
Journal of Quality Measurement and Analysis JQMA 4(1) 2008, 1-9
Jurnal Pengukuran Kualiti dan Analisis

NUMERICAL ANALYSIS

JOHN

BUTCHER

ABSTRACT

Mathematics has applications in virtually every scientific discipline. Many of these
applications yield mathematical models which involve numerical approximations or
evaluations to give a complete answer. Over the years, especially within the computer age, a
body of knowledge has grown up which seeks to understand how calculations should best be
performed to carry out these evaluations. Much of this knowledge is in the form of algorithms
for solving certain standard and widely used problems. This is the subject of Numerical
Analysis. In this broad survey of numerical analysis, I will attempt to survey some of the
problem areas it deals with. I will then conclude by focussing specifically on some aspects of
the area of my own specialist interests, that is differential equations and their numerical
approximations. In the numerical solution of differential equations, where the numerical
approximation is developed in small time-steps, there are typically three challenges. These are
(a) to keep errors in each step small, (b) to make sure that the overall algorithm is stable and
that errors generated in any step do not have an overwhelming affect on the accuracy of later
steps and (c) to keep the computational costs as low as possible. Selecting a numerical
method, or family of methods, and integrating the method or methods into a software package,
deals with all these challenges and, of necessity, seeks compromises between them. It is found
that the analysis of possible methods, and algorithm design questions, makes extensive use of
results and techniques from many areas within the mathematical sciences, and even
contributes to them.

Keywords: Numerical analysis; differential equations; numerical methods

1. Introduction

The applications of mathematics are everywhere, not just in the traditional sciences of physics
and chemistry, but in biology, medicine, agriculture and many more areas. Traditionally,
mathematicians tried to give an exact solution to scientific problems or, where this was
impossible, to give exact solutions to modified or simplified problems. With the birth of the
computer age, the emphasis started to shift towards trying to build exact models but resorting
to numerical approximations.

Today many scientific problems can be modelled quite accurately using a combination of
mathematical analysis and numerical computation. From the large body of knowledge and
experience acquired from masses of problem solutions, a number of computational areas have
become identified as forming a systematic structure. The purpose of this paper is to survey
some parts of this systematic structure and to explore some details within it. This body of
work forms the subject of numerical analysis.

In Section 2 we will survey the broad subject of numerical analysis and in Section 3, we
will go into some aspects of numerical methods for differential equation. Finally, in Section 4,
we will explore some links between other parts of mathematics and numerical analysis.

2. Numerical Analysis as a Mathematical Science

There is a natural progression from being a collection of unrelated techniques to a systematic
scientific discipline. Numerical analysis began with the need to solve practical problems in

John Butcher

 2

whatever way was needed. Many problems involve the solution of linear equation systems
and it is natural that algorithms to solve problems in linear algebra should be at the heart of
the evolving science of numerical analysis. The basic idea of eliminating variables one by
one, can be made systematic and this leads to modern LU factorization algorithms using
partial pivoting. For stability, QR factorization is preferred over triangular factorization and
this has additional applications in eigenvalue computations. A natural mathematical question
is whether algorithms which involve 𝐶𝐶𝑛𝑛3 multiplications are optimal? Surprisingly they are
not because the “Strassen algorithm” involves 𝐶𝐶𝑛𝑛𝑎𝑎 multiplications, where 𝑎𝑎 = 𝑙𝑙𝑙𝑙𝑙𝑙27 ≈ 2.85.

Numerical algorithms which evoke mathematical questions, and at the same time depend
on sometimes sophisticated mathematics, are a common occurrence. The basic task of
obtaining approximations to integrals has led to many very effective algorithms and at the
same time has involved very deep mathematics. One classical question concerns
“interpolational quadrature”, in which integrals are approximated as the integrals of
interpolation polynomials for a given function. For example, to calculate the integral
∫ ∅(𝑥𝑥)𝑑𝑑𝑥𝑥1

0 , a first step might be to find a first degree polynomial, which agrees with ∅ at
𝑥𝑥 = 0 and 𝑥𝑥 = 1. This polynomial is found to be 𝑝𝑝(𝑥𝑥) = (1 − 𝑥𝑥)∅(0) + 𝑥𝑥∅(1) and its
integral is 1

2
∅(0) + 1

2
∅(1). A good question to ask would be: if the result is to be based on

exactly two points, say ξ1 and ξ2, what is the optimal choice for these points to yield the most
accurate approximation possible for the integral? The answer is 𝜉𝜉1 = 1

2
− 1

6√3, 𝜉𝜉2 = 1
2

+ 1
6√3.

Why these numbers? And what is the best choice if n points ξ1, ξ2, . . . , ξn are used? The
answers are related to the classical theory of orthogonal polynomials. What happens if the
points are spaced uniformly on [0, 1]? Surprisingly the sequence of approximations as n
increases might not even converge.

Linear equations and numerical integration are both used within methods for differential
equations, so that there is a linkage between all these subjects which involves questions of
practical and efficient computation as well as a wealth of mathematical disciplines.

3. Numerical Methods for Differential Equations

Given a differential equation, together with an initial value,

 𝑦𝑦′(𝑥𝑥) = 𝑓𝑓�𝑥𝑥,𝑦𝑦(𝑥𝑥)�, 𝑦𝑦((𝑥𝑥0) = 𝑥𝑥0

́ ,

the task that numerical integrators are asked to solve is to find approximations to
𝑦𝑦(𝑥𝑥1),𝑦𝑦(𝑥𝑥2), … , for 𝑥𝑥1,𝑥𝑥2, … an increasing sequence of points. We can regard this is a
numerical integration problem

 𝑦𝑦(𝑥𝑥) = 𝑦𝑦0 + �𝑓𝑓�𝑦𝑦(𝜉𝜉)�𝑑𝑑𝜉𝜉
𝑥𝑥

𝑥𝑥0

,

and we can go from 𝑥𝑥𝑛𝑛−1 to 𝑥𝑥𝑛𝑛 by the formula

 𝑦𝑦(𝑥𝑥𝑛𝑛) = 𝑦𝑦(𝑥𝑥𝑛𝑛−1) + � 𝑓𝑓�𝑦𝑦(𝜉𝜉)�𝑑𝑑𝜉𝜉

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1

,

Numerical Analysis

 3

One way of obtaining approximations to this integral, is to write

 � 𝑓𝑓�𝑦𝑦(𝜉𝜉)�𝑑𝑑𝜉𝜉

𝑥𝑥𝑛𝑛

𝑥𝑥𝑛𝑛−1

 ≈ (𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)𝑓𝑓(𝑥𝑥𝑛𝑛−1),

and this gives the “Euler method”

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + (𝑥𝑥𝑛𝑛 − 𝑥𝑥𝑛𝑛−1)𝑓𝑓(𝑦𝑦𝑛𝑛−1), 𝑛𝑛 = 1,2, …, (1)

where 𝑦𝑦𝑛𝑛 is the computed approximation to 𝑦𝑦(𝑥𝑥𝑛𝑛).

The method (1) is completely reliable but it is usually not very efficient. The reasons are
that it is only first order and has bounded stability region.

“First order” means that asymptotically, for small stepsizes, the error in a computed
answer is proportional to the stepsize. It would be better to have order 2 or three or more,
because this would mean that errors would decrease more rapidly as additional computing
resources are brought into play.

“Bounded stability region” means that, for so-called stiff problems, there would be an
unacceptable bound on stepsizes to achieve stable calculations.

Important aims in the study of numerical methods for ordinary differential equations are
first to obtain higher orders with a moderate increase in computational effort and secondly to
achieve accurate results without being hampered by unreasonable stability restrictions.

I will briefly survey the most important approaches to improving on the Euler method in
terms of higher order and greater efficiency. I will then say a little about obtaining stable
computations.

3.1. Linear multistep methods

The simple idea of predicting the result at the end of a step, using a single approximation to
the solution value, and a single value of the derivative, gives only first order accuracy. To
improve on this, consider the possibility of basing a prediction on a number of previously
computed solution values and a number of previously computed derivative values. For
example, once we have got past the first step, we could use the sequence of numerical values
satisfying the difference equation

 𝑦𝑦𝑛𝑛 = 𝛼𝛼1𝑦𝑦𝑛𝑛−1 + 𝛼𝛼2𝑦𝑦𝑛𝑛−2 + 𝛽𝛽1ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−1) + 𝛽𝛽2ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−2),

based on the approximation

 𝑦𝑦(𝑥𝑥𝑛𝑛) ≈ 𝛼𝛼1𝑦𝑦(𝑥𝑥𝑛𝑛−1) + 𝛼𝛼2𝑦𝑦(𝑥𝑥𝑛𝑛−2) + 𝛽𝛽1ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛−1) + 𝛽𝛽2ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛−2).

For this approximation to have order 𝑝𝑝, the Taylor expansion of

 𝑦𝑦(𝑥𝑥𝑛𝑛)− 𝛼𝛼1𝑦𝑦(𝑥𝑥𝑛𝑛−1)− 𝛼𝛼2𝑦𝑦(𝑥𝑥𝑛𝑛−2) − 𝛽𝛽1ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛−1)− 𝛽𝛽2ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛−2)

about 𝑥𝑥𝑛𝑛 would need to be zero up to the ℎ𝑝𝑝 term. This Taylor expansion is

 𝐶𝐶0𝑦𝑦(𝑥𝑥𝑛𝑛) + 𝐶𝐶1ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛)+ 𝐶𝐶2ℎ2𝑦𝑦′′ (𝑥𝑥𝑛𝑛) + 𝐶𝐶3ℎ3𝑦𝑦′′′ (𝑥𝑥𝑛𝑛) + ⋯,

John Butcher

 4

where

 𝐶𝐶0 = 1 − 𝛼𝛼1 − 𝛼𝛼2,

 𝐶𝐶1 = 𝛼𝛼1 + 2𝛼𝛼2 − 𝛽𝛽1 − 𝛽𝛽2,
 𝐶𝐶2 = −𝛼𝛼1 − 4𝛼𝛼2 + 2𝛽𝛽1 + 4𝛽𝛽2,

 𝐶𝐶3 = 𝛼𝛼1 − 8𝛼𝛼2 − 3𝛽𝛽1 + 28𝛽𝛽2.

It seems to be possible for 𝐶𝐶0 = 𝐶𝐶1 = 𝐶𝐶2 = 𝐶𝐶3 = 0, and therefore to achieve order 3. This
would mean 𝛼𝛼1 = −4,𝛼𝛼2 = 5,𝛽𝛽1 = 4,𝛽𝛽2 = 2.

This introduces the new difficulty of stability. Even for the differential equation
 𝑦𝑦′(𝑥𝑥) = 0, whose solution is constant, the sequence of computed approximations would
satisfy

 𝑦𝑦𝑛𝑛 + 4𝑦𝑦𝑛𝑛−1 − 5𝑦𝑦𝑛𝑛−2 = 0,

and this difference equation has a solution which grows like powers of −4.

A method like this is said to be “unstable”. Only stable methods can be used in practical
computation.

At the expense of making methods slightly more expensive to use, (1) can be generalized
to make it implicit:

𝑦𝑦𝑛𝑛 = 𝛼𝛼1𝑦𝑦𝑛𝑛−1 + 𝛼𝛼2𝑦𝑦𝑛𝑛−2 + 𝛽𝛽0ℎ𝑓𝑓′(𝑦𝑦𝑛𝑛) + 𝛽𝛽1ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−1) + 𝛽𝛽2ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−2)

and this makes order as high as 4 possible without losing stability.
In the pioneering work of Dahlquist (1956), it was shown that, if 𝑘𝑘 is odd, the maximum

order possible for stable linear multistep methods is 𝑘𝑘 + 1 and, if 𝑘𝑘 is even, the maximum
order is 𝑘𝑘 + 2.

In practical computation, the choice is usually restricted to the (explicit) Adams-Bashforth
(1883) methods, and the (implicit) Adams-Moulton (1926) methods

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + ∑ �̂�𝛽𝑘𝑘𝑦𝑦𝑛𝑛−𝑘𝑘,

𝑘𝑘
𝑖𝑖=1

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + ∑ 𝛽𝛽𝑘𝑘𝑦𝑦𝑛𝑛−𝑘𝑘,

𝑘𝑘
𝑖𝑖=1

used together as a “predictor-corrector” pair.

3.2. Runge–Kutta methods

Instead of basing an improvement to the Euler method on the use of more past history, it is
possible to carry out more evaluations of the function f in each step. For example, instead of
using a “lefthand rule” integration formula, we could use either the mid-point or trapezoidal
rules. but with preliminary prediction used to obtain the off-step values:

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + ℎ𝑓𝑓 �𝑦𝑦𝑛𝑛−1 + 1

2
ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−1)�,

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + 1
2
ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−1) + 1

2
ℎ𝑓𝑓�𝑦𝑦𝑛𝑛−1 + ℎ𝑓𝑓(𝑦𝑦𝑛𝑛−1)�.

These methods from Runge (1895) paper are “second order”, because the error in a single

step behaves like 𝑂𝑂(ℎ3). At a specific output point the error is 𝑂𝑂(ℎ2). A few years later,

Numerical Analysis

 5

 Heun (1900) gave a full explanation of order 3 methods and Kutta (1901) gave a detailed
analysis of order 4 methods.

The most famous of all these “Runge–Kutta methods” is the fourth order method found by
Kutta

 𝑌𝑌1 = 𝑦𝑦𝑛𝑛−1,
 𝑌𝑌2 = 𝑦𝑦𝑛𝑛−1 + 1

2
ℎ𝑓𝑓(𝑌𝑌1),

 𝑌𝑌3 = 𝑦𝑦𝑛𝑛−1 + 1
2
ℎ𝑓𝑓(𝑌𝑌2),

 𝑌𝑌4 = 𝑦𝑦𝑛𝑛−1 + 1
2
ℎ𝑓𝑓(𝑌𝑌3),

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + 1
6
ℎ𝑓𝑓(𝑌𝑌1) + 1

3
ℎ𝑓𝑓(𝑌𝑌2) + 1

3
ℎ𝑓𝑓(𝑌𝑌3) + 1

6
ℎ𝑓𝑓(𝑌𝑌4).

Although methods of order p exist with p “stages”, that is p evaluations of f per time-step,

up to p = 4, above this it is impossible. By the time p has increased to 8, as many as 11 stages
are necessary.

3.3. General linear methods

A large family of methods exists which combine the ideas of both linear multistep and
Runge–Kutta methods. That is, they use multiple past information as input to each step and in
each step a multiple number of stages is calculated. We give a single example. At the start of
step number n, three quantities are available as input. These are 𝑦𝑦1

[𝑛𝑛−1], which is an
approximation to 𝑦𝑦(𝑥𝑥𝑛𝑛−1), 𝑦𝑦2

[𝑛𝑛−1], which is an approximation to ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛−1), and 𝑦𝑦3
[𝑛𝑛−1],

which is an approximation to ℎ2𝑦𝑦′′ (𝑥𝑥𝑛𝑛−1). In the step itself, three stages are calculated. These
are 𝑌𝑌1 ≈ 𝑦𝑦 �𝑥𝑥𝑛𝑛−1 + 1

3
ℎ�, 𝑌𝑌2 ≈ 𝑦𝑦 �𝑥𝑥𝑛𝑛−1 + 2

3
ℎ� and 𝑌𝑌3 ≈ 𝑦𝑦(𝑥𝑥𝑛𝑛−1 + ℎ). The formula for these,

together with the output values 𝑦𝑦1
[𝑛𝑛] ≈ 𝑦𝑦(𝑥𝑥𝑛𝑛),𝑦𝑦2

[𝑛𝑛] ≈ ℎ𝑦𝑦′(𝑥𝑥𝑛𝑛) and 𝑦𝑦3
[𝑛𝑛] ≈ ℎ2𝑦𝑦′′ (𝑥𝑥𝑛𝑛), are

 𝑌𝑌1 = 𝑦𝑦1

[𝑛𝑛−1] + 1
3
𝑦𝑦2

[𝑛𝑛−1] + 1
18
𝑦𝑦3

[𝑛𝑛−1],

 𝑌𝑌2 = 1
2
ℎ𝑓𝑓(𝑌𝑌1) + 𝑦𝑦1

[𝑛𝑛−1] + 1
6
𝑦𝑦2

[𝑛𝑛−1] + 1
18
𝑦𝑦3

[𝑛𝑛−1],

 𝑌𝑌3 = 3
4
ℎ𝑓𝑓(𝑌𝑌2) + 𝑦𝑦1

[𝑛𝑛−1] + 1
4
𝑦𝑦2

[𝑛𝑛−1],

 𝑦𝑦1
[𝑛𝑛] = 3

4
ℎ𝑓𝑓(𝑌𝑌2) + 𝑦𝑦1

[𝑛𝑛−1] + 1
4
𝑦𝑦2

[𝑛𝑛−1],

 𝑦𝑦2
[𝑛𝑛] = 𝑦𝑦3

[𝑛𝑛−1],
 𝑦𝑦3

[𝑛𝑛] = 3ℎ𝑓𝑓(𝑌𝑌1) − 3ℎ𝑓𝑓(𝑌𝑌2) + 2ℎ𝑓𝑓(𝑌𝑌2) − 2𝑦𝑦2
[𝑛𝑛−1].

This is very close to being a Runge–Kutta method and is referred to as an “Almost Runge–

Kutta” method. Other methods exist which are small modifications of linear multistep
methods. For example there exist predictor-corrector methods with additional off-step
predictors. However, general linear methods are now recognised in their own right. A
comprehensive theory exists concerning their accuracy and stability. Furthermore there is a
growing body of knowledge about how they can be efficiently implemented.

3.4. Methods for stiff problems

Instead of attempting to find a precise definition of stiffness, we can look at illustrative
examples. Many stiff problem involve partial differential equations. When space derivatives
are approximated by finite differences, to reduce these problems to large systems of ordinary

John Butcher

 6

differential equations, we are in effect replacing unbounded operators on function spaces, by
badly conditioned matrix operators on finite dimensional vector spaces. For example, the
diffusion operator has a continuous spectrum, whereas finite difference approximations have a
spectrum of widely spaced points on the negative real axis. In attempting to solve the
discretized heat equation, we want to approximate the most slowly decaying components
accurately. The accuracy of the approximations to the rapidly decaying components is
relatively unimportant, but it is these components which create stability difficulties. We can
isolate the rapidly decaying components from the rest of the problem, by looking at the
solution of the simple linear problem 𝑦𝑦′(𝑥𝑥) = 𝑞𝑞𝑦𝑦(𝑥𝑥).

If q is a negative real number or, more generally, a complex number with negative real
part, then we obtain a decaying solution. However, numerical approximations do not
necessarily decay. With the simple Euler method, the numerical approximation changes by a
factor (1 + ℎ𝑞𝑞) in every timestep. But if hq is outside the circle {𝑧𝑧: |1 + 𝑧𝑧| ≤ 1}, computed
solutions actually grow in magnitude. We can get round this by using the “implicit Euler
method”, in which the approximation to 𝑦𝑦(𝑥𝑥𝑛𝑛) is found from the equation
 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + ℎ𝑓𝑓(𝑦𝑦𝑛𝑛). It is an added complication to actually solve this algebraic equation to
find 𝑦𝑦𝑛𝑛 but the stability issue is now out of the way. To obtain stable numerical sequences, it
is now only necessary that hq lies in {𝑧𝑧: |𝑧𝑧 − 1| ≥ 1}, which is always true if the real part of q
is negative.

One source of methods for stiff methods is implicit linear multistep methods. For example
the so-called “BDF2” method is

 𝑦𝑦𝑛𝑛 = 2

3
ℎ𝑓𝑓(𝑦𝑦𝑛𝑛) + 4

3
𝑦𝑦𝑛𝑛−1 + 1

3
𝑦𝑦𝑛𝑛−2.

This has the desirable property of being “A-stable”. This means that, for all z in the left half
complex plane, the difference equation

 �1 − 2

3
𝑧𝑧� 𝑦𝑦𝑛𝑛 −

4
3
𝑦𝑦𝑛𝑛−1 −

1
3
𝑦𝑦𝑛𝑛−2 = 0,

has only bounded solutions.

Unfortunately, it is not possible to find A-stable linear multistep methods with order higher
than 2. However, A-stable Runge–Kutta methods exist for all orders. The simplest example,
other than the implicit Euler method, is the implicit mid-point rule, which can be written:

 𝑦𝑦𝑛𝑛 = 𝑦𝑦𝑛𝑛−1 + ℎ𝑓𝑓 �1
2

(𝑦𝑦𝑛𝑛 + 𝑦𝑦𝑛𝑛−1)�.

This is based on the quadrature formula

 �∅(𝑥𝑥)𝑑𝑑𝑥𝑥
1

0

 ≈ ∅�
1
2
�,

and one might ask if a similar use can be made of higher order Gaussian formulae, such as

 �∅(𝑥𝑥)𝑑𝑑𝑥𝑥
1

0

 ≈
1
2�

∅ �
1
2
−

1
6√

3� + ∅�
1
2

+
1
6√

3��.

Numerical Analysis

 7

The answer is yes. For example, there exists a two stage implicit method with order 4. In
general, by making use of the Legendre polynomial of degree 𝑠𝑠, it is possible to find an
A-stable 𝑠𝑠 stage implicit Runge–Kutta method with order 2𝑠𝑠.

But these are not ideal for other reasons, not least being their high implementation costs.
By accepting less accuracy per stage, excellent implicit Runge–Kutta methods can be found
for solving stiff problems. Even better methods can be found, within the larger general linear
class.

4. Numerical Analysis and Mathematics

It is clear that problems in mathematical modelling frequently need to call upon
computational methods. However, the nature of the relationship between numerical analysis
and mathematics in general is much broader and much richer. In fact the relationship is two-
sided. Numerical analysis is constantly drawing on and using sophisticated results from
algebra and analysis but, at the same time, it is building new mathematics for its own
purposes. This new mathematics can sometimes spill over into other parts of mathematics and
into other sciences.

I mentioned the question of how quickly the cost of solving 𝑛𝑛 × 𝑛𝑛 linear equation systems
grows as n increases. The observation that the cost (measured in terms of multiplications) can
grow at the rate of 𝑛𝑛𝑙𝑙𝑙𝑙𝑙𝑙27, rather at the rate 𝑛𝑛3, hinges on the fact that partitioned matrix
products

 �𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

� = �𝐴𝐴11𝐵𝐵11 + 𝐴𝐴12𝐵𝐵21 𝐴𝐴11𝐵𝐵12 + 𝐴𝐴12𝐵𝐵22
𝐴𝐴21𝐵𝐵11 + 𝐴𝐴22𝐵𝐵21 𝐴𝐴21𝐵𝐵12 + 𝐴𝐴22𝐵𝐵22

�,

can be written in terms of only 7 matrix products:

 �𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� �𝐵𝐵11 𝐵𝐵12
𝐵𝐵21 𝐵𝐵22

� = �𝑋𝑋1 + 𝑋𝑋4 − 𝑋𝑋5 + 𝑋𝑋7 𝑋𝑋3 + 𝑋𝑋5
𝑋𝑋2 + 𝑋𝑋4 𝑋𝑋1 − 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋6

�,

where 𝑋𝑋1 = (𝐴𝐴11 + 𝐴𝐴22)(𝐵𝐵11 + 𝐵𝐵22), 𝑋𝑋2 = (𝐴𝐴21 + 𝐴𝐴22)𝐵𝐵11, 𝑋𝑋3 = 𝐴𝐴11(𝐵𝐵12 − 𝐵𝐵22),
𝑋𝑋4 = 𝐴𝐴22(𝐵𝐵21 − 𝐵𝐵11), 𝑋𝑋5 = (𝐴𝐴11 + 𝐴𝐴12)𝐵𝐵22, 𝑋𝑋6 = (𝐴𝐴21 − 𝐴𝐴11)(𝐵𝐵11 + 𝐵𝐵12),
 𝑋𝑋7 = (𝐴𝐴12 − 𝐴𝐴22)(𝐵𝐵21 + 𝐵𝐵22).

The ideal properties of QR factorization as a means of reducing a linear algebra problem to
a triangular system, hinges on the fact that multiplication by an orthogonal matrix is an
isometry; that is it does not change the length of a vector on which it operates. This means
that the “conditioning” of a matrix is not changed, and certainly not made worse, by
multiplying by an orthogonal matrix.

The fact that we can get accurate quadrature formulae at a reasonable cost depends on
properties of classical orthogonal polynomials. These properties were discovered centuries
ago and provided a ready-made resource waiting for numerical analysts to use. Orthogonal
polynomials also play a number of roles in methods for solving differential equations, and
some of these are quite surprising.

My final examples of the relationships between mathematics and numerical analysis relate
to questions about the accuracy of numerical methods for ordinary differential equations. As a
starting point, it is necessary to understand the Taylor expansion of the solution to the
differential equation 𝑦𝑦′(𝑥𝑥) = 𝑓𝑓(𝑦𝑦(𝑥𝑥)). It turns out that the formula for a higher-order

John Butcher

 8

derivative 𝑦𝑦(𝑛𝑛)(𝑥𝑥) is related to the family of rooted trees with 𝑛𝑛 vertices. Associated with the
function f, which maps vectors to vectors, is its “Jacobian matrix” listing the various partial
derivatives in a table. For convenience, write f for f evaluated at 𝑦𝑦(𝑥𝑥), and let 𝐟𝐟′ denote the
Jacobian matrix, also evaluated at 𝑦𝑦(𝑥𝑥). Similarly, write 𝐟𝐟′′ , 𝐟𝐟′′′ , …, for higher derivatives of f.
These are tensor quantities with an increasing number of indices. The following are the
formulae of the first few derivatives of 𝑦𝑦(𝑥𝑥).

 𝑦𝑦′(𝑥𝑥) = 𝐟𝐟,
 𝑦𝑦′′ (𝑥𝑥) = 𝐟𝐟′ 𝐟𝐟,
 𝑦𝑦′′′ (𝑥𝑥) = 𝐟𝐟′′ (𝐟𝐟, 𝐟𝐟) + 𝐟𝐟′ 𝐟𝐟′ 𝐟𝐟,
 𝑦𝑦(4)(𝑥𝑥) = 𝐟𝐟(3)(𝐟𝐟, 𝐟𝐟, 𝐟𝐟) + 𝟑𝟑𝐟𝐟′′ (𝐟𝐟, 𝐟𝐟′ 𝐟𝐟) + 𝐟𝐟′ 𝐟𝐟′′ (𝐟𝐟, 𝐟𝐟) + 𝐟𝐟′ 𝐟𝐟′ 𝐟𝐟′ 𝐟𝐟.

The connection with rooted trees becomes clear when the various terms are written as

operator diagrams as follows:

The coefficients in the formulae for the derivatives are also related to classical

combinatorial enumeration questions.
To find the order of a Runge–Kutta method, we need to find the Taylor expansion of the

result computed after a single step, and match it against the Taylor expansion for the exact
solution. Hence the number of order conditions increases as the number of rooted trees up to
this order.

The coefficients which appear with each tree in the Taylor expansion of the exact solution
characterize the method. It is possible to build an algebraic system for manipulating these
collections of coefficients. The series itself is known as a “B-series” and the algebraic system
related to it has recently been identified as being a “Hopf Algebra”.

This is an example where numerical analysis not only produces new mathematics to
understand and solve its own problems, but where it makes a wider contribution. The Hopf
Algebra of rooted trees, which is at the heart of this part of numerical analysis, has recently
been rediscovered for its applications in non-commutative geometry and in renormalization of
the Feynman integrals of mathematical physics.

An account of the connection between these topics is given in a review paper by Brouder
(2000).

References

Bashforth F. & Adams J. C. 1883. An Attempt to Test the Theories of Capillary Action by Comparing the
Theoretical and Measured Forms of Drops of Fluid, with an Explanation of the Method of Integration
Employed in Constructing the Tables which Give the Theoretical Forms of Such Drops. Cambridge:
Cambridge University Press.

Brouder C. 2000. Runge–Kutta methods and renormalization. Eur. Phys. J. C. 12:521–534.
Dahlquist G. 1956. Convergence and stability in the numerical integration of ordinary differential equations. Math.

Scand. 4: 33–53.

Numerical Analysis

 9

Heun K. 1900. Neue Methoden zur approximativen Integration der Differentialgleichungen einer unabhängigen
Veränderlichen. Z. Math. Phys.45 (1900), 23–38.

Kutta W. 1901. Beitrag zur näherungsweisen Integration totaler Differentialgleichungen. Z. Math. Phys. 46: 435–
453.

Moulton F. R. 1926. New Methods in Exterior Ballistics. Chicago: University of Chicago.
Runge C. 1895. Über die numerische Auflösung von Differentialgleichungen. Math. Ann. 46: 167–178.

Department of Mathematics
The University of Auckland
Private Bag 92019
Auckland
NEW ZEALAND
Email: butcher@math.auckland.ac.nz

