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ABSTRACT 

The Vehicle Routing Problem (VRP) is a well known problem in operational research where 
customers of known demands are supplied by one or several depots. The objective is to find a 
set of delivery routes satisfying some requirements or constraints and giving minimal total 
cost. The VRP has drawn enormous interests from many researchers during the last decades 
because of its vital role in planning of distribution systems and logistics in many sectors such 
as garbage collection, mail delivery, snow ploughing and task sequencing. The VRP is divided 
into many types. The important problems are VRP with Time Windows, VRP with Pick-Up 
and Delivery and Capacitated VRP. Recently many exact methods have been used to solve the 
VRP such as exact algorithms based on linear programming techniques and guided local 
search. Besides that, heuristic techniques have received wide interests in researchers’ effort to 
solve large scale VRPs. Among the recently applied heuristic techniques are genetic 
algorithm, evolution strategies and neural networks. 

Keywords:  Vehicle routing problem; VRP with time windows; VRP with pick-up and 
delivery; capacitated VRP; exact algorithms; heuristic methods 

 

ABSTRAK 

Masalah perjalanan kenderaan (MPK) merupakan suatu masalah yang terkenal dalam 
penyelidikan operasi yang para pelanggan dengan permintaan tertentu disalurkan 
keperluannya dari satu atau beberapa depot. Objektifnya adalah untuk mencari suatu set 
perjalanan yang memenuhi keperluan atau kekangan tertentu dengan jumlah kos yang 
minimum. MPK telah menarik perhatian ramai penyelidik dalam beberapa dekad yang lalu 
kerana peranan pentingannya dalam perancangan sistem pengedaran dan logistic dalam 
banyak sector seperti pengutipan sampah-sarap, penyerahan mel,  penenggalaan salji dan 
penjadualan kerja. MPK terbahagi kepada banyak jenis. Antara yang penting adalah MPK 
dengan Tetingkap Masa, MPK dengan Pengambilan dan Penghantaran, dan MPK dengan 
Kapasiti. Kebelakangan ini banyak kaedah tepat telah diguna untuk menyelesaikan MPK 
seperti kaedah berasaskan teknik pengaturcaraan linear dan carian setempat berpandu. Di 
samping itu kaedah heuristik pula telah menambat minat ramai penyelidik  untuk 
menyelesaikan masalah MPK berskala besar. Antara kaedah heuristik yang digunakan 
kebelakangan ini adalah al-Khwarizmi genetik, strategi evolusi dan rangkaian neural. 

Kata kunci: Masalah perjalanan kenderaan; MPK dengan tetingkap masa; MPK dengan  
                      pengambilan dan penghantaran; MPK dengan kapasiti; kaedah tepat; kaedah  
                      heuristik 

 

1. Introduction 

The Vehicle Routing Problem (VRP) can be defined as a problem of finding the optimal 
routes of delivery or collection from one or several depots to a number of cities or customers, 
while satisfying some constraints. Collection of household waste, gasoline delivery trucks, 
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goods distribution, snowplough and mail delivery are the most used applications of the VRP. 
The VRP plays a vital role in distribution and logistics. Huge research efforts have been 
devoted to studying the VRP since 1959 where Dantzig and Ramser have described the 
problem as a generalised problem of Travelling Salesman Problem (TPS). Thousands of 
papers have been written on several VRP variants such as Vehicle Routing Problem with 
Time Windows (VRPTW), Vehicle Routing Problem with Pick-Up and Delivery (VRPPD) 
and Capacitated Vehicle Routing Problem (CVRP). 

The VRP is an important combinatorial optimisation problem. Toth and Vigo have 
reported in 2002 (Maffioli 2003) that the use of computerised methods in distribution 
processes often results in savings ranging from 5% to 20% in transportation costs. Barker 
(2002) describe several case studies where the application of VRP algorithms has led to 
substantial cost savings. 

In this paper the definition of VRP is presented. The organisation of the paper is as 
follows: section 2 presents the Classical VRP, section 3 gives the definition of the CVRP, and 
section 4 is devoted to the presentation of the VRPTW, while section 5 is for the VRPPD 
presentation. Section 6 presents the models of the VRP and its variants. Algorithms used to 
solve the VRP and its variants are presented in section 7, and finally the last section gives the 
concluding remarks. 

2. Classical VRP 

In classical VRP, the customers are known in advance. Moreover, the driving time between 
the customers and the service times at each customer are used to be known (Madsen et al. 
1995). The classical VRP can be defined as follow (Laporte 1992): 
Let G = (V, A) be a graph where V = {1 . . . n} is a set of vertices representing cities with the 
depot located at vertex 1, and A is the set of arcs. With every arc (i, j) i ≠ j is associated a non-
negative distance matrix C = (cij). In some contexts, cij can be interpreted as a travel cost or as 
a travel time. When C is symmetrical, it is often convenient to replace A by a set E of 
undirected edges. In addition, assume there are m available vehicles based at the depot, where 
mL < m < mU. When mL = mU, m is said to be fixed. When mL = 1 and mU = n - 1, m is said to 
be free. When m is not fixed, it often makes sense to associate a fixed cost f on the use of a 
vehicle. The VRP consists of designing a set of least-cost vehicle routes in such a way that:  

(i) each city in V\{1} is visited exactly once by exactly one vehicle; 
(ii) all vehicle routes start and end at the depot; 
(iii) some side constraints are satisfied. 

The VRP has been reported as NP-Hard which pushed researchers to use heuristics, see 
Chiang and Russell (1996), Braysy et al. (2004), Nagy and Salhi (2007) and Choi and Tcha 
(2007). However, exact algorithms were also applied for VRP. There have been many 
contributions to the subject, including various extensions to the basic problem described 
above. Laporte (1992) gives a survey, and an extensive bibliography has been compiled by 
Laporte and Osman (1995).  

Taillard (1993) and Rochat and Taillard (1995) have applied Tabu Search (TS) to many 
VRP variants, where the best known results to benchmark VRPs were obtained. Various 
authors have reported similar results, obtained using TS, or Simulated Annealing (SA) (Baker 
& Ayechew 2003). However, it has been reported by Renaud et al. (1996) that such heuristics 
require considerable computing times and several parameter settings. 

Baker & Ayechew (2003) have reported a several applications of Genetic Algorithms 
(GAs) to VRPs since GAs have seen extensive use, most recently, amongst modern 
metaheuristics. Applications of GAs have also been reported for a variant of VRP (Potvin et 
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al. 1996b), for a multi-depot routing problem (Salhi et al. 1998), and a school bus routing 
problem (Thangiah & Nygard 1992).  

Potvin et al. (1996b) have used a hybrid approach to VRP using Neural Networks (NNs) 
and GAs. Baker & Ayechew (2003) reported that the GAs do not appear to have made a great 
impact so far on the basic VRP. They add that, a hybrid heuristic which incorporates 
neighbourhood search into a basic GA has given, for benchmark problems, some of the well-
known results obtained using TS and SA. 

Ant Colony (AC) optimisation is another recent approach to difficult combinatorial 
problems with a number of successful applications reported, including the VRP. With a 2-
optimal heuristic incorporated to improve individual routes produced by artificial ants, this 
approach also has given results which are only slightly inferior to those from TS (Bullnheimer 
et al. 1999). 

3. Capacitated Vehicle Routing Problem (CVRP) 

The Capacitated Vehicle Routing Problem (CVRP) can be described as follows:  
Let G = (V’, E) an undirected graph is given where V’ = {0, 1, . . . , n} is the set of n + 1  

vertices and E is the set of edges. Vertex 0 represents the depot and the vertex set V = V’\{0} 
corresponds to n customers. A nonnegative cost dij is associated with each edge {i, j} ∈ E. the 
qi units are supplied of from depot 0 (we assume q0 = 0). A set of m identical vehicles of 
capacity Q is stationed at depot 0 and must be used to supply the customers. A route is 
defined as a least cost simple cycle of graph G passing through depot 0 and such that the total 
demand of the vertices visited does not exceed the vehicle capacity. 

The practical importance of the CVRP provides the motivation for the effort involved in 
the development of heuristic algorithms (Baldacci et al. 2007). Survey covering exact 
algorithms was given by Laporte (1992). The chapters of Toth and Vigo (Maffioli 2003) have 
surveyed the most effective exact methods proposed in the literature up to 2002. A recent 
survey of the CVRP, covering both exact and heuristic algorithms, can be found in the chapter 
of Cordeau et al. (2001) in the book edited by Barnhart and Laporte (Baldacci et al. 2007). 
The most promising exact algorithms for the symmetric CVRP which have been published 
since then are due to Baldacci et al. (2004), Lysgaard et al. (2004) and Fukasawa et al. 
(2006). 

Baldacci et al. (2004) have described a branch-and-cut algorithm that is based on a two 
commodity network flow formulation of the CVRP. Lysgaard et al. (2004) have proposed a 
branch-and-cut algorithm that is an enhancement of the method proposed by Augerat et al. 
(1995). They used a variety of valid inequalities, including capacity, framed capacity, comb, 
partial multistar, hypotour and classical Gomory mixed integer cuts. Baldacci et al. (2007) 
have reported that the algorithms of Augerat et al. (1995), Baldacci et al. (2004) and of 
Lysgaard et al. (2004) were able to solve a 135-customer instance which is the largest non-
trivial CVRP instance solved to date. They added, the best exact method currently available 
for the CVRP has been proposed by Fukasawa et al. (2006). This method combines the 
branch-and-cut of Lysgaard et al. (2004) with the Set Partitioning (SP) approach. Besides the 
well-known capacity constraints, these authors also use framed capacity, strengthened comb, 
multistar, partialmultistar, generalised multistar and hypotour inequalities, all presented in 
Lysgaard et al. (2004). The columns of the SP correspond to the set of q-routes that contains 
the set of valid CVRP routes. Since the resulting formulation has an exponential number of 
both columns and rows, this leads to column and cut generation for computing the lower 
bound and to a branch-and-cut-and-price algorithm for solving the CVRP.  The computational 
results indicate that the new bounding procedure obtains lower bounds that are superior to 
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those given by previous methods. However, this procedure is time consuming as the LP-
relaxation of the master problem is usually highly degenerate and degeneracy implies 
alternative optimal dual solutions. Consequently, the generation of new columns and their 
associated variables may not change the value of the objective function of the master 
problem, the master problem may become large, and the overall method may become slow 
computationally. Moreover, in some CVRP instances, the increase in the lower bound with 
respect to the one achieved by the pure branch-and-cut method is very small and is not worth 
the computing time required by the additional SP approach. The exact algorithm presented by 
Fukasawa et al. (2006) decides at the root node, according to the best balance between 
running time and bound quality, either to use the branch-and-cut method of Lysgaard et al. 
(2004) or the new proposed branch-and-cut-and-price strategy. The computational results 
reported by Fukasawa et al. (2006) have shown that this algorithm is very consistent on 
solving instances from the literature with up to 135 customers. 

4. Vehicle Routing Problem with Time Windows (VRPTW) 

The VRPTW is a generalisation of the well-known VRP. It can be reviewed as a combined 
vehicle routing and scheduling problem which often arises in many real-world applications. It 
is to optimise the use of a fleet of vehicles that must make a number of stops to serve a set of 
customers, and to specify which customers should be served by each vehicle and in what 
order to minimise the cost, subject to vehicle capacity and service time restrictions (Ellabib et 
al. 2002). The problem involves assignment of vehicles to trips such that the assignment cost 
and the corresponding routing cost are minimal. 

The VRPTW can be defined as follows: Let G = (V, E) be a connected digraph consisting 
of a set of n + 1 nodes, each of which can be reached only within a specified time interval or 
time window, and a set E of arcs with non-negative weights representing travel distances and 
associated travel times. Let one of the nodes be designated as the depot. Each node i, except 
the depot, requests a service of size qi. 

The VRPTW has been the subject of intensive research efforts for both heuristic and exact 
optimisation approaches. Early surveys of solution techniques for the VRPTW can be found 
in Golden and Assad (1986), Desrochers et al. (1988), and Solomon and Desrosiers (Chiang 
& Russell 1996). The main focus in Desrosiers et al. (1995) and Cordeau et al. (2001) were 
exact solution techniques. Further details on these exact methods can be found in Larsen 
(1999) and Cook and Rich (1999). Because of the high complexity level of the VRPTW and 
its wide applicability to real-life situations, solution techniques capable of producing high-
quality solutions in limited time, i.e. heuristics, are of prime importance. 

Fleischmann (1990) and Taillard et al. (1996) have used heuristic for VRP without time 
windows. In Taillard et al.  (1996), different solutions to the classical vehicle routing problem 
have been generated using a TS heuristic. The routes obtained are then combined to produce 
workdays for the vehicles by solving a bin packing problem, an idea previously introduced in 
Fleischmann (1990). A recent work in Compbell and Savelsbergh (2004) has reported about 
insertion heuristics that can efficiently handle different types of constraints including time 
windows and multiple uses of vehicles. Compbell and Savelsbergh (2005) have introduced 
the home delivery problem, which is more closely related to real-world applications. The 
probability of occurrence and the revenue have been associated with each potential customer. 
When a new request occurs, a decision to accept or reject must be taken in real-time, and a 
time window for service is determined. Although vehicle routes are generated and used to 
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decide about the acceptance or rejection of a particular request, the ‘‘real’’ routes are 
executed. 

Current VRPTW heuristics can be categorised as follows: (i) construction heuristics,      
(ii) improvement heuristics and (iii) metaheuristics. Construction heuristics are sequential or 
parallel algorithms aiming at designing initial solutions to routing problems that can be 
improved upon by improvement heuristics or metaheuristics. Sequential algorithms build a 
route for each vehicle, one after another, using decision functions for the selection of the 
customer to be inserted in the route and the insertion position within the route. Parallel 
algorithms build the routes for all vehicles in parallel, using a pre-computed estimate of the 
number of routes. Different variants of construction heuristics for the VRPTW can be found 
in Solomon (1987), Potvin and Rousseau (1993), Bramel and Simchi-Levi (1996), and 
Dullaert and Braysy (2003). 

5. Vehicle Routing Problem with Pick-Up and Delivery (VRPPD) 

The problems that need to be solved in real-life situations are usually much more complicated 
than the classical VRP. One complication that arises in practice is that goods not only need to 
be brought from the depot to the customers, but also must be picked up at a number of 
customers and brought back to the depot. This problem is well known as VRP with Pick-Up 
and Delivery (VRPPD). In the literature, the VRPPD is also called VRP with Backhauls 
(VRPB) (Ropke & Pisinger 2006; Bianchessi & Righini 2007). The problem can be divided 
into two independent CVRPs (Ropke & Pisinger 2006); one for the delivery (linehaul) 
customers and one for the pickup (backhaul) customers, such that some vehicles would be 
designated to linehaul customers and others to backhaul customers. 

6. Mathematical Formulation of the VRP 

The formulation of the VRP can be presented as follow (Laporte 1992): 
Let xij be an integer variable which may take value {0, 1}, ∀{i, j} ∈ E\{{0, j} : j ∈ V} and 

value {0, 1, 2}, ∀{0, j} ∈ E, j∈V. Note that x0j = 2 when a route including the single customer 
j is selected in the solution. 

The VRP can be formulated as the following integer program: 
 

Minimise ∑
≠ j i

ijij   x d                                   (1) 

Subject to : 

∑ =
j

ijx 1    , ∀i ∈ V ,                                                (2) 

∑ =
i

ijx 1    , ∀j ∈ V ,                                                    (3) 

v(S) |S|    x
i

ij −≥∑ ,  {S : S ⊆  V\{1}, |S| ≥ 2},     (4) 

xij ∈ {0, 1}, ∀{i, j} ∈ E ; i ≠ j                          (5) 
 

In this formulation, (1), (2), (3) and (5) define a modified assignment problem (i.e. 
assignments on the main diagonal are prohibited). Constraints (4) are sub-tour elimination 
constraints: v(S) is an appropriate lower bound on the number of vehicles required to visit all 
vertices of S in the optimal solution. 
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6.1.  Mathematical Formulation of the VRPTW 

In the literature, the VRPTW can be stated mathematically as (Azi et al. 2007): 
We have a single vehicle of capacity Q delivering perishable goods from a depot to a set of 

customer nodes N = {1, 2, . . . , n} in a complete directed graph with arc set A. A distance dij 
and a travel time tij are associated with every arc (i, j) ∈ A. Each customer i ∈  N is 
characterised by a demand qi, a service or dwell time si and a time window [ai,bi], where ai is 
the earliest time to begin service and bi the latest time. Accordingly, the vehicle must wait if it 
arrives at customer i before time ai. 
 

Minimise ∑ ∑
∈ ∈Ke Aji

r
ijij xd
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Nj
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r
0

r
i t  t t+≤ , i ∈N, r∈K, (18) 
r
ijx  binary, (i,j) ∈A+, r∈K, (19) 
r
iy  binary, i ∈N,, r∈K, (20) 

where 
r
ijx is 1 if arc (i, j) ∈  A+ is in route r, 0 otherwise;  note that r

nx 1,0 + is 1 if route r is empty; 
r
iy is 1 if customer i is in route r, 0 otherwise; 

r
it  is the time of beginning of service at customer i in route r; 
r
0t  is the start time of route r; 
r

1nt +  is the end time of route r. 
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In this formulation, Equation (8) states that every customer should be visited exactly once. 
Equations (9), (10) and (11) are flow conservation constraints that describe the vehicle path. 
Equation (12) states that the total demand on a route should not exceed the vehicle capacity. 
Equations (13) to (16) ensure feasibility of the time schedule while Equation (17) defines the 
vehicle setup time as the sum of service times of all customers in a route, multiplied by 
parameter .β  Finally, Equation (18) corresponds to the deadline constraint for serving a 
customer. 

6.2.  Mathematical Formulation of the VRPPD 

The VRPPD can be formulated using the Generalised Assignment Procedure (GAP), which 
addresses the capacity constraints (Fisher & Jaikumar 1981). GAP is used to find the 
minimum cost assignment of v vehicles to n clusters such that each vehicle is assigned to 
exactly one cluster, subject to its available capacity. While applying GAP, each cluster is 
treated as a node. Since the number of clusters depends upon the number of vehicles, the 
problem will be relatively small and can be solved by the extended GAP in reasonable 
computing time. The extended GAP is similar to the heuristic of Fisher and Jaikumar (1981) 
for VRP. The problem can be formulated as follows: 
 

v = {1, 2, . . . , V} a set of vehicles 
n = {1, 2, . . . , N} be a set of clusters 
Cn is the cost of assigning a vehicle to cluster n; ∀ n ∈N 
un the maximum load that will have to be carried in cluster n 
tv remaining capacity of each partially loaded vehicle v 
 

1 if vehicle v assigned to cluster n 
Xvn =    

0 otherwise. 
 
The mathematical formulation of the GAP is: 
 

Minimise vn
Nn

n
Vv

XC∑∑
∈∈

  (21) 

 
Subject to  

1=∑
∈Vv

vnX     for n = 1, . . . , N,  (22) 

vvn
Nn

n tXu ≤∑
∈

   for v = 1, . . . , V, (23) 

vnX }1,0{∈   for n = 1, . . . , N   and  v = 1, . . . , V,  (24) 
 
The constraint (22) ensures that each cluster is assigned to exactly one vehicle while the 
constraint (23) ensures that the maximum load in a cluster does not exceed the capacity of the 
vehicle assigned to that cluster. 

6.3.  Mathematical Formulation of the CVRP 

The CVRP formulation can be presented as follow (Fukasawa et al. 2004): 
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Let H = (N,A), d, q and Q define a CVRP instance having vertex 0 as the depot and the 
remaining vertices in N as clients. 
 
 

Minimise ∑
Α∈),(= vu

exed
e

)(  (25) 

 
Subject to: 

∑
})({∈

 2=
υδe

e   x ∀, u ∈  N\{0},  (26) 

∑
})({∈

 2≥
0e

*
e   

δ

kx , (27) 

∑
)(∈

 2≥
S

Skx
δe

e )(  ∀,  S ∈  N\{0},  (28) 

1≤ex ,  })0({\ δAe∈∀ ,  (29) 

0
1

=−∑
=

el

p

l

e
l xq λ Ae∈∀, , (30) 

}2,1,0{∈ex ,   Ae∈∀ , (31) 
0≥lλ    ∀ l ∈{1, . . . , p}. (32) 

 
where : 
xe represents the number of times that edge e is traversed by a vehicle. This variable can 
assume value 2 if e is adjacent to the depot, corresponding to a route with a single client. lλ  
variables would ideally be associated with valid routes. This would imply having a strongly 
NP-hard column generation problem. lλ  variables are associated to the set of all q-routes 
satisfying the vehicle capacity constraint. A q-route is a walk that starts at the depot, traverses 
a sequence of clients with total demand at most Q, and returns to the depot. Clients may 
appear more than once in a q-route and its demand considered for each time. Each variable 

lλ  is therefore associated to one of the p possible q-routes. 
Degree constraints (26) states that each client vertex is served by exactly one vehicle. 

Constraint (27) requires that at least K* vehicles leave and return to the depot. This number, 
representing the minimum number of vehicles to service all clients, is calculated by solving a 
Bin-Packing Problem. The rounded capacity constraints stated in (28) use                            
k(S) = [ Quq

Su
/)(∑ ∈

] as a lower bound on the minimum number of vehicles necessary to 
service the clients in set S ⊂  N. Constraints (30) oblige x to be a linear combination of         
q-routes. The total constraints complete the formulation. 

7.  Algorithms for VRP 

Since the first VRP presented by Dantzig and Ramser in 1959 (Kallehauge 2006), many 
algorithms have been proposed for solving either the classical VRP or its variants. Exact 
algorithms were proposed as well as heuristics. In this paper we reviewed some algorithms. 

Branch and bound (Laporte & Nobert 1983; Fischetti et al. 1994; Lau et al. 1997; Toth & 
Vigo 2001), Branch and cut (Augerat et al. 1995; Bard et al. 2002; Lysgaard et al. 2004) 
Branch and cut and price (Fukasawa et al. 2004; 2006) were the most widely used exact 
algorithms for solving different variants of VRP. Meanwhile, many Heuristic algorithms 
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applied for the VRP. The nearest neighbour algorithm, insertion algorithms and tour 
improvement procedures were applied to CVRPs (Laporte 1992). In this section, we present 
some of both exact and heuristic algorithms used to solve the VRP and its variants. 

Baldacci et al. (2007) have presented an exact algorithm for the Capacitated Vehicle 
Routing Problem (CVRP) based on the set partitioning formulation with additional cats that 
correspond to capacity and clique inequalities. The exact algorithm has used a bounding 
procedure that found a near optimal dual solution of the LP-relaxation of the resulting 
mathematical formulation by combining three dual ascent heuristics. The first dual heuristic 
has been based on the q-routes relaxation of the set partitioning formulation of the CVRP. The 
second one combined Lagrangean relaxation, pricing and cut generation. While the third 
attempted to close the duality gap left by the first two procedures using a classical pricing and 
cut generation technique. The final dual solution is used to generate a reduced problem 
containing only the routes whose reduced costs were smaller than the gap between an upper 
bound and the lower bound achieved. 

Azi et al. (2007) have described an exact algorithm for solving a problem where the same 
vehicle performs several routes to serve a set of customers with time windows. A two phases 
method has been proposed based on an elementary shortest path algorithm with resource 
constraints. In the first phase, all non-dominated feasible routes have been generated, while in 
the second phase, some routes have been selected and sequenced to form the vehicle workday. 

A new exact algorithm for the VRP has been presented by Fukasawa et al. (2006). This 
method has been judged as the best exact method (Baldacci et al. 2007). The main idea is to 
combine the branch-and-cut approach with the q-routes approach (which is interpreted as 
Column Generation Algorithm, described blow, instead of the original Lagrangean relaxation) 
to derive superior lower bounds. Thus, the branch and cut and price algorithm. The idea of 
combining column and cut generation to improve lower bounds has rarely been used, since 
new dual variables corresponding to separated cuts may have the undesirable effect of 
changing the structure of the pricing sub-problem. However, if cuts are expressed in terms of 
variables from a suitable original formulation, they can be incorporated into the column 
generation process without disturbing the pricing. It refers to branch-and-bound procedures 
based on such formulations as robust branch-and-cut-and-price algorithms. The pricing sub-
problem of finding the q-routes yielding a variable with minimum reduced cost is NP-hard (it 
contains the capacitated shortest path problem), but can be solved in pseudo-polynomial O 
(n2Ck) time. Since the reduced costs of the arcs that are not leaving the depot are independent 
of k, it is possible to price q-routes for every capacity Ck by making a single call (with Ck = C) 
to this dynamic programming algorithm. 
 
Column Generation Algorithm  

Step 1. Generate a matrix T’ containing a small subset of promising columns from T . 
Step 2. Solve the model using the dual simplex algorithm replacing T by T’. If this LP is 
feasible, then STOP. The columns corresponding to the nonzero components of λ, the 
current solution, comprise the set D. 
Step 3. Otherwise, let r be the row in which the dual unboundedness condition was 
discovered, and let (a,−β) be the rth row of B-1. Solve the model with cost vector c defined 
by : 

 
    M   if xe = 0; 

ce  =   − M   if xe = 1; 
    ae 
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otherwise 
∀ e ∈ E, M is chosen large enough to ensure that the conditions are met. Let t be the 
incidence vector of the result. If at < β, then t is a column eligible to enter the basis. Add t 
to T’ and go to 1. Otherwise, impose the appropriate Farkas inequality. 
End of Algorithm 
 

Ropke and Pisinger (2006) have developed a unified model capable of handling most variants 
of VRP. The unified model can be seen as a Rich Pickup and Delivery Problem with Time 
Windows, which can be solved through an improved version of the large neighbourhood 
search heuristic. 

Fugenschuh (2006) has given a mixed-integer programming formulation for the 
VRPCTW. He has solved it using a new meta-heuristic that combines classical construction 
aspects with mixed-integer pre-processing techniques, and improving hit-and-run, a 
randomised search strategy from global optimisation. 

Cordeau et al. (2001) have introduced a simple Tabu Search procedure for VRPTW and 
two of its extensions, namely Periodic VRPTW (PVRPTW) and Multi depot VRPTW 
(MDVRPTW). An important feature of the approach is the possibility of exploring infeasible 
solutions during the search. 

Braysy and Gendreau (2002) have reported a classical two-phase mechanism proposed by 
De Backer and Furnon (1997) to solve VRP and VRPTW. The initial solution is first 
generated using the savings heuristic of Clarke and Wright (1964). Then, intra-route local 
searches (2-opt and Or-opt) and three inter-route operators guided with TS is used to refine 
the solution. 

Potvin and Bengio (1996) have proposed a GA called GENEROUS that directly applies 
genetic operators to solutions, thus avoiding coding issues. They used Solomon’s method 
(cheapest insertion heuristic) to create the initial population. The fitness values of the 
proposed approach has been based on the number of vehicles and the total route time of each 
solution. The selection process is stochastic and highly biased towards the best solutions. For 
this purpose, a linear ranking scheme has been used. The linear ranking scheme prevented 
individuals, with significantly better fitness values than average, from dominating the 
selection process. 

Baker (1985) has suggested deriving the probability of an individual being selected for 
mating from its rank within the population, instead of calculating it directly from the objective 
value. During the recombination phase, two parent solutions have been merged into a single 
one, to guaranty the feasibility of the new solution. Two types of crossover operators were 
used, namely a route-based and a sequence-based crossover. The route-based crossover 
replaced one route of parent solution P2 by a route of parent solution P1 whereas in the 
sequence-based crossover only a randomly defined end part in a route of parent-solution P1 
has been replaced by a set of customers served by a route of parent solution P2. A repair 
operator has been used to remove duplicates and insert missing customers into the solution. 
Mutation operators have been aimed to reducing the number of routes by trying to insert the 
customers of a randomly selected short route into other routes, either directly or by first 
removing some customer from the target route and inserting it into some other route to make 
room for the new customer. Finally, in order to locally optimise the solution, a mutation 
operator based on Or-opt exchanges (Or 1976) has been used. 

Berger et al. (2003) have presented an approach where two populations are evolved in 
parallel. The first population has been used to minimise the total distance and the second 
population has tried to minimise violations of time window constraints. The initial population 
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has been created using a random sequential insertion heuristic. The first of the two-
recombination operators has been the same as in Berger et al. (1998). The second has 
extended the first operator by also removing illegally routed customers and by using the 
insertion procedure proposed in Liu and Shen (1999) instead of Solomon’s (1987) heuristic in 
the reinsertion phase.  

In Braysy et al. (2004), the heuristic search methods that hybridise ideas of evolutionary 
computation with some other search techniques, such as Tabu Search (TS) or Simulated 
Annealing (SA) have also been used for solving VRPs. Most of the hybrid mothods presented 
have been use local search mutation instead of the random mutation operators. In the first 
phase, an initial solution has been created by either the cheapest insertion heuristic or the 
sectoring based genetic algorithm GIDEON. The second phase has applied one of the 
following search procedures that use the λ-interchange mechanism: a local search descent 
procedure, a SA algorithm or a hybrid SA and TS, where TS is combined with the SA-based 
acceptance criterion to decide which moves to accept from the candidate list. The main 
feature of the local search procedures is that infeasible solutions with penalties have been 
allowed if considered attractive (Braysy et al. 2004).  

Potvin et al. (1996a) have used the competitive Neural Network of Potvin and Robillard 
(Braysy et al. 2004) to select the seed customers for the modification of Solomon’s insertion 
heuristic (Potvin & Rousseau 1993) where several routes have been constructed 
simultaneously. The algorithm required a value for three parameters, α1, α2 and μ. The first 
two constants determine the importance of distance and travel time in the cost function for 
inserting each unrouted customer. The third parameter has been used to weigh the distance 
savings. A Genetic Algorithm is used to find values for these three constants. 

Créput et al. (2007) have presented an evolutionary algorithm embedding self-organizing 
maps (SOM) as operators to address the vehicle routing problem with time windows 
(VRPWT). The approach has extended and improved SOM based neural networks 
applications to the VRPWT. From the point of view of Neural Networks, the evolutionary 
framework introduced a level of supervision but it corresponded to a selection principle at a 
higher level with the aim to allow simplicity and flexibility and favour further parallel 
implantations. Operators have a similar structure based on closest point findings and simple 
moves performed in the Euclidean plane.  

Le Bouthillier and Crainic (2005) have presented a parallel co-operative methodology in 
which several agents communicate through a pool of feasible solutions. The agents consist of 
simple construction and local search algorithms and four different metaheuristic methods, 
namely two evolutionary algorithms and two Tabu Searches. The evolutionary algorithms 
have used a probabilistic mutation and the well-known edge recombination and order 
crossovers, while the TS procedures are adaptations of the TABUROUTE method of 
Gendreau et al. (1994) and unified TS of Cordeau et al. (2001). The fitness value of solutions 
is based on the number of vehicles, distance and waiting times. The pool is initialised with a 
set of four simple construction heuristics: least successor, double-ended nearest neighbour, 
multiple fragments (which adds sequentially the shortest arcs) and shortest arc hybridising 
(probabilistic version of the previous). The created initial and final solutions are post-
optimised with an ejection chain procedure and well-known 2-opt, 3-opt and Or-opt 
improvement heuristics. 

8.  Conclusion 

The Vehicle Routing Problem lies at the heart of distribution management. There exists 
several variants of the VRP and a wide variety of exact and approximate algorithms have 
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been proposed for solving them. Exact algorithms can only solve relatively small problems. 
The branch-and-cut-and-price algorithm used by Fukasawa et al. (2006) has brought a new 
idea by combining the classical branch-and-cut  and pricing methods. As for the heuristics, a 
number of approximate algorithms have proved very satisfactory for large problems. From the 
simple basic heuristics such as tabu search and simulated annealing, to the hybrid multi-
phases ones, many researcher still trying to find the best heuristic which give a very good 
approximate solution in a proper running time. Nowadays, evolutionary algorithms like 
Genetic Algorithm, Ant Colony and Neural Network are the main interests of many 
researchers. In this paper, the VRP and its variants, and the different models of the VRP have 
been reviewed. Many works on the VRP and its variants have also been reported. 
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