and Njuho 
(2008) examined and compared different approaches for 
constructing the confidence interval for the coefficient 
of variation of a normal distribution. Mahmoudvand and 
Hassani (2009) provided two approximately unbiased 
estimators for the confidence intervals for the coefficient 
of variation of a normal distribution. Liu et al. (2015) 
proposed new approaches for the coefficient of variation 
of normal distribution. Gulhar et al. (2012) compared 
some confidence intervals for estimating the population 
coefficient of variation of normal, Chi-squared and 
gamma distributions. Donner and Zou (2012) developed 
the method of variance estimates recovery (MOVER) 
approach to construct the confidence interval for the 
coefficient of variation of a normal distribution. Saelee 
et al. (2013) developed a new approximation method for 
determining the confidence intervals for the coefficients 
of variation of normal distributions. Niwitpong (2015) 
reviewed the confidence intervals for the difference 
between coefficients of variation of normal distributions 
and proposed new ones for this scenario with bounded 
parameters. Recently, Thangjai et al. (2020) presented 
adjusted generalized confidence intervals (adjusted GCIs) 
for the common coefficient of variation of several normal 
populations. 

In statistical inference, there are two ways to 
interpret of probability: Frequentist or classical inference 
and Bayesian inference. Frequentist inference defines 
probability as the limit of an event’s relative frequency for a 
large number of experiments whereas Bayesian inference 
defines probability as the way to represent an individual’s 
degree of belief in a statement. In Bayesian inference, 
the probability distributions represent prior uncertainty 
in the model parameters which are subsequently updated 
with respect to the given data. Hence, this gives rise to 
the posterior distribution as a combination of information 
from the prior distribution and the data. Camara (2003) 
proposed approximate Bayesian confidence intervals 
for the variance of a Gaussian distribution. Harvey et al. 
(2010) compared the Bayesian confidence intervals for 
the mean of a log-normal distribution with MOVER and 
generalized confidence interval (GCI). Camara (2012) 
presented new approximate Bayesian confidence intervals 
for the coefficient of variation of a Gaussian distribution. 
Harvey and van der Merwe (2012) provided Bayesian 
confidence intervals for the means and variances of log-
normal and bivariate log-normal distributions. Rao and 
D’Cunha (2016) proposed Bayesian inference for the 
median of a log-normal distribution.

In this study, we develop novel approaches to 
estimate the confidence intervals for the single coefficient 
of variation of a normal distribution and confidence 
intervals for the difference between the coefficients of 
variation of two normal distributions are constructed 
using new approaches. Mahmoudvand and Hassani 
(2009) proposed two approximately unbiased estimators 
using the concept of pivotal statistics to construct the 
confidence intervals for the coefficient of variation of a 
normal distribution. Moreover, Donner and Zou (2012) 
presented a confidence interval for the coefficient of 
variation of a normal distribution based on the MOVER. 
Herein, we propose GCI, adjusted GCI, computational, 
Bayesian, and two adjusted Bayesian approaches for 
the confidence interval estimation of the coefficient of 
variation of a normal distribution. Recently, Niwitpong 
(2015) presented three approaches based on the concepts 
of Mahmoudvand and Hassani (2009) and Donner and 
Zou (2012) for the confidence interval estimation of the 
difference between the coefficients of variation of two 
normal distributions with bounded parameters. Herein, we 
provide the GCI, adjusted GCI, computational, Bayesian, 
and two adjusted Bayesian approaches to construct 
the confidence intervals for the difference between the 
coefficients of variation of two normal distributions. All of 
these approaches for the two scenarios are summarized 
in Table 1.
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TABLE 1. Approaches for the confidence intervals for a single coefficient of variation  
and the difference between the coefficients of variation

Confidence intervals for single  
coefficient of variation

Confidence intervals for difference between coefficients 
of variation

Existing approach Proposed approach Existing approach Proposed approach

Mahmoudvand and 
Hassani  

(MH1 and MH2)

Adjusted Generalized 
Confidence Interval

(AGCI)

Mahmoudvand and 
Hassani  

(MH1 and MH2)

Adjusted Generalized 
Confidence Interval

(AGCI)

Method of Variance 
Estimates Recovery 

(MOVER)

Computational Approach  
(CA)

Method of Variance 
Estimates Recovery 

(MOVER)

Computational Approach  
(CA)

Generalized Confidence 
Interval (GCI)

Bayesian  
(BS)

Generalized Confidence 
Interval (GCI)

Bayesian  
(BS)

Adjusted Bayesian (ABS1 
and ABS2)

Adjusted Bayesian (ABS1 
and ABS2)

The rest of the paper is organized as follows. 
Methods for estimating the confidence intervals for 
the coefficient of variation of a normal distribution is 
provided in the next section. Subsequent section presents 
the confidence intervals for the difference between the 
coefficients of variation of two normal distributions. 
After that, simulation studies are carried out to evaluate 
the coverage probabilities and average lengths of the 
confidence intervals for the coefficient of variation and 
the difference between the coefficients of variation of two 
normal distributions. This is followed by the computation 
of the all approaches, illustrated using two examples. And 
finally, last section summarizes this paper.

CONFIDENCE INTERVALS FOR SINGLE COEFFICIENT OF 
VARIATION OF A NORMAL DISTRIBUTION

Let ),,,( 21 nXXXX =  be a random sample from the 
normal distribution with mean µ  and variance 2σ . The 
coefficient of variation is defined as the ratio of the 
standard deviation to the mean, denoted as µσθ /=  with 
≠µ  0. 

Let X  and 2S  be sample mean and sample variance, 
respectively. It is known that the unbiased estimators 
of µ  and 2σ  are X  and 2S , respectively. Also, let x and 

2s  be observed values of X  and 2S , respectively. The 
estimator of θ  is XS /ˆ =θ . Since this estimator is biased 
estimator.

According to Mahmoudvand and Hassani (2009) 
and Thangjai et al. (2020), the asymptomatically unbiased 
estimator of θ  is defined as 
                                                             
                                                         ,                            (1)                                        

nc−
=

2

ˆ~ θθ

where  . 

EXISTING APPROACH FOR CONFIDENCE INTERVAL FOR 
SINGLE COEFFICIENT OF VARIATION

Mahmoudvand and Hassani Approach for Confidence 
Interval for Single Coefficient of Variation 
Mahmoudvand and Hassani (2009) proposed the two 
confidence intervals for the single coefficient of 
variation of normal distribution. The 100(1-α )% two-sided 
confidence intervals for the single coefficient of variation 
are defined by 

                                       

(2)

  
and 

(3)

where XS /ˆ =θ , )2/(ˆ~
nc−=  , and  

                  .

MOVER Approach for Confidence Interval for Single 
Coefficient of Variation
Donner and Zou (2012) introduced the MOVER approach 
to construct the confidence interval for the single 
coefficient of variation of normal distribution. The  
100(1-α )% two-sided confidence interval for the single 
coefficient of variation based on the MOVER approach is 
defined by 
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                                                                                     , (4)

where 1/)1( una −= , 2/)1( unb −= , nSzXd /2
2/

2
α−=  

2
1,2/11 ~ −− nu αχ , and 2

1,2/2 ~ −nu αχ .

GCI Approach for Confidence Interval for Single 
Coefficient of Variation
Liu et al. (2015) proposed the GCI approach for 
constructing the confidence interval for normal 
coefficient of variation. Let )2/(αθR  and )2/1( αθ −R  
are the )2/(100 α -th and the )2/1(100 α− -th percentiles of 

θR , respectively. The 100(1-α )%  two-sided confidence 
interval for the single coefficient of variation based on 
the GCI approach is obtained by 
                        
                                                                         ,             (5)

where µσθ RRR /2= , 2
1

2 /)1(2 −−= nsnR χ
σ ,  

2
1−nχ  is the chi-squared distribution with 1−n  degrees of 

freedom, and Z is the standard normal distribution.

PROPOSED APPROACH FOR CONFIDENCE INTERVAL FOR 
SINGLE COEFFICIENT OF VARIATION

Adjusted GCI Approach for Confidence Interval for Single 
Coefficient of Variation
The GCI approach uses the generalized pivotal quantity 
for θ̂  to construct the confidence interval for the single 
coefficient of variation. Then, the confidence interval 
constructed by the generalized pivotal quantity for θ

~
 is 

called that the adjusted GCI approach. The generalized 
pivotal quantity for θ~  is defined as 
                     

(6)

Therefore, the 100(1-α )% two-sided confidence 
interval for the single coefficient of variation based on 
the adjusted GCI approach is obtained by 
                   

(7)

where )2/(~ αθR  and )2/1(~ αθ −R  are the )2/(100 α -th 
and the )2/1(100 α− -th percentiles of θ~R , respectively.
The following algorithm is used to construct the adjusted 
GCI for the single coefficient of variation of normal 
distribution:
Algorithm 1
Step 1: Generate 

2
1−nχ  from chi-squared distribution with 

1−n  degrees of freedom and Z  from standard normal 
distribution; Step 2: Compute θ~R  from (6) ; Step 3: Repeat 

step 1 - step  2, a total q  times and obtain an array of θ~R
’s; and Step 4: Compute ( )2/~ αθR  and ( )2/1~ αθ −R .

Computational Approach for Confidence Interval for 
Single Coefficient of Variation
Computational approach applies the concept of 
computational approach test (CAT). Application of the 
CAT can be found in Gül et al. (2019). The CAT uses for the 
equality of coefficient of variation in k populations. The 
CAT is used on simulation and numerical computation 
which uses the maximum likelihood estimates (MLEs). 
The computational approach recalculates the maximum 
likelihood estimate of new data.

Let XRML =µ̂  and nSnRML /)1(ˆ 22 −=σ  be restricted maximum likelihood 
(RML) estimator of parameters µ and nSnRML /)1(ˆ 22 −=σ , respectively. Let 
artificial sample ),,,( ..2.1 RMLnRMLRMLRML XXXX =  be 
the normal distribution with mean XRML =µ̂  and variance 

nSnRML /)1(ˆ 22 −=σ . Let RMLX  and 2
RMLS  be sample mean 

and sample variance of RMLX , respectively. Also, let 
RMLx  and 2

RMLs  be observed values of RMLX  and 2
RMLS

, respectively.
Hence, the estimator of coefficient of variation is 

defined as
                                                                                                                     

(8)

Therefore, the  100(1-α )% two-sided confidence interval 
for the single coefficient of variation based on the 
computational approach is obtained by 
                        

(9)

where )2/(ˆ αθRML  and )2/1(ˆ αθ −RML  are the )2/(100 α -th 
and the )2/1(100 α− -th percentiles of RMLθ̂ , respectively.

The following algorithm is used to construct 
the computational confidence interval for the single 
coefficient of variation of normal distribution:

Algorithm 2
Step 1: Generate RMLx  from )ˆ,ˆ( 2

RMLRMLN σµ ; Step 2: 
Compute RMLx  and 2

RMLs ; Step 3: Compute RMLθ̂  from 
)7( ; Step 4: Repeat step 1 - step 3, a total q  times and 

obtain an array of RMLθ̂ ’s; and Step 5: Compute )2/(ˆ αθRML  
and )2/1(ˆ αθ −RML .

Bayesian Approach for Confidence Interval for Single 
Coefficient of Variation
Bayesian approach uses Bayes’ theorem which is 
used to update the probability for hypothesis as more 
evidence becomes available, see Bayes (1763). This 
approach derives the posterior probability. The posterior 
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probability is based on the likelihood function and the 
prior probability. The likelihood function is a function 
of the evidence. The prior probability is the estimate 
of the probability of the hypothesis before the data is 
observed. Let ),,,( 21 nxxxx =  be observed value 
of ),,,( 21 nXXXX = . The posterior distribution 
is computed according the Bayes’ rule as follows: 

)(/)|()()|( xPxPPxP γγγ = , where ),( 2σµγ =  is the 
set of parameter, )|( xP γ  is the posterior probability, )(γP  
is the prior probability,  )|( γxP  is likelihood function, 
and )(xP  is the marginal likelihood. 

The posterior distribution is proportional to the 
product of the likelihood and prior is the accurate 
description of Bayes’ theorem. The independence Jeffreys 
prior distribution follows from the Fisher information 
matrix (Tongmol et al. 2016). The independence Jeffreys 
prior is obtain by 𝑃𝑃(𝜇𝜇, 𝜎𝜎2) ∝ 1/𝜎𝜎2.  Therefore, the 
conditional posterior distribution for µ  given 2σ  and 
x  defined by x,| 2σµ  is the normal distribution. The 
distribution of x,| 2σµ  is defines as
                                                 
                                                       .                      (10)

Furthermore, the posterior distribution for 2σ  
defined by x|2σ  is inverse gamma distribution which 
is defined as 
                                                           
                                                            ,                       (11)                                        

where 1−= nv .

Bayesian approach uses posterior distribution 
of coefficient of variation to construct the confidence 
interval through Monte Carlo simulation. Since the 
posterior distribution of coefficient of variation of normal 
distribution is defined as 
                                                     
                                                     ,                              (12)                                                              

where µ  and 2σσ =  are simulated from the posterior 
distributions as defined in (10)  and (11), respectively. The 
Bayesian computation for the posterior of 


 =BS   µσθ /=BS  is 

used the standard routines in the simulation procedure, 
see Algorithm 3.

The posterior distribution is used to construct the 
Bayesian confidence interval. Gelman et al. (2013) 
proposed that a slightly different summary of posterior 
uncertainty is the highest posterior density interval. The set 
of values contains 100(1-α )%  of the posterior probability. 
Furthermore, the density within the region is never 
lower than the density outside the region. If the posterior 
distribution is unimodal and symmetric, then this region 
is identical to a central posterior interval. Therefore, the 
100(1-α )% two-sided confidence interval for the single 
coefficient of variation based on the Bayesian approach 
is obtained by 

                                      

                                                             ,                      (13)

where BSL .   and BSU .   are the lower limit and the upper 
limit of the shortest  100(1-α )%  highest posterior density 
interval of BS  , respectively.

The following algorithm is used to construct the 
Bayesian confidence interval for the single coefficient of 
variation of normal distribution:

Algorithm 3 
Step 1: Generate )2/,2/(~| 22 vsvIGx  ; Step 2: Generate 

)/,ˆ(~,| 22 nNx σµσµ ;  Step 3: Compute BS   from 
Equation (12); Step 4: Repeat step 1 - step 3, a total q  
times and obtain an array of BS  ’s; and Step 5: Compute 

BSL .    and BSU .   .

Adjusted Bayesian Approach for Confidence Interval for 
Single Coefficient of Variation
Bayesian approach uses posterior of 𝜃𝜃𝐵𝐵𝐵𝐵 = 𝜎𝜎/𝜇𝜇. 

 

 The 
adjusted Bayesian approach is motivated based on the 
Bayesian approach which uses posteriors of θR  of Liu 
et al. (2015) and θ~R  defined in (6). In this study, two 
adjusted Bayesian confidence intervals are constructed 
based on the adjusted Bayesian approach using the GCI 
approach based on the generalized pivotal quantity of Liu 
et al. (2015) and the adjusted GCI approach based on the 
generalized pivotal quantity in (6).

First, the generalized pivotal quantity θR  of Liu et 
al. (2015) is used to construct the confidence interval 
based on the adjusted Bayesian approach. Therefore, the 
100(1-α )% two-sided confidence interval for the single 
coefficient of variation based on the adjusted Bayesian 
approach using the GCI approach based on the generalized 
pivotal quantity of Liu et al. (2015) is obtained by 
                                                                                       
                                                                    ,               (14)

where 1.ABSLθ  and 1.ABSUθ  are the lower limit and the 
upper limit of the shortest 100(1-α )% highest posterior 
density interval of θR , respectively.

Second, the adjusted Bayesian confidence interval is 
constructed based on the generalized pivotal quantity θ~R  
in )6( . Therefore, the 100(1-α )% two-sided confidence 
interval for the single coefficient of variation based on 
the adjusted Bayesian approach using the adjusted GCI 
approach based on the generalized pivotal quantity in 
equation )6(  is obtained by 
                                                                                    
                                                                  ,                 (15)

where 2.ABSLθ  and 2.ABSUθ  are the lower limit and the 
upper limit of the shortest 100(1-α )%  highest posterior 
density interval of θ~R , respectively.
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The following algorithm is used to construct the 
adjusted Bayesian confidence interval for the single 
coefficient of variation of normal distribution:

Algorithm 4 
Step 1: Generate 2

1−nχ  from chi-squared distribution 
with 1−n  degrees of freedom and Z from standard 
normal distribution; Step 2: Compute θR  and θ~R  ; Step 
3: Repeat step 1 - step 2, a total q  times and obtain array 
of θR ’s and array of θ~R ’s; Step 4: Compute 1.ABSLθ ; Step 
5: Compute 1.ABSUθ ; Step 6: Compute 2.ABSLθ ; and Step 7: 
Compute 2.ABSUθ .

CONFIDENCE INTERVALS FOR THE DIFFERENCE 
BETWEEN THE COEFFICIENTS OF VARIATION OF TWO 

NORMAL DISTRIBUTIONS

Let ),,,( 21 nXXXX =  and ),,,( 21 mYYYY =  be 
random samples from two normal distributions with 
means Xµ , Yµ  and variances 2

Xσ , 2
Yσ . The coefficients 

of variation of X  and Y  are XXX µσθ /=  and 
YYY µσθ /= , respectively. The difference of coefficients 

of variation is defined by 
                                                   
                                                                 .                  (16)

Let X  and 2
XS  be sample mean and sample variance 

of X , respectively, let Y  and 2
YS  be sample mean and 

sample variance of Y , respectively. Also, let x , y , 2
Xs

, and 2
Ys  be observed values of X , Y , 2

XS , and 2
YS , 

respectively. The maximum likelihood estimator of δ  
is obtained by 
                                                                                                      

                                                                .                   (17)

Moreover, the asymptomatically unbiased estimator 
of δ  is obtained by:
                                              
                                                                      ,             (18)                        

where ))2/)1((/)2/(()1/(2 −−= nnncn  

))2/)1((/)2/(()1/(2 −−= mmmcm  

 and 

))2/)1((/)2/(()1/(2 −−= nnncn  

))2/)1((/)2/(()1/(2 −−= mmmcm  
                                 .

EXISTING APPROACH FOR THE DIFFERENCE BETWEEN 
THE COEFFICIENTS OF VARIATION

Mahmoudvand and Hassani Approach for Confidence 
Interval for the Difference between the Coefficients of 
Variation
Here, three approaches of Niwitpong (2015) are briefly 
discussed to construct the confidence intervals for 
the difference of coefficients of variation of normal 

distributions. The 100(1-α )% two-sided confidence 
intervals for the difference of coefficients of variation 
based on two approaches of Mahmoudvand and Hassani 
(2009) are defined by 
      
                                                                                    (19)
                                         
and
                                            
                                                                                    (20)

where        

and
                          

MOVER Approach for Confidence Interval for the 
Difference between the Coefficients of Variation
The 100(1-α )% two-sided confidence interval for the 
difference of coefficients of variation based on MOVER 
approach is defined by
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where                              
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GCI approach for Confidence Interval for the Difference 
between the Coefficients of Variation
The GCI approach of Liu et al. (2015) is used to estimate 
confidence interval for the difference of coefficients of 
variation of normal distributions. The generalized pivotal 
quantities for Xθ  and Yθ  are defined as

          
   

(22)

where XZ  and YZ  are the standard normal distributions, 
2

1−nχ  is the chi-square distribution with 1−n  degrees of 
freedom, and 2

1−mχ  is the chi-square distribution with 
1−m  degrees of freedom.
The generalized pivotal quantity for YX θθδ −=  is 

defined as 
                                  

YX
RRR θθδ −=

                                                        
                                                              .                      (23)

Therefore, the 100(1-α )% two-sided confidence 
interval for the difference of coefficients of variation 
based on the GCI approach is obtained by
                          
                                                                              ,      (24)

where )2/(αδR  and  )2/1( αδ −R  are the )2/(100 α -th 
and the )2/1(100 α− -th percentiles of δR , respectively.

PROPOSED APPROACH FOR THE DIFFERENCE BETWEEN 
THE COEFFICIENTS OF VARIATION

Adjusted GCI Approach for the Difference between the 
Coefficients of Variation
The GCI approach uses the generalized pivotal quantity 
for YX θθδ −=  to construct the confidence interval for 
difference of coefficients of variation. The GCI approach 
is applied the concept of constructing the confidence 
interval which is the adjusted GCI approach. The adjusted 
GCI approach uses the generalized pivotal quantity for 

YX θθδ ~~~
−=  to construct the confidence interval.

From (6), the generalized pivotal quantities for Xθ
~  

and Yθ
~

 are defined as

  (25)                                                        

and 
                                                        

(26)

The generalized pivotal quantity for YX θθδ ~~~
−=  is 

defined as

                                                              .                                    (27)                                                      

Therefore, the 100(1-α )%  two-sided confidence interval 
for the difference of coefficients of variation based on the 
adjusted GCI approach is obtained by 
                   

 (28)

where )2/(~ αδR  and )2/1(~ αδ −R  are the )2/(100 α -th 
and the )2/1(100 α− -th percentiles of δ~R , respectively.

The following algorithm is used to construct 
the adjusted generalized confidence interval for 
the difference of coefficients of variation of normal 
distributions:

Algorithm 5
Step 1: Generate 2

1−nχ , 2
1−mχ , XZ , and YZ ; Step 2: 

Compute 
X

Rθ~  from equation (25)  and 
Y

Rθ~  from  (26); 
Step 3: Compute 

δ~R  from (27) ; Step 4: Repeat step 1 - 
step 3, a total q  times and obtain an array of δ~R ’s; and 
Step 5: Compute )2/(~ αδR  and )2/1(~ αδ −R .

Computational Approach for the Difference between the 
Coefficients of Variation
L e t  X R M L  =  ( X 1 . R M L ,  X 2 . R M L , . . . , X n . R M L )  a n d 

),,,( ..2.1 RMLmRMLRMLRML YYYY =  be artificial samples 
from two normal distributions with means XRMLX =.µ̂  

YRMLY =.µ̂  a n d  v a r i a n c e s  nSn XRMLX /)1(ˆ 22
. −=σ , 

mSm YRMLY /)1(ˆ 22
. −=σ . Let RMLX  and 2

.RMLXS  be sample 
mean and sample variance of RMLX , respectively, let RMLY  
and 2

.RMLYS  be sample mean and sample variance of RMLY  
respectively. Also, let RMLx , RMLy , 2

.RMLXs , and 2
.RMLYs  

be observed values of RMLX , RMLY , 
2

.RMLXS , and 
2
.RMLYS

  respectively.
The estimator of RMLYRMLXRML .. θθδ −=  is defined as 

                                                                                   .            (29)                          

Therefore, the 100(1-α )%  two-sided confidence interval 
for the difference of coefficients of variation based on 
the computational approach is obtained by 
                      

(30)

where )2/(ˆ αδ RML  and )2/1(ˆ αδ −RML  are the )2/(100 α -th 
and the )2/1(100 α− -th percentiles of RMLδ̂ , respectively.

The following algorithm is used to construct the 
computational confidence interval for the difference of 
coefficients of variation of normal distributions:
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Algorithm 6 
Step 1: Generate RMLx  from )ˆ,ˆ( 2

.. RMLXRMLXN σµ and 
generate RMLy  from )ˆ,ˆ( 2

.. RMLYRMLYN σµ ; Step 2: Compute 
RMLx , RMLy , 2

.RMLXs , and 2
.RMLYs ; Step 3: Compute 

RMLδ̂  from (29); Step 4: Repeat step 1 - step 3, a total q  
times and obtain an array of RMLδ̂ ’s; and Step 5: Compute 

)2/(ˆ αδ RML  and )2/1(ˆ αδ −RML .

Bayesian Approach for the Difference between the 
Coefficients of Variation
From (12), the posterior distribution of YX θθδ −=  is 
defined as 
                                                     
                                                          .                          (31)

Therefore, the 100(1-α )% two-sided confidence 
interval for the difference of coefficients of variation 
based on the Bayesian approach is obtained by
                                                                                              
                                                                ,                      (32)

where BSL .       BSU .   BS   and BSL .       BSU .   BS   are the lower limit and the upper 
limit of the shortest 100(1-α )%  highest posterior density 
interval of BSL .       BSU .   BS  , respectively.

The following algorithm is used to construct 
the Bayesian confidence interval for the difference of 
coefficients of variation of normal distributions:

Algorithm 7 
Step 1: Generate                                          and

)2/,2/(~| 22
XXXX svvIGx       

)2/,2/(~| 22
YYYY svvIGy  ; Step2: Generate                                

and                                         ; Step 3: Compute       from 
(31) ; Step 4: Repeat step 1 - step 3, a total q  times and 
obtain an array of BSL .       BSU .   BS  ’s; and Step 5: Compute BSL .       BSU .   BS    and 

BSL .       BSU .   BS  .

Adjusted Bayesian Approach for the Difference between 
the Coefficients of Variation
The concept of Bayesian approach is applied to construct 
the confidence interval. It is called the adjusted Bayesian 
approach. The adjusted Bayesian approach uses δR  in 
(23). Therefore, the 100(1-α )% two-sided confidence 
interval for the difference of coefficients of variation 
based on the adjusted Bayesian approach using the GCI 
approach based on the generalized pivotal quantity in 
(23) is obtained by 
                                                                             
                                                                 ,                   (33) 

where 1.ABSLδ and 1.ABSUδ  are the lower limit and the upper 
limit of the shortest 100(1-α )%  highest posterior density 
interval of δR , respectively.

 Similarly, the generalized pivotal quantity 
δ~R  in 

(27) is used to construct the adjusted Bayesian confidence 
interval. Therefore, the 100(1-α )% two-sided confidence 
interval for the difference of coefficients of variation 
based on the adjusted Bayesian approach using the 
adjusted GCI approach based on the generalized pivotal 
quantity in (27) is obtained by
                                     
                                                                   ,                 (34)

where 2.ABSLδ  and 2.ABSUδ  are the lower limit and the 
upper limit of the shortest 100(1-α )% highest posterior 
density interval of 

δ~R , respectively.
The following algorithm is used to construct the 

adjusted Bayesian confidence interval for the difference 
of coefficients of variation of normal distributions:

Algorithm 8 
Step 1: Generate 

2
1−nχ , 

2
1−mχ , XZ , and YZ ; Step 2: Compute 

X
Rθ  and 

Y
Rθ  from (22); Step 3: Compute 

X
Rθ~  from (25) 

and 
Y

Rθ~  from (26); Step 4: Compute δR  from (23) and 
compute δ~R  from (27); Step 5: Repeat step 1 - step 4, a 
total q  times and obtain array of δR ’s and array of 

δ~R ’s; Step 6: Compute 1.ABSLδ ; Step 7: Compute 1.ABSUδ ; 
Step 8: Compute 2.ABSLδ ;  and Step 9: Compute 2.ABSUδ .

SIMULATION STUDIES

Monte Carlo simulation studies were carried out to 
evaluate the performance of the proposed confidence 
intervals for the coefficient of variation of a normal 
distribution and the difference between the coefficients 
of variation of two normal distributions. Then, it is used 
to conduct a comparison study with the proposed and 
existing confidence intervals. The proposed confidence 
intervals for both scenarios were constructed using 
the adjusted GCI, computational, Bayesian, and two 
adjusted Bayesian approaches, while the existing ones 
were constructed based on two approximately unbiased 
estimators, MOVER, and GCI. Moreover, for the difference 
of coefficients of variation, three existing confidence 
intervals proposed by Niwitpong (2015) and the GCI were 
used in the study. The performances of these approaches 
were evaluated through the coverage probabilities 
and average lengths of the confidence intervals. 5000 
simulation datasets were generated for each parameter 
combination and 2500 random variables were generated 
to construct the confidence intervals for each dataset.

The following algorithm is used to compute the 
coverage probability and average length of the confidence 
interval for single coefficient of variation of a normal 
distribution:

Y

Y

X

X
BS 



 −=  

],[ ... BSBSBS ULCI  =  

],[ 1.1.1. ABSABSABS ULCI  =  

],[ 2.2.2. ABSABSABS ULCI  =  

)2/,2/(~| 22
XXXX svvIGx       

)2/,2/(~| 22
YYYY svvIGy  
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Algorithm 9 
Step 1: Generate x  from ),( 2σµN ; Step 2: Compute x  
and 2s ; Step 3: Use algorithm 1 - algorithm 4 to construct 
the confidence intervals; Step 4: If UL ≤≤θ , set =p
1; else set =p  0; Step 5: Compute LU − ; Step 6: Repeat 
step 1 - step 5, a total M  times; Step 7: Compute mean 
of p  defined by the coverage probability; and Step 8: 
Compute mean of LU −  defined by the average length.

The following algorithm is used to compute 
the coverage probability and average length of the 
confidence interval for the difference between the 
coefficients of variation of two normal distributions:

Algorithm 10 
Step 1: Generate x  from ),( 2

XXN σµ  and generate y  
from ),( 2

YYN σµ ; Step 2: Compute x, y, 2
Xs , and 2

Ys  ; 
Step 3: Use algorithm 5 - algorithm 8 to construct the 
confidence intervals;
Step 4: If UL ≤≤ δ , set =p 1; else set =p  0; Step 5: 
Compute LU − ; Step 6: Repeat step 1 - step 5, a total 
M  times; Step 7: Compute mean of p  defined by the 
coverage probability; and Step 8: Compute mean of 

LU −  defined by the average length.

The performances of the confidence intervals for 
the coefficient of variation of a normal distribution are 
compared in Table 2. For a very small sample size ( =n
10), the coverage probabilities of the GCI and adjusted 
GCI approaches were close to the nominal confidence 
level of 0.95 when the coefficient of variation was 
small ( ≤θ 0.50) but were unsatisfactory when it was 
large ( >θ 0.50). Moreover, these approaches attained 
coverage probabilities close to the nominal confidence 
level of 0.95 with increasing sample size. However, the 
coverage probabilities of the confidence intervals via 
the computational approach were quite unsatisfactory 
whereas those with Bayesian and two adjusted Bayesian 
approaches were very satisfactory for all cases. Indeed, the 
three Bayesian approaches performed consistently better 
than the three existing approaches. The results confirm 
that the Bayesian and two adjusted Bayesian approaches 
performed well in terms of coverage probability and 
average length for almost all cases whereas the GCI 
and the adjusted GCI approaches were better when the 
coefficient of variation was small ( ≤θ 0.50). The Bayesian 
approach and two adjusted Bayesian approaches are 
recommended when the coefficient of variation is large 
( >θ 0.50).

TABLE 2. Coverage probabilities and average lengths of 95% two-sided confidence intervals for the coefficient of variation of 
normal distribution

n Confidence 
intervals

Coverage probability (Average length)

θ

0.05 0.10 0.50 1.00

10 0.9408 
(0.0525)

0.9442 
(0.1041)

0.8904 
(0.5376)

0.7580 
(1.2152)

0.8650 
(0.0423)

0.8674 
(0.0845)

0.8708 
(0.5383)

0.8492 
(2.8621)

0.9374 
(0.0555)

0.9366 
(0.1091)

0.8104 
(0.4704)

0.8668 
(0.7176)

0.9412 
(0.0559)

0.9488 
(0.1124)

0.9500 
(0.9005)

0.9770 
(8.3653)

0.9470 
(0.0544)

0.9516 
(0.1094)

0.9502 
(0.8772)

0.9752 
(8.1844)

0.8514 
(0.0422)

0.8574 
(0.0843)

0.8766 
(0.5796)

0.8926 
(5.5239)

0.9450 
(0.0513)

0.9496 
(0.1029)

0.9526 
(0.7460)

0.9534 
(7.6017)

0.9448 
(0.0514)

0.9492 
(0.1029)

0.9538 
(0.7454)

0.9544 
(7.5586)

0.9380 
(0.0500)

0.9442 
(0.1001)

0.9466 
(0.7258)

0.9472 
(7.3775)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  
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0.9522 
(0.0267)

0.9486 
(0.0534)

0.8894 
(0.2696)

0.7440 
(0.5544)

0.9232 
(0.0250)

0.9190 
(0.0504)

0.9268 
(0.3105)

0.9114 
(0.9462)

0.9480 
(0.0270)

0.9282 
(0.0534)

0.6960 
(0.2153)

0.5360 
(0.3532)

0.9532 
(0.0273)

0.9504 
(0.0550)

0.9444 
(0.3549)

0.9520 
(1.3274)

0.9552 
(0.0270)

0.9530 
(0.0545)

0.9482 
(0.3518)

0.9498 
(1.3140)

0.9174 
(0.0250)

0.9134 
(0.0504)

0.9268 
(0.3154)

0.9304 
(1.1205)

0.9520 
(0.0264)

0.9472 
(0.0532)

0.9522 
(0.3358)

0.9580 
(1.1451)

0.9510 
(0.0264)

0.9480 
(0.0532)

0.9536 
(0.3360)

0.9592 
(1.1460)

0.9486 
(0.0262)

0.9456 
(0.0528)

0.9506 
(0.3331)

0.9538 
(1.1368)

50
0.9486 

(0.0203)
0.9428

(0.0404)
0.8864

(0.2031)
0.7460

(0.4130)

0.9372 
(0.0195)

0.9316
(0.0392)

0.9282
(0.2397)

0.9234
(0.7069)

0.9446 
(0.0204)

0.9114
(0.0394)

0.6398
(0.1661)

0.4880
(0.2925)

0.9516 
(0.0205)

0.9448
(0.0412)

0.9430
(0.2590)

0.9504
(0.8332)

0.9522 
(0.0204)

0.9480
(0.0410)

0.9452
(0.2577)

0.9494
(0.8290)

0.9358 
(0.0195)

0.9282
(0.0392)

0.9260
(0.2420)

0.9356
(0.7621)

0.9490
(0.0201)

0.9434
(0.0403)

0.9424
(0.2501)

0.9522
(0.7714)

0.9482
(0.0201)

0.9434
(0.0403)

0.9436
(0.2501)

0.9518
(0.7711)

0.9456
(0.0200)

0.9438
(0.0401)

0.9434
(0.2489)

0.9520
(0.7675)

0.9522
(0.0141)

0.9478
(0.0282)

0.8850
(0.1412)

0.7456
(0.2850)

0.9436
(0.0138)

0.9404
(0.0279)

0.9364
(0.1698)

0.9426
(0.4913)

0.9388
(0.0140)

0.8806
(0.0269)

0.5814
(0.1195)

0.4926
(0.2506)

0.9512
(0.0142)

0.9478
(0.0286)

0.9434
(0.1763)

0.9452
(0.5293)

0.9524
(0.0142)

0.9498
(0.0285)

0.9456
(0.1759)

0.9464
(0.5282)

0.9426
(0.0138)

0.9372
(0.0279)

0.9366
(0.1705)

0.9424
(0.5075)

0.9504
(0.0140)

0.9456
(0.0282)

0.9424
(0.1726)

0.9514
(0.5088)

0.9492
(0.0140)

0.9460
(0.0282)

0.9438
(0.1727)

0.9506
(0.5087)

0.9500
(0.0140)

0.9456
(0.0281)

0.9446
(0.1722)

0.9508
(0.5076)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 100

30

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  
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200 0.9536
(0.0099)

0.9516
(0.0198)

0.8926
(0.0988)

0.7404
(0.1985)

0.9492
(0.0098)

0.9514
(0.0198)

0.9444
(0.1199)

0.9458
(0.3427)

0.9210
(0.0097)

0.8246
(0.0182)

0.5580
(0.0938)

0.4938
(0.2095)

0.9538
(0.0099)

0.9552
(0.0200)

0.9498
(0.1222)

0.9518
(0.3551)

0.9544
(0.0099)

0.9544
(0.0200)

0.9510
(0.1221)

0.9508
(0.3547)

0.9476
(0.0098)

0.9492
(0.0198)

0.9470
(0.1202)

0.9484
(0.3480)

0.9514
(0.0098)

0.9546
(0.0198)

0.9486
(0.1205)

0.9500
(0.3471)

0.9514
(0.0098)

0.9514
(0.0198)

0.9480
(0.1205)

0.9520
(0.3471)

0.9492
(0.0098)

0.9524
(0.0198)

0.9474
(0.1203)

0.9498
(0.3466)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

The coverage probabilities and the average lengths 
of the 95% two-sided confidence intervals for the 
difference between the coefficients of variation of two 
normal distributions are reported in Table 3. For small 
sample sizes =),( mn (10,10) and =),( mn  (10,30), the 
GCI, adjusted GCI, Bayesian, and two adjusted Bayesian 
approaches yielded coverage probabilities that tended 
to be too high as compared to the nominal confidence 
level of 0.95 when the coefficients of variation were 
large. However, these approaches performed well with 
coverage probabilities that were close to the nominal 
confidence level of 0.95 when the sample sizes were 
large. Meanwhile, the computational approach and 

three existing approaches tended to underestimate the 
coverage probabilities when the sample sizes were 
small but became closer to the nominal confidence level 
of 0.95 as the sample sizes increased. Furthermore, the 
average lengths of the Bayesian approach and two adjusted 
Bayesian approaches were shorter than those of the GCI 
approach and adjusted GCI approaches, and it was found 
that the two adjusted Bayesian approaches performed 
better than the others when the coefficients of variation 
were small. Meanwhile, the two approximately unbiased 
estimators of Mahmoudvand and Hassani (2009) were 
better than the other approaches when the coefficients of 
variation were large.

TABLE 3. Coverage probabilities and average lengths of 95% two-sided confidence intervals for the difference of coefficients of 
variation of normal distributions

n m Confidence 
intervals

Coverage probability (Average length)

),( YX θθ

(0.05,0.05) (0.20,0.30) (0.55,0.55) (0.90,0.75)

10 10 0.9312
(0.0604)

0.9170
(0.3079)

0.8756
(0.6884)

0.7782
(1.1206)

0.9318
(0.0605)

0.9342
(0.3306)

0.9826
(0.9068)

0.9860
(2.2424)

0.9492
(0.0865)

0.9222
(0.4109)

0.9082
(0.8024)

0.9098
(1.2799)

0.9442
(0.0841)

0.9498
(0.4873)

0.9600
(1.8269)

0.9814
(8.5703)

0.9442
(0.0817)

0.9502
(0.4745)

0.9594
(1.7785)

0.9804
(8.3088)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  
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0.9444
(0.0606)

0.9330
(0.3349)

0.9472
(1.0536)

0.9548
(4.8625)

0.9618
(0.0827)

0.9676
(0.4713)

0.9882
(1.7195)

0.9952
(8.2006)

0.9610
(0.0827)

0.9678
(0.4712)

0.9886
(1.7193)

0.9948
(8.2057)

0.9616
(0.0805)

0.9680
(0.4581)

0.9882
(1.6782)

0.9948
(7.9864)

0.9148
(0.0491)

0.9244
(0.2287)

0.8618
(0.5613)

0.7552
(0.9335)

0.9152
(0.0492)

0.9442
(0.2429)

0.9338
(0.7318)

0.9092
(1.8908)

0.9468
(0.0643)

0.9174
(0.2796)

0.8756
(0.6209)

0.9090
(1.0677)

0.9480
(0.0637)

0.9476
(0.3150)

0.9562
(1.2545)

0.9732
(5.9170)

0.9486
(0.0623)

0.9474
(0.3091)

0.9562
(1.2276)

0.9706
(5.8039)

0.9092
(0.0492)

0.9402
(0.2445)

0.9192
(0.8131)

0.9078
(3.7768)

0.9560
(0.0613)

0.9628
(0.3070)

0.9734
(1.1197)

0.9710
(5.4093)

0.9578
(0.0613)

0.9634
(0.3070)

0.9716
(1.1186)

0.9702
(5.4105)

0.9552
(0.0600)

0.9646
(0.3014)

0.9694
(1.0942)

0.9694
(5.3039)

0.9446
(0.0354)

0.9254
(0.1816)

0.8832
(0.3952)

0.7908
(0.6063)

0.9452
(0.0355)

0.9448
(0.1949)

0.9656
(0.5068)

0.9732
(0.9856)

0.9520
(0.0396)

0.8960
(0.1901)

0.8710
(0.4139)

0.8642
(0.6902)

0.9492
(0.0393)

0.9474
(0.2190)

0.9536
(0.6049)

0.9468
(1.3273)

0.9506
(0.0389)

0.9482
(0.2171)

0.9532
(0.5994)

0.9464
(1.3166)

0.9506
(0.0355)

0.9432
(0.1957)

0.9522
(0.5221)

0.9420
(1.1115)

0.9560
(0.0389)

0.9554
(0.2155)

0.9698
(0.5959)

0.9758
(1.2709)

0.9564
(0.0389)

0.9564
(0.2156)

0.9704
(0.5957)

0.9756
(1.2709)

0.9576
(0.0386)

0.9534
(0.2138)

0.9688
(0.5909)

0.9744
(1.2606)

0.9488
(0.0317)

0.9334
(0.1544)

0.8754
(0.3537)

0.7762
(0.5524)

0.9498
(0.0318)

0.9522
(0.1649)

0.9566
(0.4529)

0.9562
(0.9050)

0.9538
(0.0347)

0.8984 
(0.1605)

0.8682
(0.3724)

0.8690
(0.6453)

0.9534
(0.0346)

0.9532
(0.1801)

0.9500
(0.5243)

0.9472
(1.1947)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

  10                30 

  30                30 

  30                50 1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 



  273

0.9550
(0.0343)

0.9514
(0.1790)

0.9502
(0.5207)

0.9498
(1.1849)

0.9494
(0.0318)

0.9514
(0.1654)

0.9458
(0.4643)

0.9386
(1.0217)

0.9584
(0.0342)

0.9576
(0.1783)

0.9628
(0.5148)

0.9702
(1.1246)

0.9594
(0.0342)

0.9584
(0.1785)

0.9636
(0.5148)

0.9706
(1.1268)

0.9568
(0.0339)

0.9570
(0.1772)

0.9600
(0.5108)

0.9694
(1.1165)

0.9504
(0.0276)

0.9270
(0.1408)

0.8744
(0.3056)

0.7916
(0.4643)

0.9508
(0.0276)

0.9448
(0.1511)

0.9546
(0.3900)

0.9662
(0.7396)

0.9498
(0.0294)

0.8854
(0.1430)

0.8576
(0.3284)

0.8662
(0.5597)

0.9496
(0.0293)

0.9484
(0.1618)

0.9480
(0.4321)

0.9462
(0.8669)

0.9520
(0.0292)

0.9470
(0.1610)

0.9474
(0.4299)

0.9484
(0.8627)

0.9502
(0.0276)

0.9448
(0.1514)

0.9434
(0.3967)

0.9440
(0.7851)

0.9558
(0.0291)

0.9520
(0.1597)

0.9574
(0.4274)

0.9662
(0.8492)

0.9530
(0.0291)

0.9498
(0.1598)

0.9560
(0.4274)

0.9662
(0.8487)

0.9532
(0.0290)

0.9528
(0.1590)

0.9562
(0.4252)

0.9650
(0.8438)

0.9404
(0.0239)

0.9326
(0.1140)

0.8750
(0.2639)

0.7864
(0.4135)

0.9410
(0.0239)

0.9484
(0.1214)

0.9540
(0.3360)

0.9520
(0.6663)

0.9430
(0.0251)

0.8876
(0.1175)

0.8524
(0.2925)

0.8698
(0.5093)

0.9466
(0.0251)

0.9490
(0.1275)

0.9518
(0.3647)

0.9524
(0.7652)

0.9462
(0.0250)

0.9498
(0.1271)

0.9528
(0.3633)

0.9534
(0.7611)

0.9424
(0.0240)

0.9482
(0.1216)

0.9464
(0.3406)

0.9450
(0.7026)

0.9466
(0.0249)

0.9514
(0.1265)

0.9570
(0.3592)

0.9662
(0.7389)

0.9458
(0.0249)

0.9516
(0.1265)

0.9578
(0.3594)

0.9666
(0.7389)

0.9474
(0.0248)

0.9508
(0.1260)

0.9596
(0.3579)

0.9650
(0.7358)

0.9458
(0.0195)

0.9332
(0.0998)

0.8812
(0.2158)

0.7866
(0.3265)

0.9466
(0.0196)

0.9498
(0.1070)

0.9542
(0.2744)

0.9608
(0.5137)

0.9404
(0.0201)

0.8624
(0.1006)

0.8566
(0.2472)

0.8688
(0.4322)

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

  50                100 

  50                50 1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
  100                100 1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 



274 

0.9464
(0.0202)

0.9500
(0.1107)

0.9504
(0.2885)

0.9526
(0.5534)

0.9460
(0.0201)

0.9504
(0.1104)

0.9518
(0.2878)

0.9514
(0.5524)

0.9454
(0.0196)

0.9484
(0.1072)

0.9494
(0.2768)

0.9500
(0.5277)

0.9450
(0.0200)

0.9502
(0.1096)

0.9546
(0.2858)

0.9620
(0.5467)

0.9460
(0.0200)

0.9512
(0.1096)

0.9548
(0.2859)

0.9612
(0.5466)

0.9462
(0.0200)

0.9512
(0.1093)

0.9538
(0.2853)

0.9622
(0.5453)

0.9498
(0.0169)

0.9386
(0.0808)

0.8752
(0.1868)

0.7744
(0.2914)

0.9502
(0.0170)

0.9530
(0.0860)

0.9498
(0.2373)

0.9522
(0.4652)

0.9432
(0.0172)

0.8740
(0.0840)

0.8590
(0.2243)

0.8536
(0.3926)

0.9530
(0.0174)

0.9526
(0.0882)

0.9476
(0.2471)

0.9512
(0.4965)

0.9534
(0.0173)

0.9524
(0.0880)

0.9470
(0.2465)

0.9516 
(0.4952)

0.9508
(0.0170)

0.9526
(0.0861)

0.9460
(0.2389)

0.9490
(0.4767)

0.9514
(0.0172)

0.9526
(0.0874)

0.9504
(0.2444)

0.9574
(0.4867)

0.9528
(0.0172)

0.9546
(0.0874)

0.9502
(0.2442)

0.9566
(0.4868)

0.9540
(0.0172)

0.9538
(0.0873)

0.9516
(0.2438)

0.9590
(0.4858)

0.9496
(0.0138)

0.9302
(0.0706)

0.8774
(0.1526)

0.7948
(0.2304)

0.9500
(0.0139)

0.9476
(0.0757)

0.9464
(0.1936)

0.9552
(0.3605)

0.9406
(0.0139)

0.8474
(0.0748)

0.8604
(0.1938)

0.8740
(0.3400)

0.9490
(0.0141)

0.9490
(0.0770)

0.9450
(0.1986)

0.9514
(0.3740)

0.9492
(0.0141)

0.9486
(0.0769)

0.9444
(0.1982)

0.9498
(0.3732)

0.9514
(0.0139)

0.9472
(0.0758)

0.9446
(0.1945)

0.9492
(0.3652)

0.9478
(0.0140)

0.9476
(0.0763)

0.9460
(0.1969)

0.9538
(0.3704)

0.9484
(0.0140)

0.9484
(0.0763)

0.9456
(0.1970)

0.9536
(0.3700)

0.9482
(0.0140)

0.9484
(0.0762)

0.9468
(0.1966)

0.9540
(0.3699)

  100                200 

  200                200 

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 
1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  
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EMPIRICAL APPLICATION

The coefficient of variation is commonly used in the 
analysis of environmental data (Thangjai et al. 2019). 
Hence, data for the level of lead in air were used to 
construct the confidence intervals for the coefficient of 
variation for a single normal population, while data on 
carbon monoxide emissions in two areas were used to 
test the confidence intervals for the difference between the 
coefficients of variation of two populations.
Example 1 Data on air lead levels (µg m-3) of 15 
sites at the Alma American Laboratories, Fairplay, 
Colorado, USA on 23 February 1989 were used to 
illustrated the performances of the proposed approaches 
(Krishnamoorthy et al. 2006). The data were 200, 120, 
15, 7, 8, 6, 48, 61, 380, 80, 29, 1000, 350, 1400, and 
110 and fit a log-normal distribution, i.e. the logarithms 

of the data a normal distribution. The basic statistics 
after the log-transformation of the data are =x 4.3329 
and =2s  3.0257, and the biased estimator and the 
asymptomatically unbiased estimator of the coefficient of 
variation are =θ̂  0.4015 and =θ~  0.3945, respectively. The 
confidence intervals for the coefficient of variation of the 
normal distribution are given in Table 4. The numerical 
results show that all of the confidence intervals contain 
the true coefficient of variation. However, the lengths of 
the computational approach and the two approximately 
unbiased estimators of Mahmoudvand and Hassani 
(2009) were shorter than those of the others. These results 
are in agreement with the simulation results in terms of 
average length when the sample size is small and the 
coefficient of variation is large.

TABLE 4. The 95% two-sided confidence intervals for the coefficient of variation of single normal distribution

Approach Lower limit Upper limit Length of interval

0.2899 0.6169 0.3270

0.2325 0.5564 0.3239

0.1987 3.0480 2.8493

0.2870 0.7048 0.4178

0.2778 0.6934 0.4156

0.2355 0.5797 0.3442

0.2685 0.6357 0.3673

0.2609 0.6352 0.3743

0.2557 0.6280 0.3723

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  
 

Example 2 This dataset was from the Data and Story 
Library (http://lib.stat.cmu.edu/DASL) (Zou et al. 2009). 
The data contains carbon monoxide emissions from an 
oil refinery near San Francisco in April - May 1993. The 
refinery submitted 31 daily measurements from its stack 
to the Bay Area Air Quality Management District. The 
Bay Area Air Quality Management District made nine 
measurements from September 1990 to March 1993. The 
data are 

Refinery 45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 
              55, 58, 153, 75, 58, 36, 59, 43, 102, 52, 30, 21, 
              40, 141, 85, 161, 86, 71
District Management 12.5, 20, 4, 20, 25, 170, 15, 20, 15.

Both datasets fit a log-normal distribution. The 
sample statistics from the log-transformation of the data 
are as follows: 
Refinery =n  31, =x  4.0743, =2

Xs  0.2521, =Xθ̂  0.1232
District Management =m  9, =y  2.9633, =2

Ys  0.9496, 
=Yθ̂  0.3288.

The difference between the coefficients of variation 
is =δ̂  -0.2056. The confidence intervals for the difference 
between the coefficients of variation of two normal 
distributions are reported in Table 5. All of the confidence 
intervals contain the true difference between the 
coefficients of variation of the two distributions. The 
computational approach and two approaches of 
Niwitpong (2015) based on the approximately unbiased 
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estimators of Mahmoudvand and Hassani (2009) yielded 
shorter lengths than the others. Therefore, these results 
are in agreement with the simulation results for small 
sample sizes.

From the results in Tables 4 and 5, it can be 
concluded that the computational approach (CA) and the 

two approximately unbiased estimators of Mahmoudvand 
and Hassani (2009) (MH1, MH2) are recommended for 
estimating the confidence intervals for the coefficient 
of variation of the single normal distribution and the 
difference between the coefficients of variation of the two 
normal distributions.

TABLE 5. The 95% two-sided confidence intervals for the difference between the coefficients of variation of two normal 
distributions

Approach Lower limit Upper limit Length of interval

-0.3580 -0.0532 0.3048

-0.3711 -0.0402 0.3309

-1.6729 0.6303 2.3032

-0.5698 -0.0802 0.4896

-0.5838 -0.0759 0.5079

-0.3636 -0.0378 0.3258

-0.4955 -0.0581 0.4374

-0.4861 -0.0528 0.4333

-0.4694 -0.0517 0.4177

1.MHCI  

2.MHCI  

MOVERCI .  

GCICI .  

AGCICI .  

CACI .  

BSCI .  

1.ABSCI  

2.ABSCI  

 

DISCUSSION AND CONCLUSION

Mahmoudvand and Hassani (2009) proposed two 
approximately unbiased estimators and Donner and Zou 
(2012) used the method of variance estimates recovery 
(MOVER) approach to construct the confidence intervals 
for the coefficient of variation of a normal distribution. 
Furthermore, Niwitpong (2015) extended the two 
approximately unbiased estimators of Mahmoudvand 
and Hassani (2009) and the MOVER approach of Donner 
and Zou (2012) to estimate the confidence intervals for 
the difference between the coefficients of variation of 
normal distributions with bounded parameters. In this 
paper, generalized confidence interval (GCI), adjusted 
GCI, computational, Bayesian, and two adjusted Bayesian 
approaches are presented for the confidence interval 
estimation of the coefficient of variation of a normal 
distribution and the difference between the coefficients of 
variation of two normal distributions. These approaches 
were compared with the existing approaches via 
simulation studies. The results indicate that the Bayesian 

approach and two adjusted Bayesian approaches attained 
satisfactory coverage probabilities and average lengths 
for all cases in the first scenario and when the sample sizes 
were large in the second scenario.

As a final note, Niwitpong (2015) proposed 
approximate Bayesian confidence intervals for the 
coefficient of variation of a Gaussian distribution based 
on the square error and the Higgins-Tsokos loss function. 
In this study, the highest posterior density interval is 
used to construct the Bayesian confidence interval that is 
easier to compute than Niwitpong (2015) approaches. This 
is because the square error loss function uses a suitable 
approximation of the Pareto prior and uses the close 
relationship between confidence interval and hypothesis 
testing. 
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