Jurnal Kejuruteraan 33(2) 2021: 293-316 https://doi.org/10.17576/jkukm-2021-33(2)-15

Computer Aided Simulation POME Biogas Purification System

Andrew Yap Kian Chung* & Ummi Kalsum Hasanah M.N Milling and Processing Unit, Engineering & Processing Division, Malaysian Palm Oil Board (MPOB) No.6 Persiaran Institusi Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia.

*Corresponding author: andrew@mpob.gov.my

Received 19 January 2020, Received in revised form 12 May 2020 Accepted 21 September 2020, Available online 30 May 2021

ABSTRACT

About three (3) tonnes of palm oil mill effluent (POME) is generated when one (1) tonne of crude palm oil (CPO) is produced. Microbial digestion treatment is commonly used in Malaysian palm oil mills due to the low capital expenditure (CAPEX) and operational expenditure (OPEX). However, anaerobic digestion of POME produces methane gas which is 21 times more harmful than carbon dioxide. $1m^3$ of POME could generate $27m^3$ of biogas at standard temperature and pressure with approximate caloric value of 20 MJm⁻³ under optimum conditions Thus, methane capturing biogas plant to address sustainability issue is included as part of effluent treatment plant. Many mills start to utilise the biogas energy to replace palm kernel shell which could be sold as renewable solid fuel. Although untreated biogas may be good enough for boiler fuel, internal combustion engines need a fairly homogeneous fuel with methane (CH₄) content up to 80 % and hydrogen sulphite (H₂S) content less than 200 ppm in order to ensure the optimum engine performance. Water scrubber system is widely used in gas purification. Computer aided biogas purification system simulation involving water scrubber and flashing drum is presented in the effort to produce IC engine fuel. ChemCAD simulation result shows that POME biogas purification process is feasible at 10 bar pressure and 25°C ambient temperature.

Keyword: Biogas; carbon dioxide; ChemCAD; palm oil mill effluent; water scrubber

INTRODUCTION

Malaysia produced 19,858,367 tonnes of crude palm oil in year 2019 (MPOB 2020). About three (3) tonnes of palm oil mill effluent (POME) with average characteristic as shown in Table 1 is generated when one (1) tonne of crude palm oil (CPO) is produced.

POME is non-toxic but pollutes aquatic environments due to its high biological oxygen demand. Department of Environment enforces regulatory standards that require mill operators to treat POME before discharging it into waterways. Because of low capital expenditure and operational simplicity, almost all palm oil mills practise open ponding treatment systems. However, anaerobic organic decomposition as shown in Figure 1 releases into the atmosphere methane gas, which is a greenhouse gas (GHG) 21 times more harmful than carbon dioxide (EPA 2011). Thus sustainability issue need to be addressed (Loh et al. 2017).

Anaerobic digestion of POME produces biogas which is a mixture of gases as shown in Table 2. At standard temperature and pressure, 1 m³ of POME could generate 27 m³ biogas with approximate caloric value of 20 MJm³ under optimum conditions as shown in Table 3. The actual biogas calorific value is a function of CH_4 percentage, temperature and absolute pressure (Stefan, 2004). Thus, biogas capture is a feasible solution whereby renewable energy is generated while reducing environmental GHG impact.

Several technologies for effluent anaerobic digestion are readily available. Ample contact between microorganisms and substrate is essential in all designs beside microorganisms wash out prevention. Due to high solids and oil content in POME, either continuous stir tank reactors (CSTR) or covered lagoons is preferred for palm oil mills. General biogas plant process flow chart is shown in Figure 2.

PROBLEM STATEMENT

Untreated biogas may be good enough for boiler fuel but not for internal combustion gas engine in electricity generation with efficiency between 36% and 42%. Thus, biogas needs to be treated to reduce impurities and becomes a fairly homogeneous fuel with methane (CH₄) content up to 80 % and hydrogen sulphite (H₂S) content of less than 200 ppm.

Symbol	Parameters	Unit	Average
BOD	Biological Oxygen Demand	mgl ⁻¹	25000
COD	Chemical Oxygen Demand	mgl ⁻¹	50000
TSS	Total Suspended Solid	mgl ⁻¹	31170
AN	Ammonia (NH ₃ -N)	mgl ⁻¹	41
O&F	Oil and Fat	mgl ⁻¹	3075
pH	pH		4

Source: Ahmad Parveez et al. (2020).



FIGURE 1. Anaerobic digestion stages

TABLE 2. Biogas compositions

Elements	Formula	Concentration (Vol. %)
Methane	CH ₄	50-75
Carbon dioxide	CO_2	25–45
Water vapour	H ₂ O	2–7
Oxygen	O ₂	< 2
Nitrogen	N_2	< 2
Hydrogen Sulphite	H_2S	< 2
Ammonia	NH ₃	< 1
Hydrogen	H_2	< 1

OBJECTIVE

The objective of this paper is to simulate biogas purification system involving water scrubber and flashing drum for scrubbing water recovery.

WATER SCRUBBER

Water scrubber is a counter current packed column as shown in Figure 3 where gas-liquid extraction reduces CO_2 concentration to enrich the methane content to above 80% and H₂S concentration typically below 200 ppm in order to avoid excessive corrosion in the internal combustion engine (Gautam 2014).

Packing materials are designed to maximize the liquid surface area per unit bed volume to enhance mass transfer coefficient. Void fraction, ε , is a crucial parameter to characterize two-phase flows as occur in the biogas packed column water scrubber. Various geometric definitions as shown in Equation (1) are used to define the void fraction where f(r,t) is local instantaneous at radius r and time t, L_G is beam line length through vapor phase, L_L is beam line length through liquid phase, A_G is vapor phase channel cross-section area, A_L is liquid phase channel cross-section area, V_G is vapor phase channel volume and V_L is liquid phase channel volume (Thome 2004).

Local

$$\varepsilon(r,t) = \frac{1}{t} \int_{t} f(r,t) dt$$

 $\varepsilon = \frac{L_G}{L_G + L_L}$

(1)

Cross-sectional

$$\mathcal{E} = \frac{A_G}{A_G + A_L}$$

TABLE 3. Optimum biogas formation conditions

Parameter	Units	Range	Remark	
Temperature	°C	35 - 38 55 - 57	Mesophilic microbe Thermophilic microbe	
Hydraulic Retention Time	day	20 - 50	Effluent dependent	
COD Concentration	mgl ⁻¹	< 80,000	Effluent dependent	
Ratio POME:FFB	m ³ tonne ⁻¹	0.6 - 1	Mill process dependent	
pH Value		6.7–7.5	During anaerobic digestion	

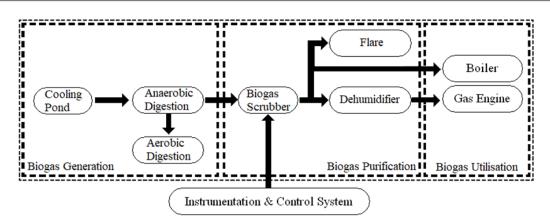


FIGURE 2. General biogas plant process flow chart

Pressure drop, $-\Delta P$, due to friction when fluid flows through a packed bed is shown in Equation (2) known as Darcy (1896) relationship where *H* is the packed bed height [m] and *U* is superficial fluid velocity [m/s].

$$\frac{-\Delta P}{H} \propto U \tag{2}$$

Empiric data regression for non-spherical particles random packed bed known as Ergun equation is shown in Equation (3) where μ is dynamic viscosity, ε is packing void fraction, x_e is packing equivalent spherical diameter and ρ is fluid density.

$$\frac{-\Delta P}{H} = 150 \frac{\mu U (1-\varepsilon)^2}{x_e^2 \varepsilon^3} + 1.75 \frac{\rho U^2 (1-\varepsilon)}{x_e \varepsilon^3}$$
(3)

Assuming biogas is a multi-components ideal gas mixture, if the biogas solute component forms a simple solution with small concentration in liquid phase, solubility could be determined by Henry's equation as shown in Equation (4) where C_s is gas equilibrium solubility in a particular solvent at a fixed temperature, k is Henry's law constant and P_G is the respective G gas partial pressure (Ralph & Strigle, 1994).

$$P_G = kC_s \tag{4}$$

The biogas water scrubber is designed based on the CO_2 content in the raw biogas which will be absorbed and dissolves in water to form carbonic acid (H₂CO₃).

$$CO_2 + H_2O \rightleftharpoons H_2CO_3$$

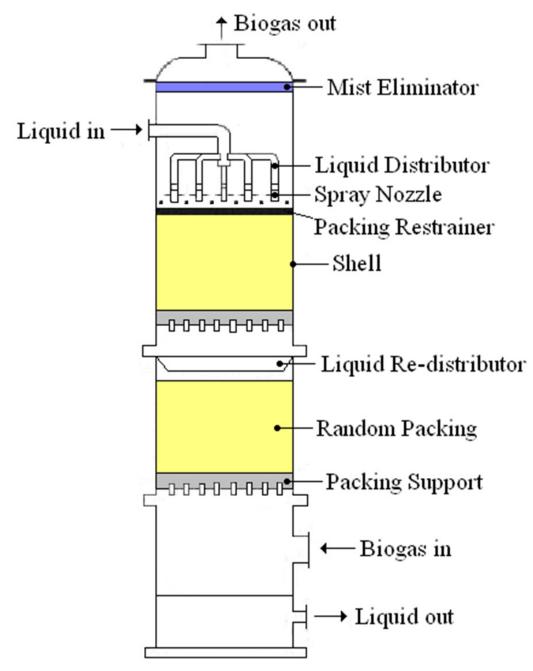
Henry's constant (k) for CO₂ in H₂O at atmospheric pressure and temperature 298K is 1.67×10^8 Pa and correlation for pressures below 1 MPa is shown as Equation (5) where *T* is temperature in Kelvin (Carroll et al. 1991).

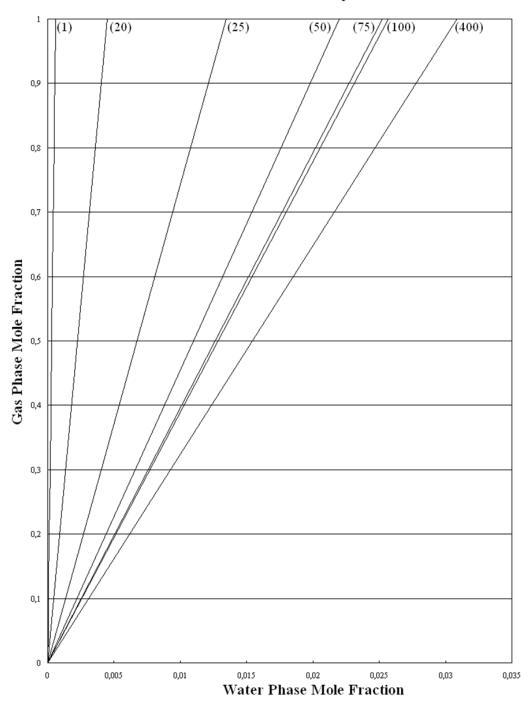
More CO_2 solubility data is given in Appendix and presented in Figure 4. However, the water absorption process also removes H_2S at low concentration (Nock et al. 2014). Practical data from an operating plant in Malaysia shows that H_2S content in raw POME biogas was reduced from 3500 ppm to 50 ppm in average using water scrubber at atmospheric pressure and ambient temperature.

Absorption operation in packed column is related to two-film mass transfer theory for a solute from the gas phase to liquid phase which is governed essentially by molecular diffusion. The mass transfer coefficient is defined as diffusivity related to mass transfer rate, mass transfer area and concentration change as driving force. The overall gasphase mass transfer coefficient, K_G for an unknown system can be approximated based on an available known system as shown in

$$\ln(k^{-1}) = -6.8346 + 1.2817 \times 10^{4} T^{-1} - 3.7668 \times 10^{6} T^{-2} + 2.997 \times 10^{8} T^{-3}$$

$$273 \text{ K} < T < 433 \text{ K}$$
(5)




FIGURE 3. Biogas water scrubber

$$(K_G \alpha)_{unknown} = (K_G \alpha)_{known} \left(\frac{D_v^{unknown}}{D_v^{known}} \right)^{0.36} \left[\text{lb mol} \left(h \text{ ft}^3 \text{atm} \right)^{-1} \right] \quad (6)$$

$$V_{p} = \frac{F_{B}(P_{C1} - P_{C2})}{P_{T}K_{G}\alpha\Psi}; \Psi = \frac{\Delta P_{1} - \Delta P_{2}}{\ln(\frac{\Delta P_{1}}{\Delta P_{2}})}$$
(7)

Equation (6) where α is interfacial area and D_{ν} is solute diffusivity in gas [ft²h⁻¹] (Branan 2002).

If the heat of solution in the liquid phase is negligible and gas stream solute concentration is low, the required tower packing volume, V_p is determined using Equation (7) where ΔP is partial pressure driving force at inlet (1) and outlet (2). If the operating line is straight and the solvent feed is solute free in straight equilibrium curve with slope *m*, the transfer unit number, N_T is defined as Equation (8) where *y* is mole fraction in vapor phase and is plotted in Figure 5 for $0 \le \beta \le 0.9$.

Carbon Dioxide Solubility at 298K

Number in bracket () indicates the Total Pressure in [atm]

FIGURE 4. CO_2 solubility equilibrium for various pressures at 25°C

$$N_T = \frac{1}{(1-\beta)} \ln[(1-\beta)\frac{y_1}{y_2} + \beta] \text{ where } \beta = m \frac{F_B}{F_L}$$
(8)
$$F_{LV} = \frac{F_L}{F_B} \sqrt{\frac{\rho_v}{\rho_L}}$$

The column cross sectional area, A is a function of superficial fluid velocity (U) which is defined in the Generalized Pressure Drop Correlation for a selected pressure drop based on flow parameter, where F_L is liquid flow rate [kgs⁻¹], ρ_v is gas density [kgm⁻³] and ρ_L is liquid density [kgm⁻³]. Determination of column cross sectional area required and column diameter are shown in Equation (9).

$$A = \frac{F_B}{U} [m^2]; D = \sqrt{\frac{4A}{\pi}} [m]; \pi = \frac{22}{7}$$
(9)

Onda *et. al.* (1968) defined empiric correlations for film mass transfer coefficients and effective wetted packing area, A_w to determine film transfer unit heights as shown in Equation (10) to Equation (13).

Pressure drop for random packed column should be less than 80mm H₂O per meter packing. Packing size selection, x_e is usually based on column diameter, *D*. For D < 0.3m, then $x_e < 25$ mm. If $0.3 \text{m} \le D \le 0.9$ m, x_e would be in the range of 25mm to 38mm and for D > 0.9m, range of x_e would be 50mm to 75mm. Large packing size in small column may cause poor liquid distribution (Coulson et al. 1989).

SIMULATION

A 60-tonne mill with ten (10) hours daily operation will generate about 360m^3 of POME per day which in turn produces about 9720 m³ of biogas during steady state at standard temperature and pressure (STP). If the biogas plant operated for 24 hours per day, the biogas scrubber needs to treat 0.1125 m³s⁻¹ of biogas. The basic design parameter is shown in Table 4. It is required to remove 95% CO₂. The operation unit schematic is shown in Figure 6.

From the CO₂ solubility data given in Appendix, Table A1, higher solubility is achieved with higher pressure and lower temperature. However, high pressure equipment incurs higher CAPEX and high process temperature manipulation requires higher OPEX. Thus, based on Figure 4, the biogas water scrubber that operates at 25°C and 10 atm would be appropriate. The washed water could be recovered by flashing off solute carbon dioxide from pressure 10 atm to 1 atm which will require much lower OPEX compared to heat recovery.

Partial pressure of CO₂ in the feed,

$$P_{C1} = 0.35 \text{ X} 1000 = 350 \text{ kPa}$$

Partial pressure of CO₂ in the exit,

$$P_{C2} = 350 \text{ X } 0.05 = 17.5 \text{ kPa } (95\% \text{ recovery})$$

Thus $\frac{y_1}{y_2} = \frac{P_{C1}}{P_{C2}} = \frac{350}{17.5} = 20.$

The equilibrium slope, m at pressure 10 atm is

$$m = \frac{y}{x} = \frac{1}{C_s} = \frac{k}{P_G} = \frac{1.67 \times 10^8}{10 \times 100000} = 167$$

Since the equilibrium slope is steep, maximum number of stages may be needed. From Figure 5 for $\frac{y_1}{y_2} = 20$, maximum $N_T = 18$ at $m \frac{F_B}{F_T} \longrightarrow 1.0$.

Material balance for the water scrubber operation unit above yield

$$F_{L}x_{1} = F_{B}(0.35 \times 0.95)$$

$$x_{1} = \frac{F_{B}}{F_{L}}(0.3325) = \frac{mF_{B}}{mF_{L}}(0.3325)$$

$$x_{1} = \frac{m}{167}\frac{F_{B}}{F_{L}}(0.3325) = \frac{0.3325}{167}$$

$$x_{1} = 1.9910 \times 10^{-3} \text{ mol fraction of CO}_{2} \text{ in water phase.}$$

COLUMN DIAMETER DETERMINATION

Assuming that biogas is an ideal gas; the molar volume of an ideal gas at pressure 100 kPa and temperature 0°C (STP) is (Winterbone & Turan, 2015)

$$\frac{A_{w}}{\alpha} = 1 - exp[-1.45(\frac{\sigma_{c}}{\sigma_{L}})^{0.75}(\frac{F_{L}^{*}}{\alpha\mu_{L}})^{0.1}(\frac{F_{L}^{*2}\alpha}{g\rho_{L}^{2}})^{-0.05}(\frac{F_{L}^{*2}}{\rho_{L}\sigma_{L}\alpha})^{0.2} \quad (10)$$

$$k_{L}\left(\frac{\rho_{L}}{g\mu_{L}}\right)^{\frac{1}{3}} = 0.0051\left(\frac{F_{L}^{*}}{A_{w}\mu_{L}}\right)^{\frac{2}{3}}\left(\frac{\mu_{L}}{\rho_{L}D_{L}}\right)^{-\frac{1}{2}}(\alpha x_{e})^{0.4} \quad (11)$$

$$\frac{k_G RT}{\alpha D_v} = K \left(\frac{F_B^*}{\alpha \mu_v}\right)^{0.7} \left(\frac{\mu_v}{\rho_v D_v}\right)^{\frac{1}{3}} (\alpha x_e)^{-2};$$

$$K = 5.23 \text{ if } x_v > 15 \text{mm}; K = 2.00 \text{ if } x_v \le 15 \text{mm}$$
(12)

$$H_G = \frac{F_B}{k_G A_w P_T}; H_L = \frac{F_L}{k_L A_w (\frac{\rho_L}{W_{H2Q}})}$$
(13)

$$\frac{RT}{P} = \frac{8314.5 \times 273.15}{100000} = 22.7111 \text{ m}^3 \text{ kmol}^{-1}$$
$$= 0.0227 \text{ m}^3 \text{mol}^{-1}$$

Molecular weight for biogas is

$$[(16 \times 0.65) + (44 \times 0.35)] = 10.4 + 15.4 = 25.8$$

Biogas flow rate,

TABLE 4. Basic design parameters

Particular		Symbol	Value
Biogas inlet pressure		P_{T}	1000 kNm ⁻²
Inlet temperature		T_i	25°C (298 K)
Carbon dioxide content in raw biogas		С	35% v/v
Molecular weight carbon dioxide (CO_2)		W_{CO2}	44
Molecular weight water (H ₂ O)		$W_{_{H2O}}$	18
Molecular weight methane (CH_4)		$W_{_{CH4}}$	16
Water density at 25°C		ρ_L	997.13 kgm ⁻³
Water molar density		λ	55600 mol m ⁻³
Water viscosity at 25°C		μ_L	0.0008891 Nsm ⁻²
Water surface tension at 25°C		σ	0.07187 Nm ⁻¹
Carbon dioxide density at 25°C, 10bar		ρ_v	18.725 kgm ⁻³
Carbon dioxide viscosity at 25°C, 10bar		μ_{v}	15.02×10 ⁻⁶ Nsm ⁻²
Universal gas constant		R	8314.5 J(kmol.K) ⁻¹
Gravitational acceleration		g	9.81 ms ⁻²
Critical Surface Tension for Particular Pa	cking Material		
Ceramic = 61 mNm^{-1}	$Metal = 75 \text{ mNm}^{-1}$	Plastic = 33 mNm^{-1}	$Carbon = 56 \text{ mNm}^{-1}$

(Source: Coulson et al. 1989)

$$F_B = \frac{0.1125}{0.0227} = 4.9559 \text{ mol s}^{-1} = 0.1279 \text{ kgs}^{-1}$$

Water flow rate,

$$F_{L} = \frac{m}{1.0} F_{B} = \frac{167}{1.0} \times 4.9559 = 827.6353 \text{ mol s}^{-1}$$
$$F_{L} = 14.8974 \text{ kgs}^{-1}$$

Biogas density at 10 atm, 25°C,

$$\rho_V = \frac{25.8P}{RT} = \frac{25.8 \times 1000000}{8314.5 \times 298.15} = 10.4076 \text{ kgm}^{-3}$$

Water kinematic viscosity at 25°C,

$$\frac{\mu_L}{\rho_L} = \frac{0.0008891}{997.13} = 8.9166 \times 10^{-7} m^2 s^{-1}$$
$$F_{LV} = \frac{F_L}{F_B} \sqrt{\frac{\rho_V}{\rho_L}} = \frac{14.8974}{0.1279} \sqrt{\frac{10.4076}{997.13}} = 11.9$$

From Figure 7, design for a pressure drop of 4mm H_2O/m packing, extended graph shows that

$$\frac{42.9F_p U^2 (\frac{\mu_L}{\rho_L})^{0.1}}{\rho_V (\rho_L - \rho_V)} = 0.008$$

where F_p is packing factor. Select 38mm Raschig rings, $x_e =$ 38mm from Appendix Table A4, $F_p = 83$.

$$\frac{\left(42.9 \times 83 \times U^2 \times (8.9166 \times 10^{-7})^{0.1}\right)}{10.4076 \times (997.13 - 10.4076)} = 0.008$$
$$0.0861U^2 = 0.008; U^2 = 0.0929;$$
$$U = 0.304817678 \text{ kgm}^{-2}\text{s}^{-1}$$

Column area required,

$$A = \frac{0.1279}{0.3048} = 0.4196 \text{ m}^2;$$

Diameter, $D = \sqrt{\frac{4 \times 0.4196}{\pi}} = 0.7308 \text{ m}$
$$F_L^* = \frac{14.8974}{0.4196} = 35.5042 \text{ kgs}^{-1}\text{m}^{-2};$$
$$F_B^* = \frac{0.1279}{0.4196} = 0.3048 \text{ kgs}^{-1}\text{m}^{-2}$$

OVERALL LIQUID PHASE TRANSFER UNIT HEIGHT ESTIMATION USING ONDA'S METHOD

From Appendix Table A4, for 38 mm Metal Raschig rings, $\alpha = 130 \text{ m}^2\text{m}^{-3}$ and $\sigma_c = 0.075 \text{ Nm}^{-1}$. Based on Equation (10),

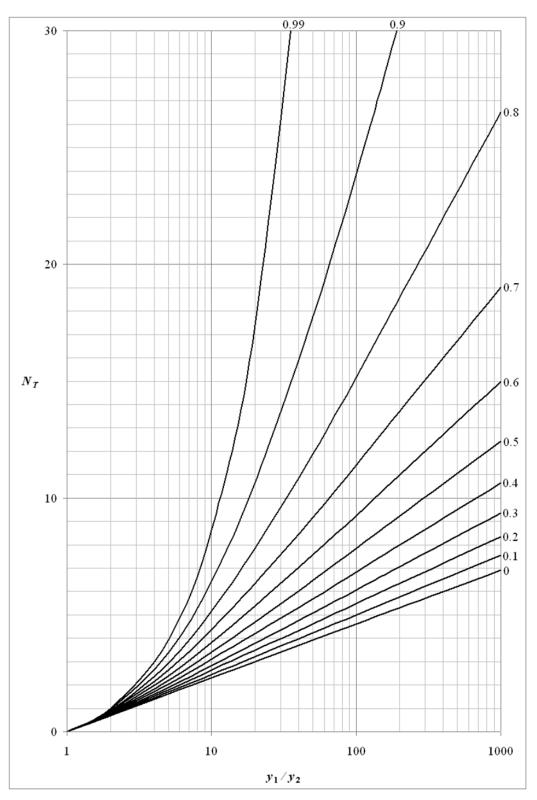


FIGURE 5. Transfer unit estimation based on mol fraction for various $\boldsymbol{\beta}$ values

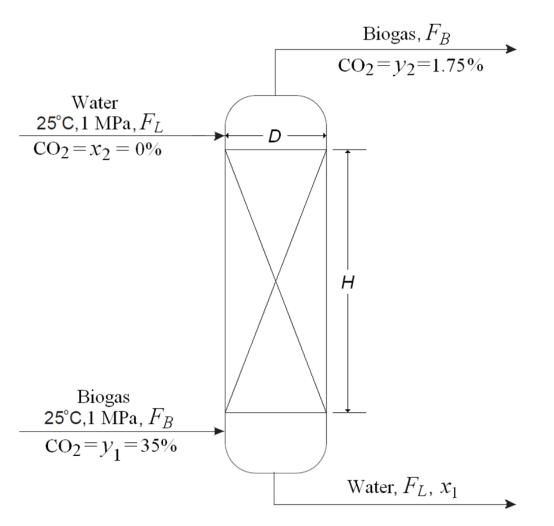


FIGURE 6. Biogas water scrubber operation unit schematic diagram

$$\left(\frac{\sigma_c}{\sigma_L}\right)^{0.75} = \left(\frac{0.075}{0.07187}\right)^{0.75} = 1.032488478$$
$$\left(\frac{F_L^*}{\alpha\mu_L}\right)^{0.1} = \left(\frac{35.5038}{0.1156}\right)^{0.1} = 1.773093756$$
$$\left(\frac{F_L^{*2}\alpha}{g\rho_L^2}\right)^{-0.05} = \left(\frac{163867.574}{9753771.404}\right)^{-0.05} = 1.226687606$$
$$\left(\frac{F_L^{*2}}{\rho_L\sigma_L\alpha}\right)^{0.2} = \left(\frac{1260.5198}{9316.2853}\right)^{0.2} = 0.6702878982$$
$$\frac{A_w}{\alpha} = 1 - e^{[-2.182630764]} = 1 - 0.11274 = 0.88726$$
$$A_w = 130 \times 0.88726 = 115.3438 \text{ m}^2\text{m}^{-3}$$
$$\alpha_L = 130 \times 38 \times 10^{-3} = 4.94$$

Liquid diffusivity and gas diffusivity are determined by Wilke & Chang (1955) equation and

Fuller et al. (1966) equation with data presented in Appendix, Table A5 and Table A6.

Liquid diffusivity,

$$D_L = \frac{1.173 \times 10^{-13} (2.6 \times 18)^{0.5} \times 298}{0.8891 \times (0.0340)^{0.6}}$$
$$D_L = 3.0168 \times 10^{-9} \text{ m}^2\text{s}^{-1}$$
From Table A5, $v_a = (2 \times 1.98) + 5.48 = 9.44$

Gas diffusivity,

$$D_{v} = \frac{1.013 \times 10^{-7} \times 298^{1.75} \left(\frac{1}{18} + \frac{1}{44}\right)^{0.5}}{10 \times \left[(9.44)^{\frac{1}{3}} + (26.9)^{\frac{1}{3}}\right]^{2}}$$
$$D_{v} = 2.679 \times 10^{-5} \text{ m}^{2}\text{s}^{-1}$$

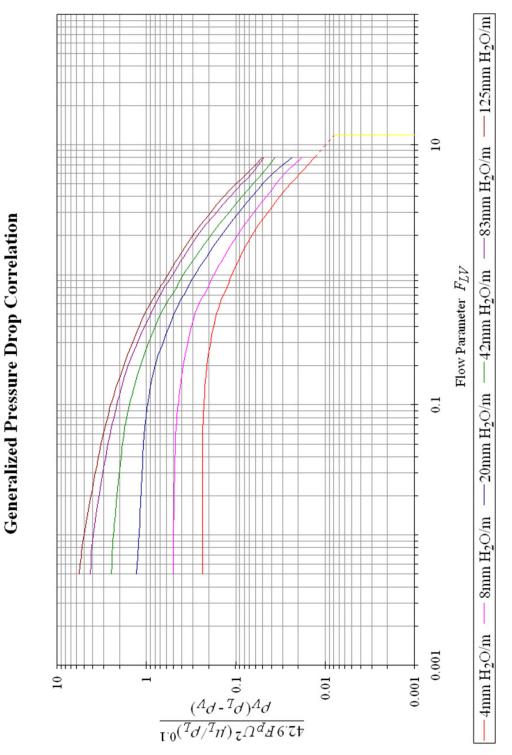


FIGURE 7. Generalized pressure drop correlation adopted from norton chemical process products corporation

$$k_{L} \left(\frac{997.13}{9.81 \times 0.0008891}\right)^{\frac{1}{3}} = 48.5338k_{L}$$
$$\left(\frac{35.5042}{115.3438 \times 0.0008891}\right)^{\frac{2}{3}} = 49.30488051066619$$

 $\left(\frac{0.0008891}{997.13 \times 3.0168 \times 10^{-9}}\right)^{-\frac{1}{2}} = 0.0581666223874$ $0.0051 \times 49.3049 \times 0.0582 \times 1.8945 = 0.0277$ 0.0277

$$48.5338k_L = 0.0277; k_L = \frac{0.0277}{48.5338} = 0.0005709 \text{ ms}^{-1}$$

$$\frac{k_{G} \times 0.083145 \times 298}{130 \times 2.6799 \times 10^{-5}} = 7,111.9789199941444k_{G}$$

$$\left(\frac{0.3048}{130 \times 15.02 \times 10^{-6}}\right)^{0.7} = 34.306876125174156$$

$$\left(\frac{15.02 \times 10^{-6}}{18.725 \times 2.6799 \times 10^{-5}}\right)^{\frac{1}{3}} = 0.31048682228401$$

$$5.23 \times 34.3069 \times 0.3105 \times 0.0410 = 2.2828224660140$$

$$7,111.9789199941444k_{G} = 2.2828224660140;$$

$$k_{G} = 0.000321 \text{ kmol } (\text{sm}^{2} \text{ bar})^{-1}$$
Molar flow rate $F_{B} = \frac{0.3048}{25.8} = 0.0118 \text{ kmol } (\text{s})^{-1};$
Molar flow rate $F_{L} = \frac{35.5042}{18} = 1.9725 \text{ kmol } (\text{s})^{-1}$

Gas film transfer unit height,

$$H_G = \frac{0.0118}{0.000321 \times 115.3438 \times 10} = 0.0319 \text{ m}$$

Liquid film transfer unit height,

$$H_{L} = \frac{1.9725}{0.0005709 \times 115.3438 \times (\frac{997.13}{18})}$$

 $H_{I} = 0.5407 \text{ m}$

Overall transfer unit height,

$$H_{LG} = 0.5407 + 0.0319 = 0.5726$$
 m

Pack bed height,

 $H = 0.5726 \times 18 = 10.3069$ m; round to 10.50 m

From the CheCalc version 7.1.2 computer aided packed column design based on Strigle modified Eckert's Generalized Pressure Drop Correlation (GPDC) Diagram, the column flooding is 43.87%. Table 5 summarized the conceptual design result.

Based on the conceptual design result, POME biogas purification process has been successfully simulated using ChemCAD version 7.1.2 computer aided design software. Nonrandom two liquid (NRTL) thermodynamic model has been selected for global K value modeling whereas Peng-Robinson state equation has been used for vapor fugacity correction in the simulation. Practical data shows that average raw POME biogas contains 64.65% CH_4 , 35% CO_2 and 0.35% H_2S . Figure 8 shows the simulated process flow diagram at 10 bars, 25°C and the respective stream properties are shown in Table 6.

Calculation mode: Simultaneous modular Flash algorithm: Normal Equipment Calculation Sequence: 1, 2, 5, 7, 8, 3, 6, 4 Equipment Recycle Sequence: 2, 5, 7, 8, 3, 6, 4 Recycle Cut Streams: 7 Maximum loop iterations: 40 Recycle Convergence Tolerance

• Flow rate:	1.000×10-3	kg/h
• Temperature:	1.000×10-3	°C
• Pressure:	1.000×10-3	bar
• Enthalpy:	1.000×10-3	MJ/h
Vapour fraction:	1.000×10-3	

Recycle calculation has converged. Table 7 shows the process simulation mass and energy balance.

DISCUSSION

Packed columns are widely used for distillation, absorption and liquid-liquid extraction. The fluid contact in a packed column is continuous, flowing over the packing surface counter currently or co-currently. The packed column performance depends mainly on the proper fluid distribution throughout the packed bed. The principal packing requirements are to provide a large surface area for fluid interface with low flow resistance and to promote uniform fluid distribution flowing across the column cross-section. Random packing is commonly used in the process industries (Coulson et al. 1989).

Biogas gas water scrubbing is a high liquid-gas ratio process due to low solubility of CO_2 in water. The flow parameter is found to be more than 10 whereas available generalized pressure drop correlation chart is having flow parameter of less than 10. However, experimental results show that graphical correlations for various constant pressure drops is valid to be extrapolated for flow parameter range between 10 to 70 (Jaole et al. 1995).

Table 2 shows that POME biogas contain small amount of hydrogen sulfide (H_2S) but substantial amount of carbon dioxide (CO_2) which has to be removed in order for the biogas produced to be suitable for internal combustion engines fuel. Water scrubbers absorb the undesirable gases in raw biogas physically and dissolve in water. The water scrubber performance is solely depended on the solubility of the particular gas in water. Generally gas solubility increases at lower temperature but higher pressure. Due to the low solubility of CO_2 in water, biogas water scrubbing needs to be carried out at higher pressure to reduce the liquid-gas ratio in order to avoid flooding.

	· · ·	*	
Column diameter, D	= 0.7308 m	Biogas flow rate, F_B	$= 0.1279 \text{ kgs}^{-1}$
Pack bed height, H	= 10.50 m	Water flow rate, F_L	$= 14.8974 \text{ kgs}^{-1}$
Column flooding	= 43.87%	CO_2 mol frac. in water, x_1	= 1.9910×10 ⁻³
Column pressure, P	= 10 bar	Column temperature	= 298 K (25°C)
Pressure drop	=4mm H ₂ O /m	Metal Raschig ring 38mm	random packing

TABLE 5. Conceptual design result summaries for water scrubber packed column

TABLE 6.	Stream	properties
----------	--------	------------

Stream No.	1	2	3	4
Name	Raw Biogas	Compressed		Water
	(Overall		
Molar flow kmol/h	22.2638	22.2638	22.2638	24.3881
Mass flow kg/h	460.4400	460.4400	460.4400	439.3522
Temperature °C	25.0000	281.1050	30.0000	25.0000
Pressure bar	1.0000	10.0000	10.0000	1.0000
Vapour mole fraction	1.000	1.000	1.000	0.0000
Enthalpy MJ/h	-2828.5	-2602.6	-2839.8	-6967.6
T _c °C	-64.4918	-64.4918	-64.4918	374.1999
P _c bar	49.1535	49.1535	49.1535	221.1821
Std. sp gr. wtr = 1	0.387	0.387	0.387	1.000
Std. sp gr. air = 1	0.714	0.714	0.714	0.622
Degree API	233.9444	233.9444	233.9444	10.0000
Average mol weight	20.6811	20.6811	20.6811	18.0150
Actual density kg/m ³	0.8365	4.4916	8.4090	996.7084
Actual volume m3/h	550.4108	102.5122	54.7556	0.4408
Std liquid m3/h	1.1892	1.1892	1.1892	0.4394
Std vapour 0°C m3/h	499.0139	499.0139	499.0139	546.6268
	Vaj	pour only		
Molar flow kmol/h	22.2638	22.2638	22.2638	
Mass flow kg/h	460.4400	460.4400	460.4400	
Average mol weight	20.6811	20.6811	20.6811	
Actual density kg/m ³	0.8365	4.4916	8.4090	
Actual volume m3/h	550.4108	102.5122	54.7556	
Std liquid m3/h	1.1892	1.1892	1.1892	
Std vapour 0°C m3/h	499.0139	499.0139	499.0139	
C _p kJ/kg-K	1.7377	2.3793	1.7474	
Z factor	0.9974	0.9993	0.9759	
Viscosity N-s/m ²	1.225×10-5	2.027×10-5	1.260×10-5	
Thermal cond W/mK	0.0303	0.0699	0.0318	
	Lie	quid only		
Molar flow kmol/h				24.3881
Mass flow kg/h				439.3522
Average mol weight				18.0150
Actual density kg/m ³				996.7084
Actual volume m ³ /h				0.4408
Std liquid m3/h				0.4394
Std vapour 0°C m3/h				546.6268
C kJ/kg-K				4.1851

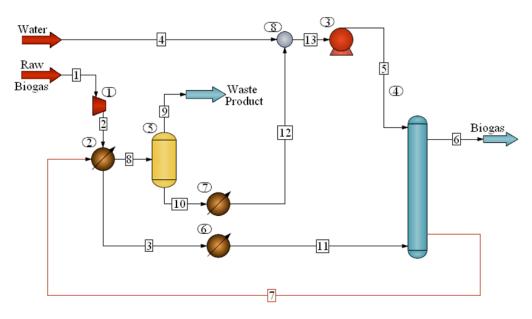
304

Z factor				0.0009
Viscosity N-s/m ²				0.0009227
Thermal cond W/mK				0.6062
Surface tension N/m				0.0721
	Component]	Flow rates in kg/h		
Methane	297.6744	297.6744	297.6744	0.0000
Carbon Dioxide	161.1540	161.1540	161.1540	0.0001
Hydrogen Sulphide	1.6115	1.6115	1.6115	0.0001
Water	0.0000	0.0000	0.0000	439.3520
Stream No.	5	6	7	8
Name	Feed Water	Biogas	Pinch Stream	Flash Water
	С	verall		
Molar flow kmol/h	2976.9014	17.9200	2981.2454	2981.2568
Mass flow kg/h	53630.6445	287.6374	53803.4453	53803.4453
Temperature °C	25.2700	25.2561	25.3952	26.4489
Pressure bar	10.0000	10.0000	10.0038	10.0038
Vapour mole fraction	0.0000	1.000	0.0000	4.413E-006
Enthalpy MJ/h	-8.5041×10 ⁵	-1361.3	-8.5189×10 ⁵	-8.5166×10 ⁵
T _c °C	374.1854	-81.5308	373.3960	373.3979
P _c bar	221.1650	45.8068	220.2804	220.2827
Std. sp gr. wtr = 1	1.000	0.301	0.999	0.999
Std. sp gr. air = 1	0.622	0.554	0.623	0.623
Degree API	10.0024	338.8743	10.1607	10.1604
Average mol weight	18.0156	16.0512	18.0473	18.0472
Actual density kg/m ³	996.6185	6.6152	994.2790	993.3415
Actual volume m ³ /h	53.8126	43.4815	54.1130	54.1641
Std liquid m3/h	53.6316	0.9562	53.8646	53.8645
Std vapour 0°C m3/h	66723.2188	401.6520	66820.5781	66820.8438
	Vap	our only		
Molar flow kmol/h		17.9200		0.0132
Mass flow kg/h		287.6374		0.2130
Average mol weight		16.0512		16.1881
Actual density kg/m ³		6.6152		6.6463
Actual volume m ³ /h		43.4815		0.0320
Std liquid m3/h		0.9562		0.0007
Std vapour 0°C m3/h		401.6520		0.2948
C _p kJ/kg-K		2.2231		2.2075
Z factor		0.9781		0.9783
Viscosity N-s/m ²		1.129×10-5		1.136×10-5
Thermal cond W/mK		0.0345		0.0346
	Liq	uid only		
Molar flow kmol/h	2976.9014		2981.2454	2981.2439
Mass flow kg/h	53630.6445		53803.4453	53803.2344
Average mol weight	18.0156		18.0473	18.0472
Actual density kg/m ³	996.6185		994.2790	993.9256
Actual volume m ^{3/} h	53.8126		54.1130	54.1321
Std liquid m ³ /h	53.6316		53.8646	53.8638

Std vapour 0°C m3/h	66723.2188		66820.5781	66820.5469
C _p kJ/kg-K	4.1851		4.1874	4.1861
Z factor	0.0085		0.0085	0.0085
Viscosity N-s/m ²	0.0009186		0.0009122	0.0008915
Thermal cond W/mK	0.6065		0.6015	0.6028
Surface tension N/m	0.0720		0.0708	0.0706
	Component	Flow rates in kg/h		
Methane	0.0167	286.5063	11.1849	11.1850
Carbon Dioxide	0.9208	0.0217	162.0531	162.0543
Hydrogen Sulphide	2.5891	0.0285	4.1722	3.7365
Water	53627.1133	1.0809	53626.0000	53626.4727
Stream No.	9	10	11	12
Name	Waste Product		Feed Biogas	Recover Water
		Overall	8	
Molar flow kmol/h	28.7439	2952.5132	22,2638	2952.5132
Mass flow kg/h	612.1639	53191.2852	460.4400	53191.2852
Temperature °C	95.0000	95.0000	25.0000	25.0000
Pressure bar	1.0000	1.0000	10.0000	1.0000
Vapour mole fraction	1.000	0.0000	1.000	0.0000
Enthalpy MJ/h	-7309.5	-8.2791×10 ⁵	-2843.9	-8.4350×10 ⁵
	298.0362	374.1853	-64.4918	374.1853
Γ°C	145.8204	221.1647	49.1535	221.1647
P _c bar	0.911			
Std. sp gr. wtr = 1		1.000	0.387	1.000
Std. sp gr. air = 1	0.735	0.622	0.714	0.622
Degree API	23.8854	10.0024	233.9444	10.0024
Average mol weight	21.2972	18.0156	20.6811	18.0156
Actual density kg/m ³	0.7011	961.3207	8.5621	996.6862
Actual volume m ³ /h	873.1456	55.3315	53.7767	53.3681
Std liquid m ³ /h	0.6722	53.1923	1.1892	53.1923
Std vapour 0°C m3/h	644.2546	66176.5859	499.0139	66176.5859
x 1 01 1 1"	-	oour only		
Molar flow kmol/h	28.7439		22.2638	
Mass flow kg/h	612.1639		460.4400	
Average mol weight	21.2972		20.6811	
Actual density kg/m ³	0.7011		8.5621	
Actual volume m ³ /h	873.1456		53.7767	
Std liquid m ³ /h	0.6722		1.1892	
Std vapour 0°C m3/h	644.2546		499.0139	
C _p kJ/kg-K	1.6404		1.7377	
Z factor	0.9925		0.9745	
Viscosity N-s/m ²	1.318×10-5		1.242×10-5	
Thermal cond W/mK	0.0245		0.0311	
	Lic	uid only		
Molar flow kmol/h		2952.5132		2952.5132
Mass flow kg/h		53191.2852		53191.2852
Average mol weight		18.0156		18.0156
Actual density kg/m ³		961.3207		996.6863

Actual volume m3/h	55.3315 53.3681			53.3681
Std liquid m3/h	53.1923			53.1923
Std vapour 0°C m3/h	66176.5859			66176.5859
C _p kJ/kg-K		4.2127		4.1851
Z factor		0.0007		0.0009
Viscosity N-s/m ²		0.0002969		0.0009227
Thermal cond W/mK		0.6733		0.6061
Surface tension N/m		0.0595		0.0721
	Component	t Flow rates in kg/h		
Methane	11.1683	0.0167	297.6744	0.0167
Carbon Dioxide	161.1335	0.9208	161.1540	0.9208
Hydrogen Sulphide	1.1475	2.5890	1.6115	2.5890
Water	438.7146	53187.7578	0.0000	53187.7578
Stream No.			13	

Stream No. Name


Overall

	Overall
Molar flow kmol/h	2976.9014
Mass flow kg/h	53630.6367
Temperature °C	25.0000
Pressure bar	1.0000
Vapour mole fraction	0.0000
Enthalpy MJ/h	-8.5047×10 ⁵
T _c °C	374.1854
P _c bar	221.1650
Std. sp gr. wtr = 1	1.000
Std. sp gr. air = 1	0.622
Degree API	10.0024
Average mol weight	18.0156
Actual density kg/m ³	996.6865
Actual volume m ³ /h	53.8089
Std liquid m3/h	53.6316
Std vapour 0°C m3/h	66723.2109
	Liquid only
Molar flow kmol/h	2976.9014
Mass flow kg/h	53630.6367
Average mol weight	18.0156
Actual density kg/m ³	996.6865
Actual volume m ³ /h	53.8089
Std liquid m3/h	53.6316
Std vapour 0°C m3/h	66723.2109
C _p kJ/kg-K	4.1851
Z factor	0.0009
Viscosity N-s/m ²	0.0009227
Thermal cond W/mK	0.6061
Surface tension N/m	0.0721
	Component Flow rates in kg/h
Methane	0.0167

Carbon Dioxide	0.9208
Hydrogen Sulphide	2.5891
Water	53627.1094

	Overa	ll Mass Balance		
	kme	ol/h	k	g/h
	Input	Output	Input	Output
Methane	18.555	18.555	297.674	297.675
Carbon Dioxide	3.662	3.662	161.154	161.155
Hydrogen Sulphide	0.047	0.035	1.612	1.176
Water	24.388	24.413	439.352	439.795
Total	46.652	46.664	899.792	899.801
	Overall En	ergy Balance [MJ/h]		
	In	iput	От	utput
Feed Streams	-97	96.1		
Product Streams			-86	70.79
Total Heating	164	137.5		
Total Cooling	-15:	592.6		
Power Added	286	5.499		
Power Generated		0		
Total	-86	64.69	-86	70.79

CHEMCAD 7.1.2

Raw biogas is compressed to 10 bars then cooled down in heat exchanger 2 and 6. Compressed raw biogas (11) is washed counter current in the water scrubber column 4 at 25°C. Wash water is recovered in flashing drum 5 for recycling (12). FIGURE 8. Simulated POME biogas purification process flow diagram

308

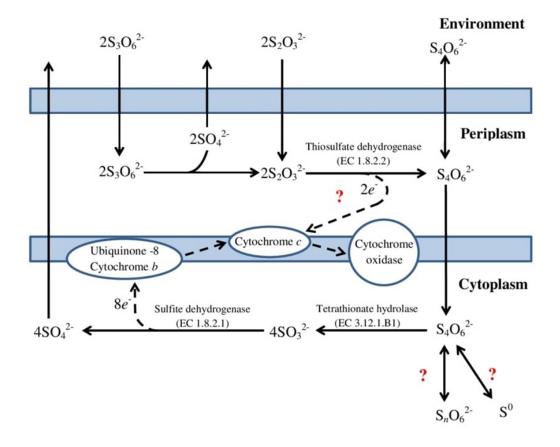


FIGURE 9. Kelly-Trudinger pathway for reduced inorganic sulphur compounds oxidation

ACKNOWLEDGEMENTS

Biological scrubbers may be an alternative to avoid high liquid-gas ratio process for biogas purification using chemotropic *Thiobacillus*. All *Thiobacillus* species are obligate autotrophs utilizing elementary sulphur, thiosulfate or polythionates via the Kelly-Trudinger pathway as energy sources and assimilate carbon dioxide for nutrients synthesis (Aminullah et al. 2017). H_2S and CO_2 contents in raw biogas could be reduced with low operating costs. However, Figure 9 shows that the Kelly-Trudinger pathway has yet to be fully understood.

Chemical scrubber also shows the potential for the biogas purification task mainly via reaction as follows:

$$2NaOH + CO_2 \rightarrow Na_2CO_3 + H_2O$$

but the operational cost may be higher due to chemical consumption and solvent recovery.

CONCLUSION

Water scrubber system is well understood and economically viable for many chemical purification processes. The ChemCAD simulation shows that water scrubber POME biogas purification process is feasible to produce high purity of methane suitable to be used as a sustainable IC engine fuel at 10 bar pressure and 25°C ambient temperature. Further simulations may be carried out using different washing medium for CAPEX and OPEX comparisons. The authors would like to thank Director General of Malaysian Palm Oil Board for his kind permission to publish this paper.

DECLARATION OF COMPETING INTEREST

None.

REFERENCES

- Ahmad Parveez, G K., Astimar, A. A. & Rohaya, M. H. 2020. Palm Oil Milling and Processing Handbook. Bangi: Malaysian Palm Oil Board
- Aminullah, M., Ho, W. S., Hashim, H., Lim, J. S., Abdul Muis, Z. & Liew, P. Y. 2017. Palm oil mill effluent (POME) biogas off-site utilization Malaysia specification and legislation. *Chemical Engineering Transactions* 56: 637–642.
- Branan, C. 2002. *Rules of Thumb for Chemical Engineers*. 3rd edition. Amsterdam: Gulf Professional Publishing.
- Carroll, J. J., Slupsky, J. D. & Mather, A. E. 1991. The solubility of carbon dioxide in water at low pressure. Journal of Physic Chemistry Reference Data 20(6): 1201–1209.
- Coulson. J. M., Richardson, J. F. & Sinnott, R. K. 1989. Chemical Engineering Volume 6: An Introduction to Chemical Engineering Design. Oxford: Pergamon Press Ltd.

- Dean, J. A. 1999. Lange's Handbook of Chemistry. 10th edition. USA: McGraw-Hill, Inc. p. 1100
- Duan, Z. & Sun, R. 2003. An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. *Chemical Geology* 193(3-4): 257-271.
- EPA. 2011. 2011 US Greenhouse Gas Inventory Report. USEPA #430-R-11-005: United States Environmental Protection Agency.
- Fueller, E. N., Schettler, P. D. and Giddings, J. C. 1966. New method for prediction of binary gas-phase diffusion coefficients. *Ind. Eng. Chem.*, 58(5): 18-27.
- Gautam T K. 2014. The outlook for fuels for internal combustion engines. *International Journal of Engine Research* 15(4): 383– 398.
- Jaole, D. G., Ghugare, G. S. & Murthy, T. S. N. 1995. Pressure drop behaviour for high liquid-gas ratios in packed column. *Indian Journal of Engineering & Materials Sciences* 2: 221– 223.
- Loh, S. K., Nasrin, A. B., Mohamad Azri, S., Nurul Adela, B., Muzzammil, N., Daryl Jay, T., Stasha Eleanor, R. A., Lim, W. S., Choo, Y. M. & Kaltschmitt, M. 2017. First report on Malaysia's experiences and development in biogas capture and utilization from palm oil mill effluent under the Economic Transformation Programme: current and future perspectives. *Renew. Sustain. Energy Rev.* 74: 1257-1274. DOI:10.1016/j. rser.2017.02.066.
- MPOB. 2020. Overview of the Malaysian Oil Palm Industry 2019. Bangi: Malaysian Palm Oil Board.
- Nock, W. J., Walker, M., Kapoor, R. & Heaven, S. 2014. Modeling the water scrubbing process and energy requirements for co₂ capture to upgrade biogas to biomethane. *Ind. Eng. Chem. Res.* 53(32): 12783-12792.
- Perry, R. H., Green, D. W. & Maloney, J. O. 1997. Physical and Chemical Data Table 2-125. *Perry's Chemical Engineers' Handbook*. Seventh Edition. United States of America: The McGraw-Hill Companies, Inc.
- Ralph, F. & Strigle, Jr. 1994. Packed Tower Design and Application: Random and Structured Packings. 2nd edition. Houston: Gulf Publishing Company.
- Spycher, N., Pruess, K. & Ennis-King, J. 2003. CO2-H2O mixture in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100oC and up to 600 bar. *Geochimica et Cosmochimica Acta* 67(16): 3015-3031.
- Stefan, M. 2004. Biogas fuel for internal combustion engines. Annals of the Faculty of Engineering Hunedoara. TOME II. Fascicole 3: 179–190.
- Thome, J. R. 2004. *Engineering Data Book III*. USA: Wolverine Tube Inc.
- Wilke, C.R. & Chang, P. 1955. Correlation of diffusion coefficients in dilute solutions. AIChE, 1(2).
- Winterbone, D. & Turan, A. 2015. Thermodynamic properties of ideal gases and ideal gas mixtures of constant composition. Advanced Thermodynamics for Engineers, 177-205.

NOMENCLATURE

Symbol	Particular	SI Unit
A	Column cross sectional area	m ²
A _c	Column area	m^2
A_{G}	Vapor phase channel cross-section area	m^2
A_{L}	Liquid phase channel cross-section area	m ²
A_{w}	Effective interfacial packing area	m^2m^{-3}
С	Molar concentration of CO_2 in biogas	mol m ⁻³
C_s	Fixed temperature gas equilibrium solubility	-
D	Column diameter	m
D_{L}	Liquid diffusity	$m^2 s^{-1}$
D_{v}	Gas diffusivity	$m^2 s^{-1}$
F _B	Biogas molar flow rate	mol s ⁻¹
F_{L}	Water molar flow rate	mol s ⁻¹
F_p	Packing factor	-
Н	Packed bed height	m
H_{G}	Gas film transfer unit height	m
H_{L}	Liquid film transfer unit height	m
H_{LG}	Overall transfer unit height	m
K _G	Overall gas-phase mass transfer coefficient	ms ⁻¹
L_{G}	Beam line length through vapor phase	m
L_{L}	Beam line length through liquid phase	m
N_T	Transfer unit number	-
P_{G}	Partial pressure for ideal gas G	Nm ⁻²
P_{T}	Total pressure	Nm ⁻²
P_{CI}	Partial pressure of CO_2 at inlet biogas	Nm ⁻²
P_{C2}	Partial pressure of CO_2 at outlet biogas	Nm ⁻²
R	Universal gas constant	J(kg.K) ⁻¹
Т	Temperature	°C
U	Superficial fluid velocity	ms ⁻¹
V_{G}	Vapor phase channel volume	m ³
V_L	Liquid phase channel volume	m ³
V _p	Tower packing volume	m^3
W_{G}	Molecular weight for gas G	-
f(r;t)	Local instantaneous at radius r and time t	-
g	Gravitational acceleration	ms ⁻²
k	Henry's law constant	Ра
k _e	Equilibrium constant	-
k _G	Gas film mass transfer coefficient	kg/(m²s.Pa)
k_L	Liquid film mass transfer coefficient	kgm ⁻² s ⁻¹
m	Slope of equilibrium line	-
r	Radius	m
S _i	Molar solubility for gas <i>i</i>	mol m ⁻³
t	Time	S

X	Packing equivalent spherical diameter	m
x	Mole fraction in water phase	-
у	Mole fraction in gas phase	-
$-\Delta P$	Pressure drop	Pa
α	Interfacial are per unit volume	$m^2 m^{-3}$
ρ	Density	kgm ⁻³
σ	Surface tension	Nm ⁻¹
μ	Dynamic viscosity	Nsm ⁻²
3	Packing void fraction	
γ	Activity coefficient in water	
φ	Fugacity coefficient	
λ	Molar density	mol m ⁻³

APPENDIX

CARBON DIOXIDE SOLUBILITY IN WATER AT VARIOUS TEMPERATURES AND PRESSURES

Table A1 shows the solubility of CO_2 in water, expressed as CO_2 mole fraction in the liquid phase, is given for partial pressures up to 100kPa and temperatures of 0°C to 100°C. Note that one (1) standard atmosphere equals 101.325kPa. The references give data over a wider range of temperature and partial pressure. The estimated uncertainty is about 2%.

Gas *i* molar solubility, s_i is given as $k_e \frac{\varphi_i P_i}{\gamma_i}$, where γ is the activity coefficient in water, k_e is the equilibrium constant, *P* is the partial pressure, and φ is the fugacity coefficient. Based on critical pressure and temperature, fugacity coefficient is determined using Peng-Robinson state equation (Peng and Robinson, 1976). Gas acentric factor in a gas mixture determines the limiting volume and the Van der Waals equation defines the attraction factor. The fugacity coefficient is close to 1 when the total pressure of the gas phase is less than about 10 atm, thus can be

neglected in the solubility calculation. However, Figure A1 shows substantial effect at higher pressures for CO_2 . At low pressures, CO_2 concentration increases near-linearly with pressure. At 25 °C and pressures higher than 62 atm, the concentration increases more gradually as the fugacity coefficient drops rapidly.

GASES DIFFUSIVITIES

Gases diffusivity coefficient, D_{ν} could be predicted using Fuller et al. (1966) equation with data presented in Table A5.

$$D_{v} = \frac{1.013 \times 10^{-7} T^{1.75} \left(\frac{1}{W_{a}} + \frac{1}{W_{b}}\right)^{0.5}}{P_{T} [(\Sigma v_{i})_{a}^{\frac{1}{3}} + (\Sigma v_{i})_{b}^{\frac{1}{3}}]^{2}}$$
(A1)

where T = Temperature [K]; W_a , W_b = Molecular weights for components *a* and *b*; *P* = Total pressure [bar] and $\sum v_i$ = Summation of the special atomic diffusion volume coefficients for respective components given in *Table A5*.

LIQUID DIFFUSIVITIES

Liquid diffusivity coefficient, D_L could be predicted using Wilke & Chang (1955) equation with data presented in Table A6.

$$D_L = \frac{1.173 \times 10^{-13} (\varphi W)^{0.5} T}{\mu V^{0.6}}$$
(A2)

where W = Solvent molecular weight, $\mu =$ Solvent viscosity [mNsm⁻²], V = Solvent molar volume at boiling point [m³(kmol)⁻¹] calculated from data shown in Table A6, $\phi =$ Association factor for the solvent; $\phi = 2.6$ for water; $\phi = 1.9$ for methanol; $\phi = 1.5$ for ethanol and $\phi = 1.0$ for unassociated solvents.

TABLE A1. CO₂ solubility in H₂O at various temperatures and partial pressures (Source: Fernandez-Prini & Crovetto, 1989; Carroll et al. 1991; Crovetto, 1991)

7 [90]							
<i>T</i> [°C]	5	10	20	30	40	50	100
0	0.067	0.135	0.269	0.404	0.538	0.671	1.337
5	0.056	0.113	0.226	0.338	0.451	0.564	1.123
10	0.048	0.096	0.191	0.287	0.382	0.477	0.950
15	0.041	0.082	0.164	0.245	0.327	0.409	0.814
20	0.035	0.071	0.141	0.212	0.283	0.353	0.704
25	0.031	0.062	0.123	0.185	0.247	0.308	0.614
30	0.027	0.054	0.109	0.163	0.218	0.271	0.541
35	0.024	0.048	0.097	0.145	0.193	0.242	0.481
40	0.022	0.043	0.087	0.130	0.173	0.216	0.431
45	0.020	0.039	0.078	0.117	0.156	0.196	0.389
50	0.018	0.036	0.071	0.107	0.142	0.178	0.354

55	0.016	0.033	0.065	0.098	0.131	0.163	0.325
60	0.015	0.030	0.060	0.090	0.121	0.150	0.300
65	0.014	0.028	0.056	0.084	0.112	0.140	0.279
70	0.013	0.026	0.052	0.079	0.105	0.131	0.261
75	0.012	0.025	0.049	0.074	0.099	0.123	0.245
80	0.012	0.023	0.047	0.070	0.093	0.116	0.232
85	0.011	0.022	0.044	0.067	0.089	0.111	0.221
90	0.011	0.021	0.042	0.064	0.085	0.106	0.211
95	0.010	0.020	0.041	0.061	0.082	0.102	0.203
100	0.010	0.020	0.039	0.059	0.079	0.098	0.196

Note: $1000 \times \text{mole fraction of CO}_2$ in liquid phase

TABLE A2. CO₂ aqueous solubility at 101.3 kPa (1 atm) (Source: Dean, 1999)

<i>T</i> [°C]	Disso	lved CO ₂	<i>T</i> [°C]	Disso	Dissolved CO ₂		
I[C]	v/v H ₂ O	g/100ml H ₂ O	I[C]	v/v H ₂ O	$g/100ml H_2O$		
0	1.713	0.3346	18	0.928	0.1789		
1	1.646	0.3213	19	0.902	0.1737		
2	1.584	0.3091	20	0.878	0.1688		
3	1.527	0.2978	21	0.854	0.1640		
4	1.473	0.2871	22	0.829	0.1590		
5	1.424	0.2774	23	0.804	0.1540		
6	1.377	0.2681	24	0.781	0.1493		
7	1.331	0.2589	25	0.759	0.1449		
8	1.282	0.2492	26	0.738	0.1406		
9	1.237	0.2403	27	0.718	0.1366		
10	1.194	0.2318	28	0.699	0.1327		
11	1.154	0.2239	29	0.682	0.1292		
12	1.117	0.2165	30	0.655	0.1257		
13	1.083	0.2098	35	0.592	0.1105		
14	1.050	0.2032	40	0.530	0.0973		
15	1.019	0.1970	45	0.479	0.0860		
16	0.985	0.1903	50	0.436	0.0761		
17	0.956	0.1845	60	0.359	0.0576		

Notes: The solubility is given for "pure water", i.e. water which contains only CO_2 . This water is acidic. For example, at 25 °C, pH 3.9 is expected. At less acidic pH values, the solubility will increase due to the pH-dependent speciation of CO_2 .

TABLE A3. Aqueous solubility in weight of CO₂ per 100 weight of H₂O at various pressures (Source: Perry et al. 1997)

					$T[^{\circ}C]$				
P[atm]	12	18	25	31.04	35	40	50	75	100
25		3.86	3.29	2.80	2.56	2.30	1.92	1.35	1.06
50	7.03	6.33	5.38	4.77	4.39	4.02	3.41	2.49	2.01
75	7.18	6.69	6.17	5.80	5.51	5.10	4.45	3.37	2.82
100	7.27	6.72	6.28	5.97	5.76	5.50	5.07	4.07	3.49
150				6.25	6.03	5.81	5.47	4.86	4.49
200				6.48	6.29	6.28	5.76	5.27	5.08
300	7.86	7.35					6.20	5.83	5.84
400	8.12	7.77	7.54	7.27	7.06	6.89	6.58	6.30	6.40
500				7.65	7.51	7.26			
700							7.58	7.43	7.61

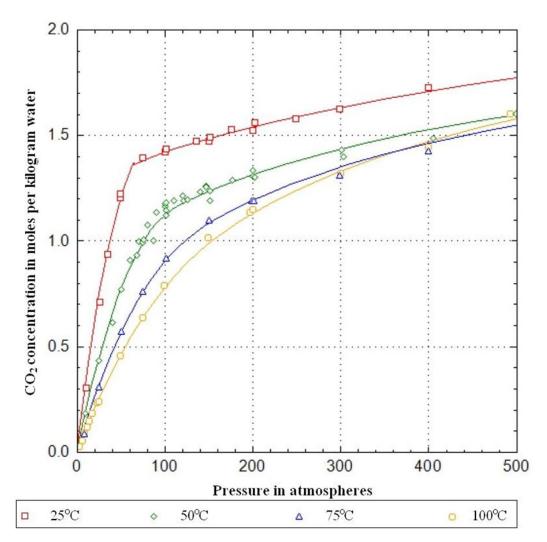
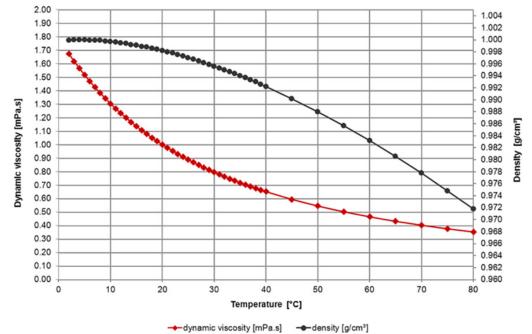



FIGURE A1. CO₂ solubility as a function of gas pressure at 25°C, 50°C, 75 and 100°C. Data points are from compilations by Duan *et al.* (2003) and Spycher *et al.* (2003).

• dynamic viscosky [m+ d.s]

FIGURE A2. Water dynamic viscosity and density for various temperatures

			1 8			
	Pall Rings	Size	Nos. / m ³	$\alpha \left[m^2/m^3\right]$	ε [%]	Fp
		13 mm	4,00,000	430	90	73
		16 mm	2,10,000	345	93.1	71
	(D)	19 mm	1,00,000	250	94	63
		25 mm	51,000	208	94.5	48
- N		38 mm	13,500	131	95	28
9		50 mm	6,500	98	96	20
		75 mm	1,820	71	96	18
IM	ITP / Saddles					
		No. 15	3,47,500	290	95	51
		No. 25	1,36,500	226	96.2	41
		No. 40	50,000	150	97.3	24
R		No. 50	14,750	99	98	18
	Ja	No. 70	4,625	59	98	12
Ra	aschig Rings	[mm]				
		8 x 8	1500000	630	91	
		10 x 10	770000	500	89	
		12 x 12	450000	430	90	300
		15 x 15	230000	350	92	260
		25 x 25	51000	220	92	137
		35 x 35	19000	150	93	
		38 x 38	14000	130	93	83
		50 x 50	6500	110	95	57
		80 x 80	1600	65	96	32
		100 x 100	750	48	96	
	TAB	LE A5. Special atomic dif	fusion volumes (I	Fueller et al. 1966))	
С	Н	0	Ν	Cl	S	rings
16.5	1.98	5.48	5.69	19.5	17.0	-20.0
		Simple Molecul	es Diffusion Volu	ime		
H_2	D ₂	Не	N ₂	O ₂	air	Ne
12.7	6.70	2.88	17.9	16.6	20.1	5.59
	Kr	Xe	СО	CO ₂	N ₂ O	NH ₃
Ar		27.0	18.9	26.9	35.9	14.9
Ar 16.1	22.8	37.9	10.9			
	22.8 F ₂	57.9 SF ₆	Cl ₂	Br ₂	SO_2	

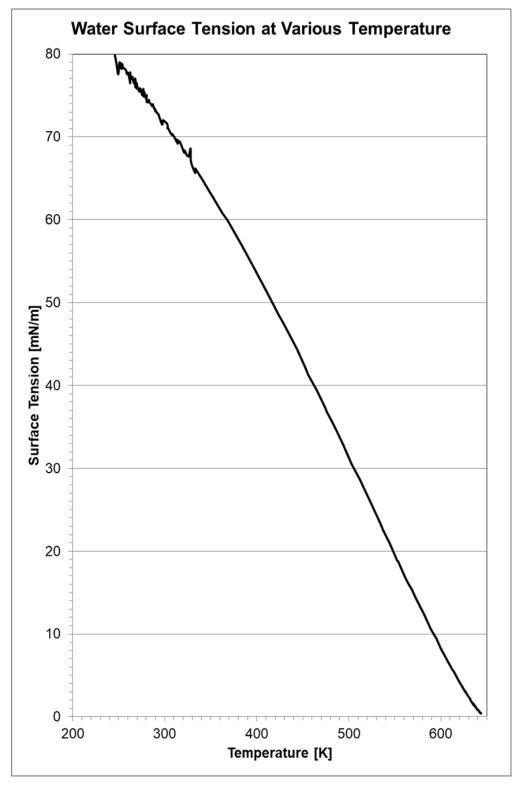


FIGURE A3. Water surface tension at various temperatures

			Molecu	ar Volumes			
Air	0.0299	CO ₂	0.0340	H_2S	0.0329	NO	0.0236
Br_2	0.0532	COS	0.0515	I_2	0.0715	N ₂ O	0.0364
Cl_2	0.0484	H_2	0.0143	N_2	0.0312	O_2	0.0256
CO	0.0307	H_2O	0.0189	NH ₃	0.0258	SO_2	0.0448
			Atomi	c Volumes			
As	0.0305	F	0.0087	Р	0.0270	Sn	0.0423
Bi	0.0480	Ge	0.0345	Pb	0.0480	Ti	0.0357
Br	0.0270	Н	0.0037	S	0.0256	V	0.0320
С	0.0148	Hg	0.0190	Sb	0.0342	Zn	0.0204
Cr	0.0274	Ι	0.0370	Si	0.0320		
			Complex O	rganic Volumes			
Cl terminal a	s in RCl		0.0216	Oxygen, exce	pt as noted below		0.0074
• medial as	in R-CHCl-R		0.0246	• in methyl	0.0091		
Nitrogen dou	ble-bonded		0.0156	• in methyl	ethers		0.0099
• triply bon	ded as in nitrile		0.0162	• in higher e	0.0110		
• primary a	mines, RNH ₂		0.0105	• in acids	0.0120		
 secondary 	amines, R ₂ NH		0.0120	• in union with S, P, N			0.0083
 tertiary an 	nines, R ₃ N		0.0108	• three-member ring			-0.0060
Naphthalene	ring		-0.0300	• four-mem	-0.0085		
Anthracene ri	ing		-0.0475	• five-memb	ber ring		-0.0115
				• six-member	er ring		-0.0150
				(benzene, cyc	lohexane, pyridin	e)	

TABLE A6. Structural contribution to molar volumes (Source: Wilke & Chang, 1955)