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Coherent Mortality Model in A State-Space Approach
(Model Kemortalan Koheren dalam Pendekatan Keadaan-Ruang)
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ABSTRACT

Mortality improvements that have recently become apparent in most developing countries have significantly shaped 
queries on forecast divergent between populations in recent years. Therefore, to ensure a more coherent way of forecasting, 
previous researchers have proposed multi-population mortality model in the form of independent estimation procedures. 
However, similar to single-population mortality model, such independent approaches might lead to inaccurate prediction 
interval. As a result of this inaccurate mortality forecasts, the life expectancies and the life annuities that the mortality 
model aims to generate is underestimated. In this study, we propose another new extension of the multi-population 
mortality model in a joint estimation approach by recasting the model into a state-space framework. A combination of 
augmented Li-Lee and O’Hare-Li methods are employed, before we transform the proposed model into a state-space 
formulation. In addition, this study incorporates the quadratic age effect parameter to the proposed model to better capture 
the younger ages mortality. We apply the method to gender and age-specific data for Malaysia. The results show that 
our latter framework brings a significant contribution to the multi-population mortality model due to the incorporation 
of joint-estimate and quadratic age effect parameters into the model’s structure. Consequently, the proposed model 
improves the mortality forecast accuracy.
Keywords: Coherent mortality model; multi-population; state-space

ABSTRAK

Kadar kematian yang semakin menurun di kebanyakan negara membangun telah menimbulkan beberapa persoalan 
penting terhadap perbezaan jurang ramalan antara populasi bagi tahun-tahun kebelakangan ini. Oleh itu, untuk 
memastikan hasil ramalan yang lebih koheren, penyelidik sebelum ini telah mengemukakan model kemortalan berbilang 
penduduk dalam bentuk prosedur anggaran yang dibuat secara berasingan antara populasi. Walau bagaimanapun, 
sebagaimana model kemortalan penduduk tunggal, pendekatan berasingan mungkin menyebabkan ramalan yang tidak 
tepat. Akibat ramalan kemortalan yang tidak tepat ini, jangkaan hayat dan anuiti hayat yang dihasilkan oleh model 
kemortalan akan menjadi lebih rendah daripada yang sepatutnya. Dalam kajian ini, kami mencadangkan satu lagi model 
kemortalan yang mengintegrasikan maklumat antara populasi dengan cara menggabungkan model tersebut dalam 
rangka keadaan-ruang. Gabungan kaedah Li-Lee dan O’Hare-Li digunakan dan kemudian kami mengubah model 
yang dicadangkan ke dalam formulasi keadaan-ruang. Di samping itu, kajian ini menggabungkan parameter kesan 
usia kuadratik kepada model yang dicadangkan untuk menganggar kematian yang berlaku pada usia muda dengan 
lebih baik. Kami menggunakan kaedah tersebut ke atas data jantina dan data khusus umur bagi Malaysia. Keputusan 
menunjukkan bahawa rangka kerja ini membawa sumbangan penting kepada model kemortalan pelbagai penduduk 
kerana menggabungkan parameter kesan umur dan kuadratik parameter ke dalam struktur model. Hasilnya, model 
yang dicadangkan dapat meningkatkan lagi ketepatan ramalan kematian.
Kata kunci: Keadaan-ruang; kepelbagaian penduduk; model kemortalan koheren

INTRODUCTION

Recent decades have shown a growing number of interests 
in extensively developing a sophisticated mortality 
model in order to overcome two challenges associated 

with developed countries, which are longevity risk and 
increased correlation between closely related populations 
such as gender, race, states, and countries. These two 
challenges are important information to be incorporated 
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into a modelling structure in order to obtain proper 
forecast reading. Without accurate forecast reading, life 
expectancy is prone to be underestimated and hence 
will cause inadequate amount of retirement income, low 
allocation of health plan, and ageing population (Nor et 
al. 2018). Realising the significant impact that these two 
challenges may have on the aforementioned aspects, Li 
and Lee (2005) and Li (2013) suggested the need for joint 
modelling of the multi-population study to hedge the risk 
and to create coherent forecast between populations.

The Li and Lee (2005) model has contributed 
significantly to the line of multi-population mortality 
model. However, it still has limited flexibility because 
the model’s built-up is based on a model developed by 
Lee and Carter (1992), which does not allow for variances 
between ages and does not have good historical fit and 
forecast performances as compared to the other single-
population mortality models (Booth et al. 2006). Motivated 
by the limitations of Li and Lee (2005) model, Wan 
and Bertschi (2015) modified it by employing the Plat 
(2009) framework into the regression modelling structure. 
However, the model by Wan and Bertschi (2015) still 
have limitation in a way that it is unable to capture the 
nonlinear pattern observed at the lower ages. This is due 
to the incorporation of Plat (2009) model, which is only 
suitable to be fitted to the mortality rates above age 20 
(O’Hare & Li 2012). Hauser and Weir (2016) and Weir 
(2010) stated that the incorporation of younger ages is 
essential since it works as a preliminary analysis for future 
life. In addition, O’Hare and Li (2012) and Scherbov and 
Ediev (2016) added that the mortality changes between 
all ages have significant impact on the estimation of 
average life expectancy. Hence, the inability of the 
stochastic mortality model to capture the young mortality 
would eventually cause an inaccurate estimate of annuity 
pricing. To close the gap in the model by Wan and Bertschi 
(2015), this study extends the Li and Lee (2005) model by 
incorporating the quadratic effect parameter proposed by 
O’Hare and Li (2012). 

The development of single-population and multi-
population mortality models are a huge influence in the aim 
to obtain accurate mortality forecast reading. However, 
the performances of both methods are still limited by the 
fact that the models designed are composed of two stages 
of independent estimation procedures which are regression 
model estimation procedure and time series model 
estimation procedure. Such separate estimation leads to 
problems including unreliable forecasts (Fung et al. 2018), 
and potential hidden errors that are being ignored in the 
first step of the estimation procedure (Pedroza 2006). 
Those issues related to independent estimation have led 

to new interests in recasting the existing mortality model 
into a single estimate of the state-space framework. 
Fung et al. (2017, 2015), Husin et al. (2015), Liu and Li 
(2016a, 2016b) and Pedroza (2006) have found that the 
mortality model reformulated in a state-space framework 
has outperformed the independent estimation technique 
of mortality model in terms of the overall forecast 
accuracy. However, since most of the existing state-
space mortality models are represented as Lee and Carter 
(1992) model, which has a lot of limitations that need to 
be addressed since it is the very first model introduced for 
stochastic mortality model, this study aims to reformulate 
the combination of Li and Lee (2005) and O’Hare and 
Li (2012) mortality models into a state-space framework.

Realising the significant contribution that the multi-
population mortality and the state-space mortality model 
has brought into, there are two primary aims of this study, 
which are to propose new extension of multi-population 
mortality model by extending the models by Li and Lee 
(2005) and O’Hare and Li (2012), and to reformulate 
the proposed method into a state-space framework. The 
proposed models are able to capture the information of 
the mortality rates more accurately as compared to the 
existing models since the proposed models are able to 
capture the variances for the whole age ranges and the 
two estimation processes of the model are integrated 
into a single estimate only. This article is structured as 
follows. The Materials and Methods section describe the 
mortality data and the methods used in this article. The 
Results and Discussion section evaluate and compares the 
performances of the methods used in this article in terms 
of in sample fit, standardised residuals and forecasted 
mortality rates. Finally, the Conclusion section presents 
the conclusion of overall article.

MATERIALS AND METHODS

THE DATA SET

The new extended models as proposed in this study are 
applied on Malaysia mortality dataset, collected from the 
Department of Statistics Malaysia (DSM). The dataset 
comprises of the number of deaths, and the number of 
exposures to populations in Malaysia since the beginning 
of 1980 until 2015, available for the five-year age span 
ranges from 0 to 80. Two groups of populations are 
involved which are male and female. The formula of the 
mortality rate is:

𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖 =
𝐷𝐷𝑥𝑥,𝑡𝑡,𝑖𝑖
𝐸𝐸𝑥𝑥,𝑡𝑡,𝑖𝑖
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where Dx,t,i is the number of deaths; Ex,t,i is the number of 
exposures for age x; time t and population i. 

EXISTING MORTALITY MODELS

In this study, the abbreviation (LC, Plat, OH, Li-Lee, Wan-
Bertschi) in Table 1 will be used to refer to the methods 
proposed by Lee and Carter (1992), Plat (2009), O’Hare 

and Li (2012), Li and Lee (2005) and Wan and Bertschi 
(2015), respectively. LC, Plat, and OH models are the 
single-population mortality models, whereas Li-Lee and 
Wan-Bertschi models are the multi-population mortality 
models. The models listed in Table 1 are estimated by 
using maximum likelihood estimation (MLE) method. 
The models employed are listed in Table 1.

Ln(𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖) = 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2(�̅�𝑥 − 𝑥𝑥) + 𝑘𝑘𝑡𝑡3((�̅�𝑥 − 𝑥𝑥)+ + [(�̅�𝑥 − 𝑥𝑥)+]2) + 𝛼𝛼𝑥𝑥,𝑖𝑖 + ∑ 𝛽𝛽𝑥𝑥,𝑖𝑖,𝑗𝑗𝑘𝑘𝑡𝑡,𝑖𝑖,𝑗𝑗𝐿𝐿
𝑗𝑗=1 +𝜀𝜀𝑥𝑥,𝑡𝑡,𝑖𝑖 

TABLE 1. The six candidate models’ structures under consideration

Model Formula
LC

Plat

OH

Li-Lee

Wan-Bertschi

Model Formula 

LC ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝛼𝛼𝑥𝑥 + 𝛽𝛽𝑥𝑥𝑘𝑘𝑡𝑡 + 𝜀𝜀𝑥𝑥,𝑡𝑡 

Plat ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2(�̅�𝑥 − 𝑥𝑥)+𝑘𝑘𝑡𝑡3(�̅�𝑥 − 𝑥𝑥)+ + 𝜀𝜀𝑥𝑥,𝑡𝑡 

OH ln(𝑚𝑚𝑥𝑥,𝑡𝑡) = 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2(�̅�𝑥 − 𝑥𝑥) + 𝑘𝑘𝑡𝑡3((�̅�𝑥 − 𝑥𝑥)+ + [(�̅�𝑥 − 𝑥𝑥)+]2) + 𝜀𝜀𝑥𝑥,𝑡𝑡 

Li-Lee ln(𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖) = 𝛼𝛼𝑥𝑥,𝑖𝑖 + 𝛽𝛽𝑥𝑥𝑘𝑘𝑡𝑡 + 𝑏𝑏𝑥𝑥,𝑖𝑖𝑘𝑘𝑡𝑡,𝑖𝑖 + 𝜀𝜀𝑥𝑥,𝑡𝑡 
Wan-
Bertschi ln(𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖) = 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2(𝑥𝑥 − �̅�𝑥) + 𝑘𝑘𝑡𝑡3(�̅�𝑥 − 𝑥𝑥)+ + 𝛼𝛼𝑥𝑥,𝑖𝑖 + ∑ 𝑏𝑏𝑥𝑥,𝑖𝑖,𝑗𝑗𝑘𝑘𝑡𝑡,𝑖𝑖,𝑗𝑗 + 𝜀𝜀𝑥𝑥,𝑡𝑡𝐿𝐿

𝑗𝑗=1  

 

THE PROPOSED MODEL

There are two research objectives in this study, which are 
to propose multi-population mortality model that is able 
to capture accurate historical mortality data for the full age 
ranges and to reformulate the independent estimation of 
multi-population mortality model into a unified estimation. 
In order to avoid unreliable forecasts due to the separate 
estimation method, this study reformulates the independent 
estimation into a unified one by using a state-space 
representation framework. These two proposed mortality 
models are denoted as Augmented O’Hare (Augmented 
OH) and Augmented O’Hare State-Space (Augmented 
OH SS) models. The programming codes for the existing 
models are available in MARSS package, written in R 
(Holmes et al. 2012).

AUGMENTED OH MODEL

The first proposed mortality model in this study 
combines O’Hare and Li method into the first equation of 
Li-Lee method which is ln (mx,t,i) = α x,i + βxkt. The developed 

The symbol 𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖 is referred to central death rate at age 𝑥𝑥, year 𝑡𝑡 and population 𝑖𝑖. The parameter 𝛼𝛼𝑥𝑥 describes 
the overall mortality rate across ages, 𝛽𝛽𝑥𝑥 is the additional age-specific component that represents the speed of 
mortality rate that responds to the change of time-varying mortality index 𝑘𝑘𝑡𝑡, 𝑘𝑘𝑡𝑡

1, 𝑘𝑘𝑡𝑡
2, 𝑘𝑘𝑡𝑡

3 and 𝑘𝑘𝑡𝑡,𝑖𝑖. Parameter �̅�𝑥 
indicates the sample average of the age groups 𝑥𝑥, where (�̅�𝑥 − 𝑥𝑥)+ = max (�̅�𝑥 − 𝑥𝑥, 0) as such when (�̅�𝑥 − 𝑥𝑥)+ is 
positive, it takes the value of �̅�𝑥 − 𝑥𝑥, whereas when (�̅�𝑥 − 𝑥𝑥)+ is negative, it takes the value of zero. 𝜀𝜀𝑥𝑥,𝑡𝑡 is the error 
term used in Lee-Carter model with mean zero and variance 𝜎𝜎𝜀𝜀 
 

model is denoted in (1) and is named as Augmented O’Hare 
and Li (Augmented OH) method:

(1)

The indicated Augmented OH framework is designed 
to capture the central tendency between a group of 
populations and population-specific fluctuations, 
respectively. Following Hyndman et al. (2013), the 
weighted average of mortality rates is calculated 
by using geometric mean (∏ 𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖

𝑀𝑀
𝑖𝑖=1 )1/𝑀𝑀   for the i th 

population M where the number of population is  and 
for the jth principal components where the number of 
principal components is L. The first part of 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2  
𝑘𝑘𝑡𝑡2(�̅�𝑥 − 𝑥𝑥) + 𝑘𝑘𝑡𝑡3[(�̅�𝑥 − 𝑥𝑥)+ + [(�̅�𝑥 − 𝑥𝑥)+]2] is estimated by 
using maximum likelihood estimation (MLE) Poisson 
distribution technique. The second part of the fitting 
procedure is to estimate the remaining information of the 
mortality model. The Singular Value Decomposition 

Ln(𝑚𝑚𝑥𝑥,𝑡𝑡,𝑖𝑖) = 𝛼𝛼𝑥𝑥 + 𝑘𝑘𝑡𝑡1 + 𝑘𝑘𝑡𝑡2(�̅�𝑥 − 𝑥𝑥) + 𝑘𝑘𝑡𝑡3((�̅�𝑥 − 𝑥𝑥)+ + [(�̅�𝑥 − 𝑥𝑥)+]2) + 𝛼𝛼𝑥𝑥,𝑖𝑖 + ∑ 𝛽𝛽𝑥𝑥,𝑖𝑖,𝑗𝑗𝑘𝑘𝑡𝑡,𝑖𝑖,𝑗𝑗𝐿𝐿
𝑗𝑗=1 +𝜀𝜀𝑥𝑥,𝑡𝑡,𝑖𝑖 
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(SVD) approach is employed to estimate population-
specific parameters βx,i,j and kt,i,j. 

AUGMENTED OH SS MODEL

Multivariate State-Space model is innovated to deal 
with the parameter uncertainty estimation, missing data 
problem, and high-dimensional complex estimation 
problem (Holmes et al. 2012). The proposed stochastic 
mortality model in (1) with a state space framework, 
can be expressed as the Augmented O’Hare State-Space 
(Augmented OH SS) as denoted in (2) as follows:

(2)

where 
𝒎𝒎𝑡𝑡 = (ln(𝒎𝒎𝑥𝑥1,𝑡𝑡,1), … , ln(𝒎𝒎𝑥𝑥𝑁𝑁,𝑡𝑡,1), … , ln(𝒎𝒎𝑥𝑥1,𝑡𝑡,𝑀𝑀),… , ln(𝒎𝒎𝑥𝑥𝑁𝑁,𝑡𝑡,𝑀𝑀))

′
 with age age x = x1,…,xN, time t = 1,2,…,T 

and population, i = 1,2, …, M, α,  is the intercept parameter, 
and β is the population parameter. Parameter kt is for the 
period effect parameter at time t and εt is denoted as the 
residual of the model at time t.
 The proposed model design in (2) is composed of: 
common population parameters; and population-specific 
parameters with more than one single factor of multiple 
dynamic factor analysis (DFA) component. In order to have 
a similar structure as (1), the matrix β in (2) must fulfil 
the following condition:

where the first four columns of matrix β are the common 
population parameters, whereas the latter columns are 
the population-specific parameters βx,i,f for age-group x1,.., 
xN,  at a specific population i = 1,2 and f = 1,2,3…, F is 
the number of multiple components included in the state 
space model.
 The residual of the model in (2) is denoted as follow:

 The identity matrix of  is:

 

The latent states vector symbolized by kt takes the form 
as in:

where MVN is the multivariate normal distribution, 𝑘𝑘𝑡𝑡𝑐𝑐  
is denoted as the common parameters of the model and 
 𝑈𝑈𝑡𝑡

𝑐𝑐   is the stochastic drift with c = 1,2,3. kt,i,f is denoted 
as the population-specific parameters of the considered 
model where t is the number of years, i = 1,2,…, M is the 
number of populations and f = 1,2,3…, F is the number 
of multiple components included in the state space model. 
The states assumption error is ϵt~MVN (0, Q), where Q is 
the unequal variances and must be positive-definite, and p 
is the number of column matrix for parameter β. 

MEASUREMENT ERRORS

The comparison of the model performances is measured 
by employing Li et al. (2015a) method in percentage form. 
The three measurement errors are denoted in (3)-(5).
 The average measurement error (AE) measures the 
uncertainty between observed and predicted values:

(3)

where �̂�𝑚𝑡𝑡,𝑥𝑥  is the predicted value of mortality rates; 
mx,t is the observed mortality rates; N is the length of age-
groups x; and T is the length of period t.
 The Mean Average Percentage Error (MAPE) 
measures the magnitude of average error:

(4)

The root mean square error (RMSE) value is significantly 
influenced by the existence of outliers. The higher error 
reported by the RMSE value indicates a greater deviance 
value:

(5)
 

Other than AE, MAPE and RMSE measurement 
errors, Cairns et al. (2009) stated that it is natural for a 

𝒎𝒎𝑡𝑡 = 𝜶𝜶 + 𝜷𝜷𝒌𝒌𝑡𝑡 + 𝜺𝜺𝑡𝑡 

𝒎𝒎𝑡𝑡 = (ln(𝒎𝒎𝑥𝑥1,𝑡𝑡,1), … , ln(𝒎𝒎𝑥𝑥𝑁𝑁,𝑡𝑡,1), … , ln(𝒎𝒎𝑥𝑥1,𝑡𝑡,𝑀𝑀),… , ln(𝒎𝒎𝑥𝑥𝑁𝑁,𝑡𝑡,𝑀𝑀))
′
 

 

𝜷𝜷 =

[
 
 
 
 
 
 
 
 
 1  �̅�𝑥 − 𝑥𝑥1  (�̅�𝑥 − 𝑥𝑥1)+ + [(�̅�𝑥 − 𝑥𝑥1)+]2 𝛽𝛽𝑥𝑥1,1,1… 𝛽𝛽𝑥𝑥1,1,𝐹𝐹 0 0 0 0…0
1  �̅�𝑥 − 𝑥𝑥2  (�̅�𝑥 − 𝑥𝑥2)+ + [(�̅�𝑥 − 𝑥𝑥2)+]2 𝛽𝛽𝑥𝑥2,1,1 … 𝛽𝛽𝑥𝑥2,1,𝐹𝐹 0 0 0 0 ⋮ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ …⋮
1  �̅�𝑥 − 𝑥𝑥𝑁𝑁 (�̅�𝑥 − 𝑥𝑥𝑁𝑁)+ + [(�̅�𝑥 − 𝑥𝑥𝑁𝑁)+]2 𝛽𝛽𝑥𝑥𝑁𝑁,1,1… 𝛽𝛽𝑥𝑥𝑁𝑁,1,𝐹𝐹 0 0 0 0…0
1  �̅�𝑥 − 𝑥𝑥1 (�̅�𝑥 − 𝑥𝑥1)+ + [(�̅�𝑥 − 𝑥𝑥1)+]2 0 0 0 𝛽𝛽𝑥𝑥1,2,1…𝛽𝛽𝑥𝑥1,2,𝐹𝐹 0…0
1  �̅�𝑥 − 𝑥𝑥2 (�̅�𝑥 − 𝑥𝑥2)+ + [(�̅�𝑥 − 𝑥𝑥2)+]2 0 0 0 𝛽𝛽𝑥𝑥2,2,1…𝛽𝛽𝑥𝑥2,2,𝐹𝐹 0…0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1  �̅�𝑥 − 𝑥𝑥𝑁𝑁 (�̅�𝑥 − 𝑥𝑥𝑁𝑁)+ + [(�̅�𝑥 − 𝑥𝑥𝑁𝑁)+]2 0 0 0 𝛽𝛽𝑥𝑥𝑁𝑁,2,1…𝛽𝛽𝑥𝑥𝑁𝑁,2,𝐹𝐹 0…0]

 
 
 
 
 
 
 
 
 

 

 

𝜺𝜺𝑡𝑡 = (𝜀𝜀𝑥𝑥1,𝑡𝑡, 𝜀𝜀𝑥𝑥2,𝑡𝑡, … , 𝜀𝜀𝑥𝑥𝑁𝑁,𝑡𝑡)
′, where 𝜺𝜺𝑡𝑡~MVN(0, 𝑹𝑹)  

 

𝑹𝑹 =

[
 
 
 
 𝑟𝑟 0 ⋯ 0 0
0 𝑟𝑟 … 0 0
⋮ ⋮ ⋱ ⋮ ⋮
0 0 … 𝑟𝑟 0
0 0 … 0 𝑟𝑟]

 
 
 
 
 

 

𝒌𝒌𝑡𝑡 = 𝑫𝑫𝒌𝒌𝑡𝑡−1 + 𝝐𝝐𝑡𝑡; where 𝑫𝑫 =

[
 
 
 
 
 1 0 ⋯ 1 0 0
0 1 0 … 1 0
0 0 1 0 … 1
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 1 0
0 0 ⋯ 0 0 1]

 
 
 
 
 

 

𝒌𝒌𝑡𝑡 = (𝑘𝑘𝑡𝑡
𝑐𝑐, 𝑘𝑘𝑡𝑡,𝑖𝑖,𝑓𝑓, 𝑈𝑈𝑡𝑡

𝑐𝑐)′
, where 𝝐𝝐𝑡𝑡~𝑀𝑀𝑀𝑀𝑀𝑀(0,𝑸𝑸) 

 

𝐴𝐴𝐴𝐴 = ( 1
𝑁𝑁𝑁𝑁∑∑�̂�𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚𝑥𝑥,𝑡𝑡

𝑚𝑚𝑥𝑥,𝑡𝑡𝑡𝑡𝑥𝑥
) × 100 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁𝑁𝑁∑∑|�̂�𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚𝑥𝑥,𝑡𝑡|

𝑚𝑚𝑥𝑥,𝑡𝑡
× 100

𝑡𝑡𝑥𝑥
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = (√ 1
𝑁𝑁𝑁𝑁∑∑(�̂�𝑚𝑥𝑥,𝑡𝑡 − 𝑚𝑚𝑥𝑥,𝑡𝑡

𝑚𝑚𝑥𝑥,𝑡𝑡
)
2

𝑡𝑡𝑥𝑥
) × 100 
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model with a higher number of parameters to outperform 
a model with fewer number of parameters. Haberman 
and Renshaw (2011) stated that to address this concern, 
the models with a large number of parameters need to 
be penalized by including a penalty function, which is 
Akaike Information Criterion (AIC). Hence as suggested, 
to evaluate the model fairly, regardless of how many 
numbers of parameters the model has, Akaike Information 
Criterion (AIC) is considered in selecting the best model. 
The model with the lowest value of AIC indicates the 
model is selected as the best model since it is the most 
parsimonious.

AIC = 2δ - 2 log (W) 

where W is the maximum value of the likelihood; and δ is 
the number of model’s parameters.

RESULTS AND DISCUSSION

Table 2 summarizes the comparison of the fitting 
performances of each model fitted to Malaysia dataset in 
terms of AE, MAPE, and RMSE. The model that gives the 
lowest values of the error measurements is the best model.

TABLE 2. In-sample fit error measurements for males and females

Male Female

AE MAPE RMSE AE MAPE RMSE

LC 0.0088 0.0763 0.0369 0.0065 0.0625 0.0214

Plat 0.0237 0.1870 0.0826 0.0236 0.1960 0.1091

OH 0.0270 0.1994 0.0923 0.0218 0.1596 0.0809

Li-Lee 0.0100 0.0731 0.0395 0.0067 0.0622 0.0215

Wan-Bertschi 0.0033 0.0338 0.0093 0.0033 0.0288 0.0098

Augmented OH 0.0030 0.0314 0.0094 0.0024 0.0249 0.0094

Augmented OH SS 0.0021 0.0196 0.0068 0.0015 0.0172 0.0045

According to Table 2, the single-population mortality 
models which are LC, Plat, and OH have the highest AE, 
MAPE, and RMSE for both genders. This shows that the 
single-population mortality models could not give best 
fitting results as compared to the multi-population mortality 
models since they did not incorporate the parameter 
that could captured the correlation between population. 
The proposed multi-population mortality model which 

is Augmented OH SS outperform the existing multi-
population mortality models by giving the lowest values 
of AE which are 0.0021 for males and 0.0015 for females, 
MAPE which are 0.0196 for males and 0.0172 for females 
and RMSE which are 0.0068 for males and 0.0045 for 
females. This indicates that the multi-population mortality 
model is improved by incorporating variations for all age 
groups and by recasting the separate estimation into single 
estimate of the state-space framework.

TABLE 3. The approximate AIC for Malaysia dataset

AIC

Model Male Female
LC 159780.20 87537.50
Plat 373555.40 124519.50
OH 380443.90 124386.60
Li-Lee 204658.90 131974.90
Wan-Bertschi 125644.70 55318.67
Augmented OH 96801.93 46136.31
Augmented OH SS 54752.89 36502.01
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Next, the quality of fit of the different mortality 
models is evaluated using AIC presented in Table 3. The 
model with the smallest value of AIC is selected as the 
best model. In Table 3, the proposed models Augmented 
OH and Augmented OH SS has smaller value of AIC 
with an approximate 96801.93 and 54752.89 for males, 
and 46136.31 and 36502.01 for females. These results 
indicate that although our models are considered to have 
more number of parameters as compared to the others, the 
models are still considered to be the best-selected model 
since the lower AIC values imply that the model is not 
overfitting and has a better fit. 

Overall, the results in this section indicate that 
the extended multi-population mortality model, which 
incorporates the dependency between ages coherently 
would eventually improve the fitting performance of 
the historical Malaysia mortality rates for both males 
and females. Other than that, the multi-population 
mortality model in a state-space formulation could 
explain the historical mortality data better than the 
multi-population mortality model with the independent 
estimation. Therefore, we can conclude from here that 
both of our proposed models provide a good quality 
fit to the mortality dataset. This is one of the desirable 
characteristics any good mortality model should have 
(Cairns et al. 2009). 

STANDARDISED RESIDUALS ANALYSES

Figures 1 and 2 show the deviance of residuals plot in 
terms of heat-maps for the considered models. Based 
on our analysis, most of the residual patterns for single-
population mortality model for both genders as well as 
Li-Lee multi-population mortality model suggest that 
there is a need for additional factors to be included into 
the model structure in order to adequately capture the 
mortality changes in Malaysia. This is because of the 
apparent observed diagonal and horizontal residual 
pattern plots that the models produced, which show that 
the models are unable to capture the cohort and age-effect. 
More than that, LC, Plat and OH models show a strong 
clustering which imply that these models overestimated 
and underestimated the mortality rates, respectively. On 
the other hand, there exists strong negative clustering of 
residuals in Wan-Bertschi model which assumes that the 
model is inadequate to allow for time-varying mortality 
changes with age (Villegas 2015) and the mortality rate is 
overestimated by the model (Coelho 2013). Augmented 
OH and Augmented OH SS display the most random 
pattern which indicate that our models are able to capture 
all the important time-varying effect and the age effect of 
the data. Thus, of the eight models considered, our model 
has outperformed the rest for males and females in terms 
of residual’s visual inspection.

FIGURE 1. Residual plots in terms of heat map for male
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Figures 1 and 2 also show that the standardized 
residuals proposed by the other authors such as LC, Plat, 
OH, Li-Lee and Wan-Bertschi models do not meet the 
requirement of the models’ assumptions random errors for 
males and females. It can be seen that the residuals of the 

TABLE 4. Average cross-validation error measures in short and long-term forecast

Gender Male Female

Normality 
Tests

Variance 
ratio

p-value

Skewness 
p-value

Kurtosis 
p-value

Royston 
p-value

Variance 
ratio

p-value

Skewness 
p-value

Kurtosis 
p-value

Royston 
p-value

LC 0.020 0.988 1.000 0.000 0.814 0.966 1.000 0.000

Plat 0.000 0.644 0.948 0.000 0.069 0.899 1.000 0.023

OH 0.064 0.600 0.909 0.000 0.136 0.952 1.000 0.000

Li-Lee 0.687 0.970 1.000 0.001 0.902 0.953 1.000 0.000

Wan-
Bertschi 0.000 0.881 1.000 0.000 0.000 0.932 1.000 0.000

Augmented 
OH 0.620 0.978 1.000 0.732 0.486 0.976 1.000 0.016

Augmented 
OH SS 0.502 0.997 1.000 0.623 0.116 0.949 1.000 0.276

  

 

1980 1990 2000 2010

0
5

10
15

LC

Female

ag
e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

Plat

Female
ag

e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

O'Hare

Female

ag
e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

Li-Lee

Female

ag
e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

Wan-Bertschi

Female

ag
e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

Augmented OH

Female

ag
e

-10

-5

0

5

10

1980 1990 2000 2010

0
5

10
15

Augmented OH SS

Female

ag
e

-10

-5

0

5

10

FIGURE 2. Residual plots in terms of heat map for female

models are not random since the blue and red colours are 
strongly visible. On the other hand, our proposed models 
which are the Augmented OH and the Augmented OH SS for 
males and females, are normal since the colours indicate 
that the residuals of the models are close to zero.

In order to validate the assumptions, the standardised 
residuals illustrated from Figures 1-2 are then numerically 
supported in Table 4. The variance-ratio test, Jarque-
Bera test and Royston test are employed to check for the 
constant variance, skewness and kurtosis predictions and 

multivariate normality test, respectively. Table 4 presents 
the p-values of the corresponding tests for both genders. 
The results in Table 4 shows that LC, Plat, OH, Li-Lee and 
Wan-Bertschi models perform quite poorly as compared 
to the others since the p-values of Royston test for LC, Plat, 



1108 

OH, Li-Lee and Wan-Bertschi model are approximately 
0.000 for both genders. Thus, the residuals of these models 
do not conform to standard normal distribution since 
the p-values are very low giving the strong evidence to 
reject the null hypothesis of the normality test at 1% 
significance level. On the other hand, the p-values of 
the Variance-ratio test for Plat, and Wan-Bertschi models 
indicate that the residuals’ variances of these models are 
not equal. This is because, the p-values are very low giving 
the strong evidence to reject null hypothesis of the equality 
of the residuals’ variances at 1% significance level. This 
is expected since Plat and Wan-Bertschi models could not 
capture full ages of mortality data. 

The analyses reported in Table 4 suggests that only 
our proposed models meet the specifications needed for 
the model assumption random error. For example, the null 
hypothesis of constant variance for Augmented OH SS 
was failed to be rejected since the p-values of variance-

ratio test are 0.502 and 0.116, for males and females, 
which are more than 1% significance level. In addition, for 
Augmented OH SS, the null hypothesis of the normality 
prediction was failed to be rejected at 1% significance 
level because the p-values for Royston test for both male 
and female are 0.623 and 0.276. Overall, the p-values for 
every test for Augmented OH and Augmented OH SS 
were found to be more than the significant value 1% which 
eventually indicates that the residual of the considered 
models are approximately normal.

MORTALITY RATES FORECASTS

One of the essential features of an accurate stochastic 
mortality model is to have a good forecasting ability. 
Inaccurate estimate of future mortality rates could lead 
to inaccurate measurement of annuity product pricing. 
Therefore, in this section, we assess the goodness of fit of 
stochastic mortality models in terms of forecast mortality. 

TABLE 5. Average cross-validation error measures in short and long-term forecast

Gender Male Female
Forecast 
Horizon

1-year 
ahead

5-year 
ahead

10-year 
ahead AE

15-years 
ahead

20-years 
ahead

1-year 
ahead

5-year 
ahead

10-year 
ahead AE

15-years 
ahead

20-years 
ahead

LC 0.0313 0.0439 0.0461 0.0409 0.0210 0.0135 0.0145 0.0142 0.0108 0.0108
Plat 0.0250 0.0273 0.0400 0.0406 0.0266 0.0141 0.0144 0.0193 0.0171 0.0168
OH 0.0239 0.0242 0.0325 0.0313 0.0359 0.0156 0.0161 0.0215 0.0193 0.0224
Li-Lee 0.0121 0.0157 0.0306 0.0222 0.0195 0.0083 0.0136 0.0210 0.0128 0.0132
Wan-Bertschi 0.0139 0.0161 0.0174 0.0194 0.0252 0.0230 0.0393 0.0274 0.0593 0.0269
Augmented 
OH 0.0074 0.0158 0.0305 0.0174 0.0157 0.0070 0.0107 0.0237 0.0104 0.0094

Augmented 
OH SS 0.0057 0.0097 0.0168 0.0187 0.0181 0.0035 0.0163 0.0111 0.0094 0.0097

MAPE MAPE
LC 0.1566 0.2078 0.2079 0.2030 0.1602 0.1011 0.1043 0.1075 0.1718 0.1382
Plat 0.3571 0.3532 0.8384 1.0845 0.5529 0.3210 0.3416 0.5545 0.7639 0.3188
OH 0.4851 0.3917 0.6215 0.5655 0.4715 0.4631 0.4136 0.5808 0.4940 0.2614
Li-Lee 0.0739 0.0975 0.1523 0.1315 0.2221 0.0589 0.0689 0.1189 0.0935 0.1421
Wan-Bertschi 0.1040 0.1044 0.1293 0.3261 0.3809 0.8964 0.9934 1.0558 1.6636 0.8751
Augmented 
OH 0.0730 0.1030 0.1259 0.1514 0.2176 0.0606 0.0630 0.0844 0.1183 0.1371

Augmented 
OH SS 0.0766 0.0719 0.1326 0.1647 0.2228 0.0697 0.0690 0.1027 0.1261 0.1409

RMSE RMSE
LC 0.0955 0.1621 0.1779 0.1769 0.0875 0.0365 0.0455 0.0476 0.0360 0.0349
Plat 0.0674 0.0758 0.1038 0.1094 0.0879 0.0464 0.0469 0.0581 0.0560 0.0512
OH 0.0650 0.0686 0.0916 0.0937 0.0901 0.0497 0.0508 0.0635 0.0616 0.0697
Li-Lee 0.0265 0.0505 0.1067 0.1023 0.0544 0.0211 0.0530 0.0638 0.0384 0.0442
Wan-Bertschi 0.0352 0.0463 0.0670 0.0687 0.0912 0.0387 0.0856 0.0716 0.1560 0.0621
Augmented 
OH 0.0204 0.0504 0.1302 0.0656 0.0509 0.0217 0.0417 0.1039 0.0276 0.0332

Augmented 
OH SS 0.0141 0.0370 0.0665 0.0691 0.0544 0.0094 0.0762 0.0379 0.0260 0.0331



  1109

The models’ comparisons are determined based on 
AE, MAPE, and RMSE measurements. Li et al. (2015a) 
stated that in actuarial perspective, AE, MAPE, and RMSE 
are vital to avoid bias, to ensure overall forecast accuracy, 
and to avoid anomalies. Therefore, in Table 5, we are 
going to have a better look at which models give the best 
projection future mortality rates estimates. The results 
of this out-sample accuracy for males and females are 
tabulated in Table 5. The light green colour represents 
the first best performance, while the dark green colour 
represents the second-best performance.

Overall, as indicated by the measurement errors 
marked in green colours, the proposed mortality models 
which are Augmented OH and Augmented OH SS could 
give better forecasts. Since the models have the lowest 
values of AE, RMSE and MAPE for all years. For example, 
Augmented OH SS and Augmented OH perform 
relatively well with an approximate 1-year AE of 0.0074 
and 0.0057 for males and 0.0070 and 0.0035 for females. 
In addition, the proposed models outperform the others in 
terms of long-term forecast with an approximate 20-year 
AE of 0.0157 and 0.0181 for males and 0.0094 and 0.0097 
for females. Similar to single-population mortality models, 
Li-Lee and Wan-Bertschi models did not perform very 
well across time. This is because, from previous section, 
these models did not meet the specifications needed for the 
model assumption random error, therefore, the forecasts 
results produced are not accurate.

The extended models which are the Augmented 
OH and the Augmented OH SS demonstrate an important 
aspect of good mortality model, which are good in-sample 
historical fit performance and good out-sample forecast. 
As can be seen from Table 5, the extended models are 
marked with green colours which show that they have 
good forecasting ability in the short-term and long-term 
projection. This feature allows the models to produce more 
stable forecasts mortality for both genders.

Next, we visually inspected the coherence ratio of 
the predicted mortality rates for both males and females 
in Malaysia. The coherence assumption is proposed 
based on the narrowing gap of gender-differential on 
the mortality improvements. Therefore, it is expected 
that the projection of future mortality rates of males 
and females would be converging to the same value in 
which eventually the ratio of the male-to-female should 
be constant as the time increases. In this section, the eight 
models considered in this study are analysed to see if they 
are following the coherence assumption as mentioned by 
Li (2013) and Li et al. (2015b). The coherence of male 
and female performances from different models were 
compared for 20-years of forecast horizons in Figure 3. 
The dotted colours represent the respective Malaysian 
age span ranges from 0 to 80. There are 31 observation 
periods, with the most recent year is 2010.

FIGURE 3. Observation on Malaysia death rates for male-to-female ratio 1980-2010, 
and forecast Malaysia death rates for male-to-female ratio 2011-2030 for stochastic 

mortality models
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Based on Figure 3, our proposed models which are 
the Augmented OH and the Augmented OH SS, pose one 
of the main criteria in building the mortality model which 
is to produce non-diverge mortality rates forecast in the 
long run for all age-groups. Wan and Bertschi model 
performs the worst in terms of in-sample fit and out-sample 
forecast since it does not incorporate full age-ranges 
in their model’s structures. According to the in-sample 
results, LC model outperformed the Plat and OH model. 
However, the coherence plots indicate that LC model gives 
diverge mortality rates forecast in the future and therefore 
violated the coherence assumption between populations. 
On the other hand, the projected mortality rates of certain 
age groups of Wan-Bertschi, Plat, LC, and OH mortality 
models tend to diverge and crossover between each 
other. These undesirable conditions can be eliminated 
by assimilating the relationship between the populations 
simultaneously. Other than that, Li-Lee mortality model 
produced diverge forecasts at the age 15 to 39. This 
shows that joint parameter included in the modelling 
structure of Li-Lee failed to capture the variances across 
ages, which consequently leads to forecast divergence. 

Overall, our proposed models are found to be superior 
in terms of historical fit as well as predictive accuracy for 
male and female mortality. The models also exhibit the 
criteria needed in selecting the best stochastic mortality 
model, which is to ensure non-diverging projection 
mortality rates in the long run.

CONCLUSION

We proposed two new stochastic multi-population 
mortality models which are Augmented OH and 
Augmented OH SS. The models established are then 
numerically and visually compared with the models by 
Lee and Carter (1992), Cairns et al. (2009), Plat (2009), 
O’Hare and Li (2012), Li and Lee (2005), and Wan and 
Bertschi (2015). The selected model fits the data well if 
it is able to follow the criteria needed for a good mortality 
model which is, the model should have a: good quality 
of fit, normal standardized residuals error assumption, 
good forecasting ability in terms of short term and long 
term, and non-diverge male-to-female projection ratio. 
The analyses output demonstrates that Lee and Carter 
(1992), Plat (2009), O’Hare and Li (2012), Li and Lee 
(2005), Wan and Bertschi (2015) models do not follow 
all of these four sets criteria of a good model, thus are not 
considered to be a good mortality model for our datasets. 
Taken together, the results of this study have shown that our 
two latter frameworks have consistently performed the 
best for all four sets criteria of a good mortality model. In 
addition, the proposed mortality model brings significant 

contribution to the multi-population mortality model 
because the model could capture the correlation between 
population and correlation between full ages mortality, 
simultaneously. Other than that, we have shown that the 
model with a unified estimation of a state-space framework 
gives more accurate predictions as compared to the model 
with independent estimation procedures.

ACKNOWLEDGEMENTS

The authors would like to thank the Department of 
Statistics Malaysia (DOSM) for providing the data as well 
as to acknowledge the Ministry of Education, Malaysia for 
the financial resource under the Fundamental Research 
Grant Scheme (FRGS) with vot 5F370 and Universiti 
Teknologi Malaysia (UTM) for the UTM Encouragement 
Research (UTMER) grant with vot 17J78.

REFERENCES

Booth, H., Hyndman, R.J., Tickle, L. & De Jong, P. 2006. Lee-
Carter mortality forecasting: A multi-country comparison 
of variants and extensions. Demographic Research 15(9): 
289-310.

Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Epstein, 
D., Ong, A. & Balevich, I. 2009. A quantitative comparison 
of stochastic mortality models using data from England & 
Wales and the United States. North American Actuarial 
Journal 13(1): 1-35.

Coelho, E. 2013. Modelling and forecasting mortality patterns. 
Ph.D. Thesis, Nova University of Lisbon, Portugal 
(Unpublished).

Fung, M.C., Peters, G.W. & Shevchenko, P.V. 2018. Cohort 
effects in mortality modelling: A Bayesian state-space 
approach. Annals of Actuarial Science 13(1): 109-144.

Fung, M.C., Peters, G.W. & Shevchenko, P.V. 2017. A unified 
approach to mortality modelling using state-space 
framework: Characterisation, identification, estimation and 
forecasting. Annals of Actuarial Science 11(2): 343-389.

Fung, M.C., Peters, G.W. & Shevchenko, P.V. 2015. A state-
space estimation of the Lee-Carter Mortality Model and 
implications for annuity pricing. In MODSIM2015 - 21st 
International Congress on Modelling and Simulation, edited 
by Weber, T., McPhee, M.J. & Anderssen, R.S. pp. 952-
958. http://www.mssanz.org.au/modsim2015/E1/fung.pdf. 

Haberman, S. & Renshaw, A. 2011. A comparative study 
of parametric mortality projection models. Insurance: 
Mathematics and Economics 48(1): 35-55.

Hauser, R.M. & Weir, D. 2016. Recent developments in 
longitudinal studies of aging. Demography 23(5): 1079-1084.

Holmes, E.E., Ward, E.J. & Wills, K. 2012. MARSS: 
Multivariate autoregressive state-space models for analyzing 
time-series data. The R Journal 4(1): 11-19.

Husin,  W.Z.W., Zainol,  M.S. & Ramli,  N.M. 2015. 
Performance of the Lee-Carter State Space Model in 



  1111

forecasting mortality. Proceedings of the World Congress 
on Engineering. pp. 39-52.

Hyndman, R.J., Booth, H. & Yasmeen, F. 2013. Coherent 
mortality forecasting: The product-ratio method with 
functional time series models. Demography 50(1): 261-283.

Lee, R.D. & Carter, L.R. 1992. Modeling and forecasting U.S. 
mortality. Journal of the American Statistical Association 
87(419): 659-671.

Li, H., O’Hare, C. & Zhang, X. 2015a. A semiparametric panel 
approach to mortality modeling. Insurance: Mathematics 
and Economics 61: 264-270.

Li, J. 2013. A Poisson common factor model for projecting 
mortality and life expectancy jointly for females and males. 
Population Studies 67(1): 111-126.

Li, J.S., Zhou, R. & Hardy, M. 2015b. A step-by-step guide 
to building two-population stochastic mortality models. 
Insurance: Mathematics and Economics 63: 121-134.

Li, N. & Lee, R. 2005. Coherent mortality forecasts for a group 
of populations: An extension of the Lee-Carter method. 
Demography 42(3): 575-594.

Liu, Y. & Li, J.S.H. 2016a. The locally linear Cairns-BlakeDowd 
Model: A note on Delta-Nuga hedging of longevity risk. 
ASTIN Bulletin 47(1): 79-151.

Liu, Y. & Li, J.S.H. 2016b. It’s all in the hidden states: A longevity 
hedging strategy with an explicit measure of population 
basis risk. Insurance: Mathematics and Economics 70: 
301-319.

Nor, S.R.M., Yusof, F. & Bahar, A. 2018. Multi-Population 
mortality model: A practical approach. Sains Malaysiana 
47(6): 1337-1347.

O’Hare, C. & Li, Y. 2012. Explaining young mortality. 
Insurance: Mathematics and Economics 50(1): 12-25.

Pedroza, C. 2006. A Bayesian forecasting model: Predicting 
U.S. male mortality. Biostatistics 7(4): 530-550.

Plat, R. 2009. On stochastic mortality modelling. Insurance: 
Mathematics and Economics 45(3): 393-404.

Scherbov, S. & Ediev, D. 2016. Does selection of mortality 
model make a difference in projecting population ageing? 
Demographic Research 34(2): 39-62.

Villegas, A.M. 2015. Mortality: Modelling, socio-economic 
differences and basis risk. Ph.D. Thesis, Cass Business 
School, London (Unpublished).

Wan, C. & Bertschi, L. 2015. Swiss coherent mortality model as a 
basis for developing longevity de-risking solutions for Swiss 
pension funds: A practical approach. Insurance: Mathematics 
and Economics 63: 66-75.

Weir, D.R. 2010. Grand challenges for the scientific study of 
ageing. American Economic Association, Ten Years and 
Beyond: Economists Answer NSF’s Call for Long-Term 
Research Agendas. Institute for Social Research, Ann Arbor: 
University of Michigan.

Department of Mathematical Sciences
Faculty of Science
Universiti Teknologi Malaysia
81310 UTM Johor Bahru, Johor Darul Takzim
Malaysia

*Corresponding author; email: sitirohani@utm.my

Received: 27 January 2020
Accepted: 9 September 2020


