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ABSTRACT 

 

Drug discovery is the process through which new drugs are discovered. One of the most common techniques in 

drug discovery is similarity searching based on virtual screening that involves comparing the similarity between 

molecule structures in chemical database using established similarity methods. The objective of this study is to 

identify the similarity of the structure in chemical dataset using Mean Pairwise Similarity (MPS) calculation and 

to determine the best coefficient to be used in similarity searching which involves of molecular descriptor 

ECFP2 fingerprint and three types of similarity coefficient which are Tanimoto, Soergel and Euclidean. From 

the results, it was deduced that Tanimoto and Soergel coefficients has a better performance than Euclidean 

coefficient. For future work, different combinations of fingerprints such as Daylight, BCI, Unity MDL and 

similarity coefficient can be studied further. 
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INTRODUCTION 

 

Drug discovery is the process through which new medicine are discovered. The process 

involves lengthy procedures of developing the drug. Lab tests and clinical tests are carried 

out to ensure the safety and effectiveness of the drug. One of the earliest domain to support 

drug discovery and design is Chemoinformatics (Gasteiger 2016). Chemoinformatics 

methods were developed for use in all major pharmaceutical companies (Gasteiger 2016). 

Using chemoinformatics as the basis, computer methods for learning from massive chemical 

data were proposed. 

Drug discovery are found in medicine, biotechnology and pharmacology fields where 

the new candidate medications are indicated. The traditional drug discovery process includes 

step by step process from lead discovery (duration: 3 years), preclinical development 

(duration: 1 year), clinical development (duration: 4 years) and Food and Drug 

Administration (FDA) filing (duration: 1.5 years) (Hughes et al. 2011). As can be seen from 

the time taken by each step, these traditional methods can be labour intensive and time-

consuming (Al Qaraghuli et al. 2017). However, the new development of computational 

technology can simplify and speed up the drug discovery process. 

Numerous factors have made drug discovery more of a challenging task. Drug 

discovery is a lengthy and costly process. There are significant expenses incurred in the 

process which includes purchase of the main materials used in drug making. There are 

insufficient qualified diagnostic and also biomarkers in the process to help in the detection 

and treatment of diseases in the industry. Scientists have resolved to the use of chimpanzees 

for disease exposure as they are believed to have the same genes as those of the humans.  

In the past, drug researchers made their discoveries through identification of the active 

ingredient from their traditional remedies. Current modern drug discovery involves methods 

in chemoinformatics like similarity searching, virtual screening among others. These methods 
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have helped drug discovery in a substantial way in that they optimize the discovery process 

with speed and accuracy.  

Chemoinformatics is a computer and information-based technique that has been 

widely used in drug discoveries in pharmaceutical companies. This technique uses basic 

application of science from different fields of science such as chemistry, and computer and 

information science (Gasteiger 2016). Areas of computer and information that has been 

studied in chemical space include topology, data mining, data retrieving and chemical graph 

theory (Alexandre and Baskin, 2011). 

  Virtual screening is a computational method applied in drug discovery. It involves 

searching for small molecules in large libraries of compounds with the aim of identifying 

structures which have high chances of binding with the drug target. A lot of studies have been 

done that has improved the accuracy of Virtual Screening (VS) and therefore it has become a 

crucial part of the process of drug discovery. Virtual screening is done in two broad ways; 

one is ligand-based, and the other one is structure-based. 

Ligand-based virtual screening (LBVS) is the technique uses the information which is 

present and known in the identified active ligands for both lead identification and 

optimization. It does not use the structure of the target enzyme or protein receptor. These 

techniques are chosen when 3D structures of the target protein do not exist, for instance, in 

G-protein-coupled receptor targets. Even if the protein structure for the target is unknown, it 

is possible to identify a set of ligands which are active against the target. Therefore, in such 

cases, ligand-based techniques are used. Basically, it involves finding new ligands by 

examining and analyzing similarities between known active ligands and the candidate 

ligands. Besides ligand-based virtual screening, another approach is structure-based virtual 

(Sonalkar and Jain, 2016). 

Structure-based virtual screening (SBVS) are methods of virtual screening that 

involves docking of candidate ligands into a protein target and then afterward applying a 

scoring function which will help in generating the probability of the ligand binding to the 

target protein with high affinity. These methods are very significant in drug discovery 

processes. They help in optimization of the discovery process. Structure-based discovery 

helps in understanding the molecular design of a disease by the use employing the knowledge 

of the 3D structure of the target. Structure-based computational approaches together with the 

3D structure information of the compound target help in evaluating the molecular interactions 

between the ligand and the protein. Basically, in virtual screening, large libraries of huge 

numbers of drug-like compounds that are readily available (commercially) are 

computationally screened against targets of known structure. Numerous attempts have been 

made to develop computational algorithms to predict the binding affinity of a ligand to a 

given receptor, which would allow potential compounds to be screened in silico, reducing 

costs and saving time (Lee et al. 2016). 

This work focuses on similarity searching. A similarity searching is done by matching 

or overlapping elements for purposes of qualitative or quantitative characterization. 

Characterization using similarity searching is a matter of trial and error. Queries are used in 

object specification, and when multiple searches are undertaken using a single query, it 

results in a hyperlinked screen that gives highly reliable information. These similarity 

searches retrieve information of objects similar to the query, and the data is sorted in order of 

decreasing similarity. The similarity scores illustrate the effectiveness of similarity searching 

(Wang and Bajorath, 2010). 

  Similarity searching has turned out to be the simplest and cost effective way for 

analyzing information among various chemical databases to identify the relationship between 

active structures of target references in the database. Through this approach, it is now easier 

to make a follow up when tracing the original active aspect basing on the level of 
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resemblance between the structures. Due to its simplicity and effectiveness, most of 

chemoinformatics software systems are exploiting similarity searching using a sole target 

structure approach. In order to perform multiple search or to analyze target structure that are 

not structurally related, the similarity searching is performed through chemical database like 

MDL Drug Data Report (MDDR) (Finn and Morris, 2012). 

 

SIMILARITY MEASURES 

 
SIMILARITY COEFFICIENT 

 

Similarity coefficient is used to determine the similarity between the query and the target in a 

form of fingerprint (Syuib et al., 2013). In chemoinformatics fields, there are many similarity 

coefficients that can be used to investigate similarity searching in virtual screening. There are 

two types of coefficient which can be calculated; either using distance coefficients or 

similarity coefficient. In this works, the focus is on 3 similarity coefficients which are 

Tanimoto coefficient, Soergel coefficient and Euclidean coefficient. 

 

STRUCTURAL REPRESENTATIONS 

 

 Structural representation in chemoinformatics is describing the structural features of 

chemical structures. The representation known as “fingerprints” which are mathematically 

presented strings of binary bits. They are set in such a way that they produce a bit pattern of a 

specific molecule. In this work, the focus is on Extended Connectivity Fingerprints or as 

known as ECFP with the length of 2 bounds (ECFP2) to calculate the mean of recall and 

ECFP fingerprint with the length of 4 bounds (ECFP4) to calculate the Mean Pairwise 

Similarity (MPS). ECFPs are the new class of topological fingerprints used in molecule 

characterization. Topological fingerprints were mainly developed to assist in similarity 

searching as well as in substructure and today ECFPs are mostly used in activity modeling. 

ECFPs are the type of binary fingerprints and can be tailored to develop different types of 

fingerprints which can be optimized for the various applications. Seal et.al (2015) used 

ECFP6 to optimize drug target interactions.  

 

METHODS 

 

The datasets used in this experiment is MDDR datasets. MDDR is one of the database which 

commercially available and in this case the database used is purchased by Universiti 

Kebangsaan Malaysia. From this database, 15 random classes were chosen as the datasets for 

further investigation. The number of active molecules in the class are between 293 to 1355 

molecules with total of active molecules of 9.941 molecules. 

 

MEAN PAIRWISE SIMILARITY 

 

This part involves selecting 15 activity classes from MDDR database as the datasets in this 

experiment. The first task is to calculate the Mean Pairwise Similarity (MPS) for every class 

in this datasets. Mean pairwise similarity is the similarity of the molecules in each activity 

class (Saeed et al., 2012). From the calculation of MPS, we can see whether each of activity 

class has similar molecules to each other (homogeny) or has dissimilar molecules to each 

other (heterogenic). In this task, MPS is calculated using Tanimoto coefficient and ECFP4 for 

the fingerprint representation. 
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The MDDR datasets were filtered to remove the duplicates and null data from each activity 

class. Then all the active molecules in each activity class were converted to ECFP4 

fingerprint using Pipeline Pilots software (available from http://www.accelerys.com). Mean 

Pairwise Similarity would be calculated using Tanimoto coefficient which will compare the 

similarity of each molecule in each activity classes. The formula in Equation (1) is used for 

calculating Mean Pairwise Similarity in this datasets is 

 

Mean Pairwise Similarity =  .                      (1) 

 

SIMILARITY SEARCH 

 

The next part would be to compute the similarity search. In this task, the ECFP2 Fingerprint 

and Tanimoto, Soergel and Euclidean Coefficient to calculate the similarity search between 

two chemical structures using Mean of Recall formula in order to compare the similarity 

coefficients and the other task would be using Precision formula to compare the fingerprints 

which will be using Tanimoto as the coefficient and ECFP4, ECFP6 and FCFP6 for the 

fingerprint comparison. First, we filtered the MDDR datasets to remove duplicates or null 

data from each activity classes in this datasets. Then the datasets are converted to ECFP2 

(1024bit) fingerprint using Pipeline Pilot software. Ten reference structures were chosen 

based on the most representatives ID/query from each class. The most representative ID are 

the 10 most similar molecules in each activity classes. In order to find the most representative 

ID/molecules in each class, the calculation using Tanimoto coefficient and ECFP2 fingerprint 

were involved. Each query of 10 the most representative ID will then be used to calculate the 

similarity value in each class in MDDR datasets. Only top 1% high ranked value will then be 

analysed for further investigation. 

After obtaining the top 1% high ranked value, this result will be analysed to see how many of 

these values belong to the same activity class (true positive). After determining the true 

positive number, the mean of recall and precision will be calculated where the equation of the 

mean of recall and precision are as below (Equations (2) and (3)): - 

Mean of Recall =   .                                (2) 

 

Precision =   .                                                                (3) 

 

 

RESULT AND DISCUSSION 

 

The results are shown in Table 1, Table 2 and Table 3. Table I is a compilation of Mean 

Pairwise Similarity.  
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TABLE 1. Mean Pairwise Similarity 

 

Activity Class 

ID 

Activity class Name Number of 

active 

molecules 

Mean 

Pairwise 

Similarity 

01252 Agent for Neurogenic Pain 634 0.1273 

33451 Agent for Restenosis 695 0.1330 

35100 Agent for Urinary Incontinence 913 0.1421 

41270 Agent for Erectile Dysfunction 532 0.1602 

42102 Growth Hormone Release Promoting Agent 398 0.2332 

42731 Substance P Antagonist 366 0.2015 

43200 Symptomatic Antidiabetic 980 0.1338 

55210 Agent for Inflammatory Bowel Disease 293 0.1341 

59500 Antiacne 444 0.1388 

62210 Agent for Autoimmune Diseases 747 0.1304 

64200 Cephalosporin 1355 0.3861 

73000 Anthelmintic 541 0.1972 

75400 Antineoplastic Antibiotic 921 0.1783 

78329 Dipeptidyl Aminopeptidase IV Inhibitor 490 0.1716 

80000 Diagnostic Agent 632 0.1193 

 

Based on the Main Pairwise Similarity calculation in Table 1 it is clear that class ID for 

64200 has the highest MPS value on these datasets which also has the highest number of 

active molecules among other activity classes and class ID for 80000 has the lowest MPS 

value on these datasets. From the MPS result shows that class ID for 64200 has the molecules 

which most similar to each other and class ID for 80000 have the molecules which are 

dissimilar to each other. 

 
TABLE 2. Mean of Recall for MDDR Datasets 

 

Activity 

Class ID 

Activity class name Similarity Coefficient 

 Tanimoto Soergel Euclidean 

01252 Agent for Neurogenic Pain 0.029 0.029 0.037 

33451 Agent for Restenosis 0.059 0.059 0.056 

35100 Agent for Urinary Incontinence 0.039 0.039 0.040 

41270 Agent for Erectile Dysfunction 0.199 0.199 0.138 

42102 Growth Hormone Release Promoting Agent 0.217 0.217 0.253 

42731 Substance P Antagonist 0.191 0.191 0.200 

43200 Symptomatic Antidiabetic 0.073 0.073 0.067 

55210 Agent for Inflammatory Bowel Disease 0.094 0.094 0.095 

59500 Antiacne 0.125 0.125 0.118 

62210 Agent for Autoimmune Diseases 0.049 0.049 0.035 

64200 Cephalosporin 0.067 0.067 0.067 

73000 Anthelmintic 0.166 0.166 0.166 

75400 Antineoplastic Antibiotic 0.098 0.098 0.098 

78329 Dipeptidyl Aminopeptidase IV Inhibitor 0.183 0.183 0.181 

80000 Diagnostic Agent 0.097 0.097 0.104 

 

Table 2 shows the mean of recall for MDDR datasets using Tanimoto, Soergel and 

Euclidean Similarity Coefficient. Based on this result, class ID for 42102 has the highest 

mean of recall of 0.253 when using Euclidean Similarity. However, the mean of recall for the 

same class using Tanimoto and Soergel similarity resulting not much difference with the 

Euclidean Similarity which is 0.217. This table shows that the mean of recall for Tanimoto 
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and Soergel similarity has the same value in every classes and more than half of the classes 

shown that Tanimoto and Soergel similarity coefficient result with higher mean of the recall. 

 
TABLE 3. Precision for MDDR Datasets 

 

Activity 

Class ID 

Activity class name Similarity Coefficient 

ECFP4 ECFP6 FCFP6 

01252 Agent for Neurogenic Pain 0.214 0.214 0.229 

33451 Agent for Restenosis 0.497 0.497 0.469 

35100 Agent for Urinary Incontinence 0.434 0.434 0.464 

41270 Agent for Erectile Dysfunction 0.864 0.864 0.874 

42102 Growth Hormone Release Promoting Agent 0.902 0.902 0.800 

42731 Substance P Antagonist 0.852 0.852 0.881 

43200 Symptomatic Antidiabetic 0.753 0.753 0.719 

55210 Agent for Inflammatory Bowel Disease 0.315 0.315 0.335 

59500 Antiacne 0.649 0.649 0.616 

62210 Agent for Autoimmune Diseases 0.353 0.353 0.367 

64200 Cephalosporin 1.0 1.0 1.0 

73000 Anthelmintic 1.0 1.0 1.0 

75400 Antineoplastic Antibiotic 1.0 1.0 1.0 

78329 Dipeptidyl Aminopeptidase IV Inhibitor 0.995 0.995 0.989 

80000 Diagnostic Agent 0.744 0.744 0.837 

 

Table 3 showed the precision for MDDR datasets using fingerprints ECFP4, ECFP6 and 

FCFP6. Based on this results, class ID 64200, 73000 and 75400 has reached the highest result 

of precision of 1.0 in 3 fingerprints meaning that these activity classes are able to retrieve the 

same molecule from the original class using 3 different fingerprints. The classes of 35100, 

41270, 42731, 55210, 62210 and 8000 scored the highest result from FCFP6 fingerprint. 

Whereas, the scores for ECFP4 and ECFP6 are lower. In general, for this MDDR datasets, 

FCFP6 has the highest value of precision for this experiment. 

Figure 1 shows the highest scores achieved by each similarity methods for different 

fingerprints. From Figure 1, each similarity method has different performance for each 

fingerprint. Tanimoto dan Soergel has high frequencies for ECFP4, ECFP6, FCFP4 and 

FCFP6. However, both has low frequencies for ECFP2 and FCFP2. Past research (Arif et al. 

(2015), Fatimah Zawani (2014), Syuib et al. (2013), Todeschini et al. (2012)) also shows that 

Tanimoto coefficient produced acceptable results. On the other hand, Euclidean scored high 

frequencies for ECFP2 and FCFP2 and scored low frequencies for ECFP6 and FCFP6. 
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FIGURE 1. The Frequency of Scores for Each Similarity Methods  

 

CONCLUSION 

 

From this investigation, we clearly see that Tanimoto and Soergel has the same and higher 

value of the mean of recall. From the previous research in chemical similarity has also found 

that Tanimoto is the best coefficient among others to be used in similarity searching. The 

results reported above have shown that not only Tanimoto coefficient but also Soergel 

coefficient performs the same result in this MDDR datasets. In the future, the research can be 

extended by using many more of similarity coefficient with different types of molecular 

descriptors to this MDDR datasets. Consequently, this will lead to the discovery of new 

computational methods for prediction of drug target discovery. 
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