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ABSTRACT

The harvesting job of cutting and collecting fruit bunches in oil palm plantations remains the most labour-intensive job 
in the oil palm processing cycle. The introduction of an autonomous vehicle to assist workers in the harvesting job 
promises better productivity. Such a driverless vehicle requires a software module known as simultaneous localisation 
and mapping (SLAM) to guide the vehicle to navigate autonomously. This work proposes a visual SLAM system with a 
distinctive capability of detecting and localising oil palm loose fresh fruit bunches (FFB) on the ground using intelligent 
image processing.  This vehicle is equipped with a depth camera capable of capturing RGB images and depth images 
concurrently. Two VGG16-based convolutional neural network (CNN) models are trained using the acquired RGB and 
depth images dataset of loose FFBs on the ground. The output from the combinatorial FFB detection model is then fed 
into a visual SLAM system called RTAB-Map. By combining the FFB detection model and the visual SLAM system, the 
vehicle can plan for autonomous navigation safely, perform bunch pick-up tasks, and avoid collision with fruit bunches 
on the ground. The experiment results show that the proposed CNN model can detect and localise loose FFBs with 
significant accuracy in various lighting conditions.

Keywords:  Oil palm fruit bunch detection; deep learning model; convolutional neural network; visual SLAM; depth 
camera object detection.

INTRODUCTION

Palm oil is a sustainable crop and a major contributor to 
global vegetable oil demand. It can yield usable oil at least 
six times more efficiently than other major crops like 
soybean, sunflower, and canola (Kojima et al. 2016; 
Murphy 2014). 

The harvesting job of oil palm fresh fruit bunches 
(FFB) can be considered a challenging and high-risk job. 
This is due to the nature of the labour that requires the cut 
and collection of heavy bunches with approximate weights 
between 10 to 24 kg per bunch (Harun and Noor 2002).  
Due to regular lifting, poor body postures, and repetitive 
tasks in the daily work, the burden on the worker would 
cause an ergonomic hazard. This ergonomic hazard harms 
the labourer’s musculoskeletal system and brings a long-
term effect on their health condition (Nawi et al. 2016).

To improve the process of oil palm harvesting, 
mechanised tools are required to improve productivity 
(Aljawadi et al. 2018, Khalid et al. 2021). One of the 
modern tools is an autonomous plantation vehicle 
(Pedersen et al. 2016). This driverless vehicle can be 
utilised in various ways, including carrying cutting tools, 
collecting fruit bunches, cleaning up plantation areas, and 
fertilising trees. The vehicle requires a software module 
known as simultaneous localisation and mapping (SLAM) 
to guide the vehicle to navigate autonomously. Apart from 
the SLAM system, an important sub-module module that 
can detect loose FFBs on the ground is required. The 
detection module has at least two functions, 1) to provide 
detection output to the vehicle’s collision avoidance 
software to prevent collision with the bunches, 2) to detect 
the location of the bunches so that mechanised actions such 
as collecting the bunches can be done.

This work proposes the application of a depth camera, 
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sometimes known as RGB-D camera, installed on such 
vehicle and convolutional neural network (CNN) models 
to detect loose FFBs on the ground. A depth camera is a 
type of camera that can capture RGB format images and 
depth images concurrently CNN models are artificial 
intelligence-based models that can be trained with a 
machine learning approach known as deep learning.

Subsequently, the fruit bunch detection module will 
be combined with a visual SLAM system called RTAB-Map 
to produce an occupancy grid map that can be used by the 
vehicle to plan its autonomous navigation (Labbé and 
Michaud 2016; Silva et al. 2018). The visual SLAM system 
refers to the process of mapping an unknown environment 
around the sensor and simultaneously determining the 
location of the vehicle and the orientation of the sensor in 
the map (Das 2018).

The contribution of this work is two-fold. First, unlike 
any conventional object detection, the proposed loose FFB 
detection model was developed based on RGB-D images 
which are the combination of RGB images and depth 
images. The proposed model utilises the combination of 
visual features provided by RGB images and the geometry 
feature provided by depth images to ensure accurate 
detection of loose FFBs. The fusion of both features has 
shown better image recognition in various outdoor light 
levels, especially in agriculture applications (Cruz et al. 
2012, Gai et al. 2020). 

Second, a deep learning algorithm with the fusion of 
convolutional neural network (CNN) models implementing 
transfer learning of VGG16 network (Simonyan and 
Zisserman 2014) for an RGB image model and a depth 
image model were utilised (Zhao et al. 2019). The main 
advantage of the CNN model is the automation of detecting 
important features while learning without human 
intervention.

Different harvesting technologies have been reported 
in the literature (Sowat et al. 2018, Yusoff et al. 2019, 
Khalid et al. 2021), including telescopic mechanical arms, 
climbing robots, suction mechanism collectors, and roller 
picker robots. The proposed loose FFB detection is possible 
to be integrated into such machines to provide advancement 
in the assisted semi-automatic or fully automatic control 
mechanism.   

This paper is organised as follows. The next section 
discusses the methods used to develop the oil palm fruit 
bunch detection module combined with RTAB-Map based 
visual SLAM. The following section presents the results 
and discusses the findings, including the detection models’ 
training phase based on real bunch images and the testing 
of the combined detection and SLAM modules based on a 
virtual simulation setup. Finally, the main findings from 
this work are summarised in the Conclusion section.

METHODOLOGY

This section is divided into three sub-sections. The first 
sub-section describes the development of the oil palm fruit 
bunch detection model. Second, the localisation function 
of fruit bunch on an image is presented. The third sub-
section focuses on the combinatorial of the fruit bunch 
detection model with the RTAB-Map visual SLAM system.

OIL PALM FRUIT BUNCH DETECTION MODEL

In this work, the model of oil palm fruit bunch detection 
is proposed by using CNN architecture based on a custom 
network in which the structure of the network is inspired 
from the VGG-16 architecture involving convolution, 
pooling, flatten, dropout, and dense layers. The 
customisation is done on the full-connected layers for 
classification purposes. To build the model, an open-source 
machine learning platform known as TensorFlow and Keras 
was used. TensorFlow is a back-end framework that is 
responsible for performing deep learning calculations. 
Keras is a front-end library written in Python that provides 
a user-friendly implementation of deep learning. Figure 1 
shows the flowchart of the processes taken to build CNN 
models for loose FFBs detection.

FIGURE 1. CNN models development processes

First, RGB image and depth image samples of a real 
oil palm loose FFBs were taken by using a depth camera 
called Kinect Xbox 360. The dimension of both image 
types is 640 x 480 pixels. The image format is in Joint 
Photography Experts Group (JPG). A total of 394 RGB 
images and 314 depth images had been captured as raw 
image data, taken in bright and dark ambient lights. For 
RGB images, 222 images contain loose FFBs while the 
other 172 images contain no fruit bunches. Meanwhile, 
there are 172 loose FFBs images and 142 non-loose FFBs 
images for the depth images category. 

After the data acquisition step, an image pre-
processing step is required. The acquired data were split 
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into training, validation, and testing groups. For the RGB 
images, the dataset was divided into 245, 105, and 44 
images for training, validation, and testing group, 
respectively. Meanwhile, for the depth images, the dataset 
was separated into 189, 81, and 44 images for the training, 
validation, and testing group, respectively. Note that, in 
the testing group, each RGB image has its corresponding 
depth image. Figure 2 shows samples of pair-images of 
loose FFBs in different levels of light. 

Another image pre-processing step is image resizing. 
The 640 x 480 pixels (width x height) original images were 
changed to 224 x 224 pixels to fit with the VGG16 network 
structure. The RGB images consist of three (3) colour 
channels, while the depth images consist of only one (1) 
colour channel. Again, the depth images were transformed 
into three (3) channel data to fit with the VGG16 network 
structure. Furthermore, an image generator was used to 
generate more training data by image zooming, rotating, 
and brightness leveling processes.

Once the dataset is ready, a training and validation 
step is performed. This core process determines the 
configuration of CNN models by deep learning using the 
pre-processed training dataset. The CNN models used in 
this work have the same feature extraction layers as in the 
VGG16 network structure with thirteen (13) convolutional 
layers and five (5) pooling layers. For the classification 
layers, the proposed model uses one (1) flatten layer, one 
(1) dropout layer, and (2) dense layer. Figure 3 and Table 
1 show the proposed CNN model structure and the detailed 
configuration of each layer used in both the RGB model 
and the depth model, respectively. 

FIGURE 2. Loose FFBs in different levels of light

The chosen optimiser for the training of the model is 
“Adam”, a gradient-based optimisation technique. The 
selected loss function and the performance metric 
parameters are “binary cross entropy” and “accuracy”, 
respectively. 

The sigmoid activation function is chosen to model 
the binary classifier. Binary classification is the task of 
classifying the elements of a given set into two groups 
based on the classification rule. In this work, there are two 
classification groups, loose FFBs and non-FFBs. The 
justification to using the binary classification is to optimise 
features learning capability whereby the inputs from two 
different classes can maximise inter-class difference and 
minimise intra-class variance. 

FIGURE 3. The proposed CNN model structure based on 
VGG16 network for the RGB image detection model and depth 

image detection model

With the above configuration, the final configuration 
of the trained CNN models is chosen from models with the 
lowest validation loss. The abovementioned training-and-
validation step is applicable for both the RGB image 
detection model and the depth image detection model.

After observing acceptable training loss and accuracy 
performance indices, verification is done using testing data 
in the final testing step. The testing process involves the 
calculation of true positive rate (TPR) and false positive 
rate (FPR) from a confusion matrix that describes the 
performance of a classifier (Piegorsch 2020). The values 
of TPR and FPR are calculated by using (1) and (2).
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(1)

(2)
where TP is the number of true positive cases, TN is the 
number of true negative cases, FP is the number of false 
positive cases and FN is the number of false negative cases.

The performance of the RGB image CNN model and 
the depth image CNN model was tested in various bunch 
positions and light conditions, to evaluate the importance 
of using the combination of RGB image and depth image 
models.

TABLE 1. The detailed configuration of each layer in the 
proposed CNN model. Parameters of convolution layers are 

stated in the form: (number of filters, filter size, stride, padding, 
and activation function). Parameters of pooling layers are 
stated in the form: (pooling type, pooling size, and stride).

Layer Parameter Output
Convolution 
1 & 2

64, 3x3, 1, Same, 
ReLU

Feature map 
224x224x64

Pooling 1 Max-pooling, 2x2, 2 Feature map
112x112x64

Convolution 
3 & 4

128, 3x3, 1, Same, 
ReLU

Feature map
112x112x128

Pooling 2 Max-pooling, 2x2, 2 Feature map
56x56x128

Convolution 
5, 6, 7

256, 3x3, 1, Same, 
ReLU

Feature map
56x56x256

Pooling 3 Max-pooling, 2x2, 2 Feature map
28x28x256

Convolution 8, 
9, 10

512, 3x3, 1, Same, 
ReLU

Feature map
28x28x512

Pooling 4 Max-pooling, 2x2, 2 Feature map
14x14x512

Convolution 
11, 12, 13

512, 3x3, 1, Same, 
ReLU

Feature map
14x14x512

Pooling 5 Max-pooling, 2x2, 2 Feature map
7x7x512

Flatten - Vector
26,088

Dropout Drop rate: 0.3 Vector
26,088

Dense 1 Hidden nodes: 512 
Activation: ReLU

Vector
512

Dense 2 Output node: 1 
Activation: Sigmoid

Binary class
0: no FFB
1: has FFB

Note that both the RGB and depth image CNN models 
must be run in parallel to predict the presence of a fruit bunch. 
The detection output of both models was combined using the 
‘OR’ gate concept. If one of the models detected a loose FFB, 
then the system will report that a fruit bunch exists.

OIL PALM FRUIT BUNCH LOCALISATION

The oil palm fruit bunch localisation in an image is 
accomplished based on the heatmap concept. Heatmap is 
a class activation map visualisation technique that shows 
the importance of each pixel for an input image relative to 
its output class in a two-dimensional grid diagram. The 
higher the value of the pixel, the more important the pixel 
is, relative to its output class. It is generated from the feature 
map of the final convolution layer in the CNN models. 
Figure 4 shows an example of the heatmap of the oil palm 
bunch RGB and depth images.

FIGURE 4. Examples of fruit bunch RGB and depth images 
with their corresponding heatmaps

Based on the generated heatmap, the distance between 
the camera and the oil palm bunch can be calculated. As 
the data originated from depth images, every pixel value 
contains the distance information between the object and 
the camera. Therefore, after the bunch is detected, the pixel 
in the heatmap which contains the highest value is selected 
as the centre location of the oil palm fruit bunch. However, 
the pixel position needs to be converted to an approximate 
position in the depth image by using (3) and (4) since the 
size of the heatmap is only 32 x 32 pixels. 

(1)

(2)

After that, the pixel position can be translated into the 
position of the oil palm fruit bunch in an occupancy grid 
map of SLAM by using (5), (6) and (7) in relation to the 
location of the camera.

(1)

(2)

(3)
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where σf is the horizontal field of view (FoV) angle 
of the camera, which is 57° (green line), and σ is the angle 
between the camera and the fruit bunch. ox and oy are the 
coordinates of the oil palm bunch on the x-axis and y-axis, 
respectively. cx and cy are the location of the camera. The 
location of the camera is obtained from the odometry data 
in RTAB-Map. D is the distance between the oil palm bunch 
and the camera. θ is the orientation of the vehicle. The 
illustration of the calculation is shown in Figure 5.

FIGURE 5. The illustration of oil palm fruit bunch location 
relative to the camera and vehicle position in an occupancy grid 

map of a SLAM

SIMULATION PLATFORM FOR MODELS VALIDATION

Gazebo simulator (Koenig and Howard 2004) was used to 
build a virtual world to test the developed oil palm fruit 
bunch detection and localisation functions. A virtual world 
with four compartments, as in Figure 6, was created. Each 
compartment has a different level of detection and 
localisation challenges in terms of the number of FFBs as 
well as the background of the environment. 

To imitate the oil palm fruit bunch, a three-dimensional 
oil palm fruit bunch model was built by using Blender 
software. The simulator was then integrated with an open-
source Robot Operating System (ROS), a robotic framework 
with a collection of tools, libraries, and conventions for 
various robotic functions and tasks. The RTAB-Map package 
in ROS was integrated with the simulated virtual world to 
provide SLAM module.

Turtlebot 2 model was selected as the virtual autonomous 
vehicle in the simulation for running all the developed 
programs. Kinect Xbox 360 camera is a part of the Turtlebot 
2 system that provided the RGB-D images. 

In the virtual world, Turtlebot 2 was wandered from 
one room to another. Simultaneously, the RTAB-Map node 
collected RGB-D images from the robot’s camera, performed 
the three-dimensional mapping task, and updated a two-
dimensional occupancy grid map. 

RESULTS AND DISCUSSION

This section presents the results obtained from the CNN 
models development processes, specifically on the training 
and validation step as well as the testing step. After that, 
the results on applying the fruit bunch detection and 
localisation functions in the virtual world are discussed.

FIGURE 6. The virtual world with Turtlebot 2 in Gazebo

PERFORMANCE OF THE TRAINING AND 
VALIDATION STEP FOR THE FRUIT BUNCH 

DETECTION MODEL

A reliable CNN model should deliver high accuracy and 
low loss detection performance. Accuracy describes the 
percentage of the test data that is correctly classified while 
loss is the sum of differences between the predicted 
probabilities of the test data with 0 (non-oil palm bunches) 
or 1 (oil palm bunches). In this work, loss plays a more 
important role compared to accuracy. This is because 
accuracy is indistinguishable so it cannot be used for 
backpropagation of learning algorithms, while loss can be 
distinguished so it can act as a good proxy for accuracy. 
Therefore, a low loss means that the model has high 
accuracy and a good training process. This is the reason 
the Checkpoint Model function is used to store the model 
with the lowest validation loss. 

Figure 7 shows the performance graph of loss and 
accuracy during the training and validation steps for the 
RGB image CNN model. The training was run for 100 
epochs. Based on the performance graph, the model has 
the lowest validation loss at 0.1029.

On the other hand, Figure 8 depicts the performance 
graph of loss and accuracy during the training and 
validation step for the depth image CNN model. Using the 
same procedure of loss performance for the selection of 
the model, it is found that at epoch 72 the model gives the 
lowest loss at 0.0378. Thus, this model is chosen as the 
depth image CNN detection model.
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FIGURE 7. The graphs of loss and accuracy performance 
during the training-and-validation step for the RGB image 

CNN model.

FIGURE 8. The graphs of loss and accuracy performance 
during the training-and-validation step for the depth image 

CNN model.

PERFORMANCE OF THE TESTING STEP FOR THE 
FRUIT BUNCH DETECTION MODEL

In this sub-section, the performance of the RGB image 
model and the depth image model are reported. Firstly, the 
confusion matrix is used to measure the performance of 
the trained models with the testing datasets. 44 images 
were used that contain 22 images with fruit bunch and 
another 22 images without fruit bunch. The RGB image 
and the depth image models were tested under various 
lighting conditions. The threshold value of the models’ 
prediction output is set at 0.5. A prediction value that is 
more than 0.5 indicates the detection of a fruit bunch and 
vice-versa. Table 2 and Table 3 show the confusion matrix 
after applying the testing data on the RGB image model 
and the depth image model, respectively.

TABLE 2. Confusion matrix of the RGB image model

N = 44 Prediction: 
No fruit bunch

Prediction:
Has fruit bunch

Actual: 
No fruit bunch 22 0

Actual:
 Has fruit bunch 5 17

TABLE 3. Confusion matrix of the depth image model

N = 44 Prediction: 
No fruit bunch

Prediction: 
Has fruit bunch

Actual: 
No fruit bunch 21 1

Actual: 
Has fruit bunch 3 19

After that, the TPR values and the FPR values of both 
models were calculated using (1) and (2). Table 3 shows 
the TPR and FPR values of the RGB model and the depth 
image model, respectively.

TABLE 4. TPR and FPR of the RGB image and depth image 
models

Model TPR FPR

RGB model 0.773 0.000
Depth model 0.864 0.045

Based on the calculation, the RGB image model and 
the depth image model had the TPR value at 0.773 and 
0.864, respectively. This result indicates that both models 
can detect the presence of a fruit bunch well. However, the 
RGB image model fails to detect the bunch in a complete 
dark condition where 5 out of 22 images with bunch were. 
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For the depth image model, 3 out of 22 images cannot 
detect the fruit bunch. All these three images have the same 
image features in which the proximity measurement 
between the bunch and the background cannot be 
distinguished. This condition may occur due to the random 
error of depth measurement and low resolution of the 
camera.

For the non-fruit bunch images, the models return very 
low FPR values near zero. The results indicate that both 
models output low probability value for non-fruit bunch 
images on the testing data.

PERFORMANCE OF THE COMBINATORIAL RGB 
AND DEPTH IMAGE DETECTION MODELS

Light condition is one of the major factors affecting the 
accuracy of the oil palm fruit bunch detection. Figure 9 
and Figure 10 show the example of the prediction of the 
RGB image model and the depth image model in bright 
and dark conditions. The image on the left side was taken 
in a bright condition while the image on the right side was 
taken in a dark condition. Note that the RGB image model 
can detect the presence of a fruit bunch in a bright condition 
and cannot detect the same bunch in a total dark condition. 
The performance of the depth image model is vice-versa 
on both light conditions.

FIGURE 9. Detection output of the RGB image model for two 
samples: a bright image (left) and a dark image (right). Both 

images contain a fruit bunch.

FIGURE 10. Detection output of the depth image model for 
two samples: a bright image (left) and a dark image (right). 

Both images contain a fruit bunch.

Based on the results, the performance of the depth 
image model is lower than the RGB image model in a 
bright condition. The area irradiates to the direct sunlight 

in the depth image becomes black as sunlight contains 
infrared light. Accordingly, the Kinect camera is not 
designed to operate under strong lighting conditions 
(Alenyà et al. 2014). Thus, when the oil palm bunch is 
exposed to sunlight, the features of the oil palm bunch are 
lost and cannot be detected correctly. Although the obtained 
RGB image is also influenced by sunlight, the effect is not 
strong enough to affect its performance. The RGB image 
model can still detect the oil palm bunch accurately.

However, the depth image model shows better 
performance in a dark condition compared to the RGB 
image model. A depth image taken in a dark condition was 
able to show the shape and the feature of the oil palm fruit 
bunch. Thus, it can detect the presence of oil palm fruit 
bunch correctly because the depth information obtained 
by the infrared light is not affected by the light condition. 

In order to get better performance, the RGB image 
model and the depth image model are integrated to form 
an RGB-D image model. The prediction of the RGB-D image 
model comes from the prediction of the RGB image model 
combined with depth image models through the concept 
of ‘OR’ gate. This means that if one of the models detects 
an object as an oil palm fruit bunch, then the object will 
be classified as an oil palm fruit bunch. 

In other words, the RGB-D image model is less affected 
by light intensity, hence it is best to use it for this 
application. Based on the results, the RGB image model 
prediction is more successful than the depth image model 
in an environment with sufficient light intensity. In contrast, 
the depth image model works well in low light environments.

To validate the final model, the testing data were 
applied again. The output from the combinatorial model 
was obtained for each testing image. Table 5 tabulates the 
confusion matrix of the model, indicating the prediction 
performance. It is clear that the combinatorial model 
perfectly predicts the correct class for each image, either 
containing a fruit bunch or not. Thus, the highest possible 
TPR value of 1.000 and the lowest possible FPR value of 
0.000 were achieved

TABLE 5. Confusion matrix of the combinatorial RGB and 
depth images model

N = 44 Prediction: 
No FFB

Prediction: 
Has FFB

Actual: No FFB 22 0
Actual: Has FFB 0 22

TPR 1.000
FPR 0.000
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PERFORMANCE OF FRUIT BUNCH DETECTION AND 
LOCALISATION IN AN APPLICATION OF A VIRTUAL 

WORLD

Figure 11 shows the three-dimensional map (from the top 
view) produced by the RTAB-map package with fruit bunch 
detection and localisation functions for the virtual world 
in Figure 6. The map was obtained after Turtlebot 2 
wandered the four compartments completely. The locations 
of the oil palm fruit bunch were marked by the yellow dots 
on the map. 

After that, the detection and localisation performance 
was examined in the corresponding two-dimensional 
occupancy grid map. Figure 12 shows the occupancy grid 
map produced with the oil palm fruit bunch detection and 
localisation functions, respectively. In the occupancy grid 
map, the black-coloured area means obstacles, the light 
gray-coloured area means free area, and the dark gray-
coloured area means area not discovered yet by the robot’s 
camera.

From the figure, the locations of the fruit bunch 
landmarks can be detected and localised in the grid map. 
The locations of oil palm fruit bunch were marked clearly 
as obstacles indicated by black-coloured areas. The number 
of fruit bunch was also correctly counted by the system. 
In conclusion, by using the RTAB-Map with the combination 
of the fruit bunch detection and localisation functions, the 
oil palm bunches can be detected, located, and marked as 
obstacles in the occupancy grid map for preventing the 
autonomous vehicle from passing through them and 
causing damage to the fruit bunches.

FIGURE 11. Three-dimensional map produced by RTAB-Map 
with the fruit bunch detection and localisation functions.

FIGURE 12. An occupancy grid map with the fruit bunch 
detection and localisation functions.

CONCLUSION

Oil palm fruit bunch detection and localisation functions 
have been developed based on RGB images and depth 
images. Deep learning of convolutional neural networks 
is implemented to train, validate, and test the functionality 
of the two developed models, which are the RGB image 
model and the depth image model. The developed models 
have high detection accuracy when combined to form a 
combinatorial RGB-D image detection model. The model 
is also robust to the variant of ambient light condition. 
Furthermore, the fruit bunch detection and localisation 
functions are integrated into a visual SLAM known as 
RTAB-Map to produce a three-dimensional map and a two-
dimensional occupancy map with the capability to detect 
and localise fruit bunches. The produced map can be 
beneficial to the navigation system of an autonomous 
vehicle to avoid the vehicle from passing through the 
detected fruit bunches. Further works may be required to 
extend the current limitation for adoption in various 
plantation surroundings. It is suggested that the fruit bunch 
detection models to be trained with various types of oil 
palm fruit bunches in terms of different sizes, shapes, 
backgrounds, and light conditions to widen the application 
of the system according to the types of oil palm fruit 
bunches. In addition, a multi-bunch detection algorithm 
can be considered to reflect the real-world implementation.  
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