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ABSTRACT

This work looks into the effect of Steam to Carbon ratio (S:C) on methane (CH4) conversion and hydrogen (H2) yield over 
coated Nickel Aluminide (Ni3Al) catalyst in micro reactor. The Ni3Al is an intermetallic alloy which known to have good 
catalytic activity and selectivity. The Ni3Al catalyst precursor was prepared through dip coating technique at 10wt% on top 
of substrate plate and characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray 
Spectroscopy (SEM-EDX), Temperature Programming Reduction (TPR), activated by H2 reduction, and catalytic activity test 
in steam methane reforming (SMR) reaction in micro reactor at S:C 2, S:C 3 and S:C 4 with 650°C reaction temperature 
and 300 minutes reaction time. The characterization showed the presence of Ni3Al on top of the coating surface and 
successfully been activated at 500°C and 46 minutes. The CH4 conversion and H2 yield in the product of the reaction were 
quantified using the Gas Chromatograph technique. From the series of experiments, it was found that S:C 4 produced the 
highest methane conversion of 65.56% and S:C 3 produced the highest hydrogen yield of 41.34%. The S:C 2, showed faster 
and smoother stability trend conversion as early as 180 minutes from the start of the reaction. However, S:C 3 showed the 
most optimum methane conversion and hydrogen yield and achieved stability trend conversion within the defined reaction 
time range of 300 minutes. It is inferred that the S:C 3 is the best steam to carbon ratio for the developed catalyst in these 
settings.
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INTRODUCTION

Hydrogen had been widely accepted as a potential 
alternative energy source and energy carrier to meet the 
increasing demand of the world’s energy consumption. It 
is unanimously known that hydrogen (H2) is the cleanest, 
efficient and pollution- free energy sources. Currently, 
hydrogen is mainly produced from chemical reaction 
processes of catalytic hydrocarbon reforming especially 
methane, such as partial oxidation, auto thermal and steam 
reforming. Among these, the steam methane reforming 
(SMR) had promised a few advantages such low reaction 
temperature and high hydrogen content in the reforming 
products (Azizi et al. 2019; Bej et al. 2013; Madon et al. 
2015 & 2018 and Matsumura et al. 2004).

The catalytic SMR functionally reacts with existing of 
metal-based catalysts such as nickel, with known properties 
of good stability and high activity performance that is well 
suited for gas conversion reaction. The catalyst works by 

reducing the activation energy of methane cracking and 
straightly enhance the reaction rate. Besides that, some 
researchers had turned towards micro-scale reactors, which 
are capable of improvement, SMR’s performance in terms 
of energy consumption. It is known that, the main reaction 
involves in SMR as Equation (1) and (2) which convert 
methane (CH4) and steam (H2O) into a mixture of hydrogen 
(H2), carbon monoxide (CO) and carbon dioxide (CO2) (Isha 
& Williams 2012; Izquierdo et al. 2012; Liu et al. 2012; 
Mansor et al. 2018 and Zhai et al. 2011).

4 2 2CH H O CO 3H+ ↔ + (1)

2 2 2CO H O CO H+ ↔ + (2)

During catalyst preparation, nickel which finely 
dispersed over support carrier helps to produce large 
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catalytically active surface area and huge quantities of 
H2 adsorption which acts as the key characteristics of the 
reaction efficiency (Madon et al. 2016; Maluf & Assaf 
2009 and Sarwani et al. 2016). It was found that some 
intermetallic elements such as aluminide can be used as 
a support carrier for nickel catalyst. The nickel aluminide 
(Ni3Al) is a high temperature structural materials and 
corrosion resistance and thus it has become a potential 
catalyst for the SMR process. The preparation of mixture 
between nickel and aluminide through aluminum leaching 
had some problems such as low effectiveness and the Ni3Al 
formation process has very limited studies. Introducing dip 
coating as a deposition technique is believed to improve 
the Ni3Al formation thus providing an alternative method 
of producing Ni3Al effectively (Amri et al. 2012; Fang et 
al. 2008; Saadi et al. 2011; Xu et al. 2005 and Zangouei et 
al. 2010). In general, the nickel content used in the SMR 
catalyst does not exceed 12wt% to avoid severe aggregation 
or sintering of nickel particles during the reaction. Sarwani, 
2017, prove that 10wt% of nickel as the most optimum 
catalyst impregnation on substrate plat via dip coating 
method to secure from severe aggregation causal.

SMR is an endothermic reaction and requires external 
heat input. Besides heat properties, the SMR reaction 
process output is also reflected by the steam to carbon ratio 
(S:C). It is very important to ensure the optimum S:C which 
being introduced to avoid carbon coking at S:C below 3 
and reduce high energy consumption especially during S:C 
is about 3 or more (Bej et al. 2013; Charisiou et al. 2016; 
Maluf & Assaf 2009 and Zhai et al. 2011). Meanwhile the 
300 minutes reaction time is at most operating time for new 
catalyst characterization properties (Pudukudy et al. 2015).

The use of a unique catalyst in this works, leads to the 
desired optimum operating condition. Therefore, the purpose 
of this study is to define the effect of steam to carbon ratio 
of methane conversion and hydrogen yield over a coated 
nickel aluminide catalyst in micro reactor. By comparing 
these works finding to the literature, it is expected to define 
critical information regarding steam to carbon ratio effect 
for further optimization from a practical viewpoint.

MATERIALS AND METHODS

CATALYST PRECURSOR PREPARATION AND ACTIVATION

The Nickel aluminide catalyst was prepared by using the 
sol-gel and dip coating method. The sol-gel was prepared 
by dissolving 22g Aluminum isopropoxide in 90ml ethanol. 
Then, 5ml Nitric acid and 5ml distilled water were added 
into the solution. The solution was stirred for one hour 
at 60oC. Next, 10g of Nickel (II) nitrate hexahydrate was 
added slowly and continuously into the solution and kept 
stirred at 60o C until homogeneous for another one hour. As 
the solution finished stirring, the sol-gel was obtained and 
ready for dip coating process.

The dip coating schematic diagram is shown as Figure 1. 
The PTL-MM01 Dip Coater with dipping and a withdrawal 

speed range of 1-200 mm/min was used for this work. For 
the dip coating sector, the dipping and withdrawal speed used 
were 160 mm/min. The 304 stainless steel plates were used 
as a substrate, and had been immersed into the solution and 
an uncoated area was kept on the top of the plate. The plate 
was withdrawn from the bath at a prescribed withdrawal 
velocity. The coated sample is pursued evaporation process 
for 30 minutes and followed by heat treatment of isothermal 
annealing by using Carbolite RHF 14/3 box furnace at an 
operating temperature of 500oC for 90 minutes.

For the catalyst activation, the coated plate was 
undergone temperature programming reduction (TPR) to 
define the temperature and activation time. Prior to the TPR 
reaction tests, the coated catalysts were reduced in Hydrogen 
with a condition of 300ml/min at 700 °C for 90 minutes. The 
catalyst is further characterized for X-ray pattern diffraction 
by using XRD Bruker D8 at 2 Theta between 20° till 90°.

CATALYTIC REACTION ACTIVITY

The experimental setup is shown as in Figure 2 and the 
coated catalyst was loaded in a few slots inside a micro 
reactor with a channel depth of 200 µm and placed in a 
box furnace for the endothermic reaction process as in 
Figure 3. The SMR catalytic reaction was conducted at 
steam to carbon ration of S:C 2, S:C 3 and S:C 4, 650°C 
reaction temperature, 300 minutes reaction time, using 
10wt% loading of nickel aluminide (Ni3Al) and the 
synthesis gas produced was collected at 60 minutes time 
interval.

The product gases were collected by using Tedlar 
sampling bags and analyzed with gas chromatography 
equipment (Perkin Elmer Clarus 500) fitted with a TCD 
detector. By assuming that SMR reactions occurred, the 
conversion expressed on a dry basis was calculated as in 
Equation 3 and Equation 4. Where FoCH4 molar flow of 
CH4 in feed, FCH4 molar flow of CH4 in the output of the 
chromatograph, XCH4 is CH4 conversion in products, XH2 is 
the H2 formation from CH4, nH2 mole flow rate of hydrogen 
into the reactor, Equation 1 and Equation 2 extended mole 
flow rate reaction. 
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RESULT AND DISCUSSION

NICKEL ALUMINIDE CATALYST ANALYSIS

The coated nickel aluminide (Ni3Al) was activated by a 
continuous flow of H2 passing through the coated Ni3Al 
surface in the micro reactor. The reducibility of coated 
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FIGURE 1. Schematic diagram of dip coating process

FIGURE 2. Schematic diagram of SMR experimental setup

FIGURE 3. Schematic diagram of micro reactor with insert coated plate catalyst

nickel aluminide (Ni3Al) was defined by performing 
temperature programming reduction (TPR). Figure 4 
showed that the peak and the area under graph representing 
H2 consumption. The highest peak indicating that optimum 
temperature and time for the activation process. It is 
distinctly shown that 500°C and 46 minutes is the best 
operating condition to secure high active surface area of 
the catalyst. 

The coated nickel aluminide (Ni3Al) catalyst has 
undergone X-Ray Diffraction (XRD) and Scanning Electron 
Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-
EDX) analysis. Figure 5 and Figure 6, showed that the 
presence of Ni3Al element and Ni / Al component on the 
coated substrate surface respectively to the XRD and SEM-
EDX. The oxidized element is reacted with the activation 
agent H2 become H2O during the activation stage. Hence, 
the coated Ni3Al catalyst is successfully activated and 
ready for methane conversion. These results also had 

been reported by Madon et al. 2018 and been used as the 
supporting results in this manuscript. This study is expected 
to define critical information regarding steam to carbon ratio 
effect on methane conversion and hydrogen yield for further 
optimization in a practical viewpoint, compare to the Madon 
et al. 2018 which is focusing more on the effect of reaction 
temperature.

EFFECT OF STEAM TO CARBON RATIO (S:C) ON METHANE 
CONVERSION

In order to study the influence of steam to carbon ratio 
(S:C) effect on SMR catalytic behavior, the experiment 
was carried out accordingly to the operating condition. 
The catalytic activity in methane conversion was shown 
as in Figure 7. It is distinctly established that methane 
conversion is proportional to the steam to carbon ratio. 
The S:C 4 gives a maximum conversion of 65.56%, as 
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compared to the minimum 30.14%, obtained in S:C 2. 
This is obeying the principle of steam methane reforming 
reaction at multiple steam to carbon ratio, whereby the 
methane conversion increases as the steam to carbon ratio 
increases. This phase took place due to the excess steam at 
reactant stream, which reacts and straightly enhances the 
methane cracking reaction to increase yield at the product 
stream. This finding is similar to the work done by Maluf et 
al. 2009 and Bej et al. 2013. For the SMR reaction, methane 
is the limiting reactant, whereby it is finished first, then 
with enough or excess steam, the methane conversion rate 
can be increased.

The Figure 7, showed only S:C 2 and S:C 3, exhibit 
trends of heterogeneous catalytic traits between 0 and 300 
minutes, which are lag (pre-conversion), logarithm (rapidly 
increasing conversion) and stationary stage (stable remained 
unchanged of the conversion). Meanwhile, for the S:C 4, 
even though methane conversion is high and towards 
stability, it already exceeds the defined reaction time range 
of 300 minutes. The S:C 2 has a faster and smoother trend 
line of stability, which start the stationary stage as early 180 
minutes. However, the S:C 3 yields the highest methane 
conversion compared with S:C 2. It is inferred that S:C 3 had 
become optimum steam to carbon ratio for the developed 
catalyst.

EFFECT OF STEAM TO CARBON RATIO (S:C) ON HYDROGEN YIELD

Figure 8, the maximum hydrogen yield is achieved at 
S:C 3 with a value of 41.34% and the minimum 33.29% 
is obtained by S:C 2. As reported by Simsek et al. 2011, 
according to Le Chatelier’s principle, excess steam in the 
product direction converts the generated carbon monoxide 
by SMR into hydrogen and carbon dioxide, which leads to 
the highest H2 ratios as observed at S:C 3 in this work. Even 
though the S:C 4 yielded the maximum value of methane 
conversion, simply due to water gas shift (WGS) reaction 
dominantly laid on the S:C 3, the hydrogen formation of 
S:C 3 slightly became greater as compared to the S:C 4. 
For S:C 4, only 20% methane was supplied to react with 
excess steam as compared to S:C 3 which obtained 25% of 
methane. It straightly increased the hydrogen formation at 
the outlet stream. On the other hands, carbon monoxide was 
limiting reactant in WGS; thus, it is unable to win over 100% 
even if the conversion reaches unity.

CONCLUSION

The coated Ni3Al catalyst via dip coating has been 
successfully trialed run in a micro reactor with a few findings. 

FIGURE 4. TPR analysis of coated nickel aluminide catalyst

FIGURE 5. XRD analysis for nickel aluminide catalyst (Ni3Al: JCPDS 09-0097)
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FIGURE 6. Scanning Electron Microscope-Energy Dispersive X-Ray Spectroscopy (SEM-EDX)

FIGURE 7. Methane conversion against reaction time

FIGURE 8. Hydrogen yields against reaction time
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The S:C 4 produced the highest methane conversion of 
65.56% and S:C 3 produced the highest hydrogen yield of 
41.34%. The S:C 2, showed faster and smoother stability 
trend conversion as early as 180 minutes from the start of 
the reaction. However, S:C 3 showed the most optimum 
methane conversion and hydrogen yield and achieved 
stability trend conversion within the defined reaction time 
range of 300 minutes. It is inferred that the S:C 3 is the 
best steam to carbon ratio for the developed catalyst in this 
setting. For future work, the steam to carbon ratio reaction 
interval should be decreased to a smaller scale to establish 
the most effective reaction settings.
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