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ABSTRACT

Nano-zirconia is commonly used in dentistry as a framework material over which feldspathic porcelain is layered to 
form an aesthetic and strong bi-layered restoration. Sufficient bonding strength between zirconia frameworks and 
veneering porcelains is crucial for the longevity of zirconia-based dental restorations. This study aims to determine the 
shear bond strength (SBS) of a colloidal-processed slip-casted novel nano-zirconia (NZ) and veneering ceramics, namely 
Cercon® Ceram Kiss (CK), VITA VM®9 (VM9), and IPS e.max® Ceram (e. max). Twenty-four cylindrical samples of each 
NZ and CZ were prepared and veneered with the veneering ceramics. Six groups of core–veneer assemblies, which are 
denoted as NZ-CK, NZ-VM9, NZ-e. max, CZ-CK, CZ-VM9, and CZ-e. max, were prepared for shear bond testing using the 
universal testing machine. Results of the shear test showed that NZ-VM9 recorded the highest shear strength value of 
149.48 MPa, whereas NZ e. max showed the lowest SBS value of 71.56 MPa. A similar trend was also observed in the 
CZ groups, with the highest mean bonding strength (123.38 MPa) when bonded to VM9 (CZ-VM9), while the lowest mean 
value (44.07 MPa) was registered by the CZ-e. max groups. Scanning electron micrographs revealed that groups with 
high core–veneer bond strength values mostly displayed cohesive failure. By contrast, a mixed-mode of adhesive and 
cohesive failures was observed in the low SBS groups. The NZ showed similar performance based on the bonding 
property analysis. Therefore, NZ could potentially be used as an alternative to CZ.
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INTRODUCTION

The use of zirconia-based materials has become popular 
over recent years due to their excellent biocompatibility, 
exceptional mechanical properties, and acceptable optical 
qualities (Y. Zhang & Lawn 2018). Using the computer-
aided design and manufacturing (CAD/CAM) technology, 
zirconia is usually milled into a framework, which is then 
veneered with glass ceramics to achieve uniquely strong 
and aesthetic bi-layered restorations (De Freitas et al. 2020; 
Kern et al. 2019; Shahmiri et al. 2018; Tanaka et al. 2019). 
Evidence from the literature suggests good clinical 
outcomes of zirconia-supported restorations. For example, 
in a 12-year retrospective clinical study, (Miura et al. 2018) 
estimated the survival of approximately 98.5% dental 
zirconia crowns at five years. However, the success rates 

drastically dropped to approximately 62.1% after 10 years, 
with chipping of veneering porcelain as the most common 
complication reported. Similar findings have also been 
observed by several other authors (De Lima et al. 2015; 
Pjetursson et al. 2018; Shi et al. 2017; Triwatana et al. 
2012). Premature fracture of veneer laminates occurs as 
frequently as 25% over three years (Ioannidis & Bindl 
2016) and as early as six months post-cementation 
(Tsanova et al. 2018). Compared with metal–ceramic 
restorations, the occurrence of porcelain chipping was three 
times more frequent in veneered zirconia restorations 
(Sailer et al. 2018). Therefore, the core–veneer interface 
is the weakest link in the zirconia-supported all-ceramic 
systems. Although this technical complication can be 
temporarily remedied by a resin repair, replacement of the 
entire restoration is often indicated as a long-term solution. 
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The latter procedure requires tedious removal of the entire 
prosthesis with potential iatrogenic damage to the natural 
tooth structure as well as financial implications to the 
patient. (Ioannidis & Bindl, 2016). 

Investigators believe that the cause of veneering 
porcelain chipping or delamination is multifactorial. 
Factors, such as inherent mechanical strength of porcelain 
veneers and zirconia core (Ghaffari et al. 2019; Vidotti et 
al. 2017), mismatch of thermal properties of ceramics 
(Jikihara et al. 2019; Mainjot et al. 2015), geometric 
dimension of the zirconia framework or veneers (Alothman 
& Bamasoud 2018; Yu Zhang & Kelly 2017), manufacturing 
parameters of the restorations (Methani et al. 2020), 
including surface treatments (Ozer et al. 2017), were found 
to affect the core–veneer bond strength. Nevertheless, the 
consensus in the literature is that a zirconia core material 
must form a strong bond with its porcelain laminates to 
withstand functional stresses during mastication.

One of the primary factors that have been identified 
to influence the bonding capability between the core and 
veneering layers is the intrinsic properties of the zirconia 
core. Zirconias with high susceptibility to the undesirable 
auto-catalytic transformation during porcelain firing 
possess low bond strength to their veneering ceramics 
(Tholey et al. 2011). Zirconia with excellent resistance to 
low-temperature degradation can be developed from 
zirconia blocks with almost 99.9% homogenous nano-
zirconia particles (Amat et al. 2014). The tendency of 
nanoparticle agglomeration is prevented by using a special 
controlled colloidal processing (Aboras et al. 2016; Amat 
et al. 2014, 2018b; Chin et al. 2018). The high homogeneity 
of nanoparticles enables slip casting of zirconia powder 
into the required shapes without expensive equipment (Yu 
et al. 2011). Preliminary findings revealed that the slip-
casted colloidal-processed nano-zirconia displayed 
comparable mechanical and aesthetic qualities to the 
commercial zirconias (Aboras et al. 2019; Amat et al. 
2018a; Chuin Hao et al. 2016; Daud et al. 2017; Theng et 
al. 2015). Nonetheless, information on whether zirconia 
with good aging resistance can withstand porcelain 
chipping is limited. Thus, this study aimed to investigate 
the bond strength of slip-casted novel nano-zirconia with 
different commercially available veneering ceramics using 
shear bond test and observe the mode of bonding failure.

METHODOLOGY

The present study utilized two core materials, namely a 
novel nano-zirconia (NZ) and a commercial zirconia 
Cercon® (CZ), along with three veneering ceramics of 
Cercon® Ceram Kiss (CK), VITA VM®9 (VM9), and IPS 

e.max® Ceram (e. max). The chemical composition of 
each material is shown in TABLE 1.

MEASUREMENT OF CORE–VENEER SHEAR BOND 
STRENGTH

Preparation of Zirconia Core Materials

Twenty-four cylindrical-shaped samples of 10 mm 
diameter and 3 mm thickness were fabricated from each 
zirconia used in this study. A colloidal processing technique 
using special dispersing parameters (Amat et al. 2018b) 
was employed for the novel nano-zirconia (NZ). Nano-
zirconia powder was mixed with distilled water at 1:1.25 
weight ratio to produce the nano-zirconia slip. 
Polyethyleneimine was added at 0.5 wt% to prevent the 
agglomeration of nanoparticles. pH adjustment was 
performed by titrating the hydrochloric solution 
(FiveEasy™ F20 pH, Mettler Toledo, Switzerland). The 
suspension was stirred on a magnetic vibrator for 45 min 
and then transferred to an ultrasonic chamber (Ultrasonik 
28X, NDI, California USA) for vibration at 50 cycles per 
second for 15 min. Using the slip-casting approach, the 
dispersed zirconia slurry was poured into a porous 
cylindrical plaster of Paris mold and left for three days for 
complete hardening. The “green body” of zirconia samples 
was then fired at 150oC for 2 h (Chin et al. 2018).

CZ samples were prepared by milling Cercon® 
zirconia blocks (Cer, Brain Expert, DeguDent GmbH, 
Germany). The pre-sintered blanks were sintered using a 
furnace (Cer, Heat Plus, DeguDent GmbH, Germany) at 
1350 °C for 90 min according to the manufacturer’s 
recommendation (Daud et al. 2017).

Preparation of Veneering Ceramics

Sintered core materials discs (NZ and CZ) were sandblasted 
with 50 µm Al2O3 at 0.2 MPa at a distance of 1.0 cm for 
20 s and then cleaned with acetone for 10 min in an 
ultrasonic bath. A piece of plastic tape was placed on each 
disc before the positioning of the veneering ceramics to 
define the bonding area. The powder and liquid veneering 
ceramics were mixed and packed onto the defined bonding 
area of the core discs by using a metal split mold. Packing 
was conducted incrementally, and manual vibration was 
performed to remove entrapped air bubbles. Residual water 
particles were removed through blotting with thin facial 
tissues before sintering in a furnace. All core samples 
received a layer of veneering ceramic and sintered to obtain 
3 mm thick veneers as shown in  FIGURE 1 All zirconia–
veneering ceramic assemblies were steam- and 
ultrasonically-cleaned for 30 min and then stored for 24 h 
at 37°C (Saito et al. 2010). 
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Combinations of zirconia–veneering ceramic samples 
were divided into the following six groups: NZ-CK, NZ-
VM9, NZ-e. max, CZ-CK, CZ -VM9, and CZ-e. max. The 
universal testing machine (AGS-1000D, Shimadzu® Co., 
Japan) was used to perform the shear bond strength (SBS) 
test with a 5 kN load cell as shown in FIGURE 2. All 
samples were loaded to fracture at the interface at a 
crosshead speed of 0.5 mm/min. The bonding strength for 
each sample was calculated and recorded in megapascals 
(MPa) using the stress formula [load (N)/area (mm2)]. 
Calibration was performed before each procedure, and the 
shear blade was set to zero position. 

The debonded sample surfaces of cores and veneers 
were sputter-coated with an 8 µm layer of platinum 
(Quorum, Q150R S, UK) and examined by scanning 
electron microscope (FESEM, ZEISS, SUPRA 55VP, German) 
with secondary electron imaging and acceleration voltage 
of 10 kV. The photographs were taken at a magnification 
of x30 at the center of the debonded area of core–veneer 
assemblies to determine the bonding failure mode 
(adhesive, cohesive, and mixed adhesive/cohesive) and 
observe the fractured surface. 

The collected data were analyzed with Statistical 
Package for Social Science Software version 24 (IBM, 
USA). Statistically significant differences were determined 
among and between groups by using one-way Analysis of 
Variance (ANOVA) and post-hoc test (Tukey’s test). The 
level of significance for all statistical testing was pre-
determined at a p-value of 0.05 or less.

RESULTS AND DISCUSSION

Table 2 shows the mean SBS values of six core–veneer 
groups. The SBS of six core–veneer assemblies, namely 
NZ-CK, NZ-VM9, NZ-e. max, CZ-CK, CZ-VM9, and 
CZ-e. max, were evaluated by using the universal testing 
machine. One-way ANOVA test with post-hoc Tukey’s test 
was used to determine the significant differences between 
the six core–veneer groups. Statistically significant 
differences were observed when different veneers were 
used (p < 0.05), while no significant distinction was found 
between the zirconia cores. CK and VM9 veneering 
ceramics achieved the highest SBS values when layered 
on novel and commercial zirconia cores. Consistent with 
other studies (Domingues et al. 2013; Juntavee & 
Dangsuwan 2018; Mosharraf et al. 2012; Saito et al. 2010), 
the bonding capabilities of CK to Cercon® are expected 
because CK belongs to the same manufacturer and 
specifically intended for use with Cercon®. The similarity 
in the chemical composition between VM9 and CK may 
explain the likeness in their SBS values (Juntavee & 

Dangsuwan, 2018). Meanwhile, the SBS of both zirconia 
cores veneered with e. max was comparatively lower than 
the other veneering porcelains tested. The result may be 
due to the design of IPS e.max®  Ceram for use with 
lithium disilicate (Elrashid et al. 2019). To date, no study 
has specifically examined the SBS of slip-casted zirconia; 
thus, the findings in this study are only preliminary. 
Therefore, further in vitro and in vivo studies are necessary 
to confirm the aforementioned results.

In the literature, veneering methods and different 
veneer materials may show variable SBS values. Press-one 
and CAD-CAM veneering methods have been shown to 
possess better bonding properties compared to the 
traditional powder-liquid layering technique (Çakırbay 
Tanış et al. 2020; Moses et al. 2020). TABLE 3 shows some 
literature studies on SBS. However, in the current study, 
the zirconia cores were veneered using only one technique; 
the conventional method. Therefore, it could be speculated 
that it is the difference in the veneering materials that 
influence the present results.

The difference in the bonding performances of the 
veneering ceramics to zirconia may be attributed to the 
variation in the coefficient of thermal expansion (CTE) 
values between the bilayered materials (Fischer et al. 2007; 
Komine et al. 2012). The core and layering materials will 
expand and shrink with thermal changes during the firing 
and cooling of porcelain laminates. Ideally, a positive CTE 
deviation (CTE of core materials higher than overlaying 
ceramics) is desirable to produce compressive stress on 
the veneers at room temperature (De Kler et al. 2007; 
Coffey et al. 1988; Fischer et al. 2009). Nevertheless, 
additional studies are required to corroborate the cause–
effect of CTE on the SBS values obtained in this study.

The fracture interfaces were observed under the 
scanning electron microscope (FESEM, Zeiss, Supra 55vp, 
German) with secondary electron imaging and acceleration 
voltage of 10 kV to gain an effective explanation of the 
mechanism leading to ceramic/veneer bonding failure. 
Three forms of fracture patterns (cohesive, adhesive, or 
mixed mode) were generally observed after the shear 
testing as shown in Figure 3 and Figure 4. Cohesive failure 
occurs when the fractures appear predominantly within the 
ceramics, whereas the disintegration happens at the veneer 
and zirconia interface considering adhesive failure (Shilpa 
et al. 2019). The combinations of core and veneer with 
superior SBS displayed cohesive failures in the veneering 
porcelain, whereas mixed cohesive and adhesive failures 
occurred in inferior SBS groups. These findings correspond 
to observations published by Daud et al. (2017) (Daud et 
al. 2017). 

The cohesive failure occurred in groups of CZ-CK and 
CZ-VM9, in which the majority area of core surfaces was 
covered by thick layers of residual veneering ceramics 
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(Figure 3 (a) and (e)), and pores were observed within the 
veneers (FIGURE 3 (b) and (f)). The voids may be caused 
by contamination and the inclusion of bubbles during the 
manual layering of the veneering ceramics. Internal stresses 
within the laminates may be developed in the course of 
veneer sintering due to differences in thermal shrinkages 
between the core and veneering material (Holden et al. 
2009). Thus, these internal impurities propagate the crack 
that may be formed from residual firing stresses, leading 
to a cohesive failure (Abdulmajeed et al. 2017; Guo et al. 
2018). The group of CZ-e. max with the lowest mean shear 
strength value produced an adhesive bond failure as shown 
in Figure 3 (c). The veneer was separated from the core, 
demonstrating irregularities on the entire surface of the 
veneer after the shear test as shown in Figure 3 (d). 

Meanwhile, in the NZ groups, the combination of NZ-e. 
max with the lowest mean shear strength value (71.56 MPa) 
produced a mixed-mode (adhesive/cohesive) bond failure, 
as depicted in Figure 4 (c). Notably, unlike Cercon®, some 
areas of adhesion were formed between the NZ and e. max. 
However, there were corner fractures where tension probably 
accumulates, indicating the initiation of adhesive failure. 
Similar to the CZ, NZ veneered to VM9 and CK with high 
mean shear strength values also exhibited cohesive bond 
failure. Adhesive failure with generalized residual veneers 
observed at the periphery of the shearing zone in Figure 4 
(a), (c), and (e) was absent. The micrograph results suggest 
that the novel nano-zirconia achieved good bonding with all 
veneer groups. However, further evaluation is needed to 
determine whether these bonding capabilities were afforded 
by high resistance to phase transformation characteristics of 
the NZ. 

CONCLUSION

Within the limitations of this study, the novel nano-zirconia 
achieved similar bonding capabilities to that of its 
commercial counterpart, when veneered with the tested 
ceramics. Cohesive failure was observed in the groups with 
high bond strength value, while the adhesive and mixed 
mode failure appeared in groups with lower bond strength 
value. Based on these results, it can be concluded that the 
slip casted-colloidal processed novel nano-zirconia appears 
compatible with the available veneering ceramics designed 
for use with zirconia.
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