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ABSTRACT

Using the high-frequency data of Bitcoin, this study aims to model the time-varying volatility identified in the residuals 
of the heterogeneous autoregressive (HAR) model of realized volatility using the symmetric, asymmetric and long-
memory generalized autoregressive conditional heteroscedastic (GARCH) models. We further extended these models by 
incorporating jumps and continuous components in the realized volatility estimators and investigating the impact of the 
inverse leverage effect. The Diebold Mariano and model confidence set test confirm that the forecasting performance of 
HAR-type models can be effectively improved by these innovations. The long memory HAR-GARCH model with jumps 
and continuous components provided better forecasting accuracy for Bitcoin volatility as compared to other realized 
volatility models. The findings of this study may benefit individual investors and risk managers who wish to minimize 
risks and diversify their portfolios to maximize profits in Bitcoin’s investment.
Keywords: Bitcoin; HAR-GARCH; high-frequency data; inverse leverage; realized volatility

ABSTRAK

Dengan menggunakan data frekuensi tinggi Bitcoin, kajian ini bertujuan untuk memodelkan kemeruapan berbeza 
masa yang dikenal pasti dalam residu model autoregresi heterogen (HAR) daripada kemeruapan nyata menggunakan 
model simetri, asimetri dan memori panjang teritlak autoregresi bersyarat heteroskedastik (GARCH). Model-model 
ini terus diperluaskan dengan memasukkan lompatan dan komponen berterusan dalam penaksir kemeruapan nyata 
dan mengkaji kesan tuasan songsang. Diebold Mariano dan model ujian set keyakinan mengesahkan bahawa prestasi 
ramalan model jenis HAR dapat ditingkatkan dengan berkesan melalui inovasi ini. Model memori panjang HAR-
GARCH dengan lompatan dan komponen berterusan memberikan ketepatan ramalan yang lebih baik untuk kemeruapan 
Bitcoin berbanding model kemeruapan nyata yang lain. Hasil kajian ini dapat memberi manfaat kepada pelabur individu 
dan pengurus risiko yang ingin meminimumkan risiko dan mempelbagaikan portfolio mereka untuk memaksimumkan 
keuntungan dalam pelaburan Bitcoin.
Kata kunci: Bitcoin; data frekuensi tinggi; HAR-GARCH; kemeruapan nyata; tuasan songsang

INTRODUCTION

Cryptocurrencies are digital decentralized currencies 
that rely upon cryptography for the generation, 
distribution, and circulation of money. Since the creation 
of Bitcoin, the first cryptocurrency by Satoshi Nakamoto 
in 2009, more than 5500 cryptocurrencies have been 
introduced in the market. Cryptocurrency returns are 
highly volatile and riskier than fiat currencies (Osterrieder 

et al. 2017). The volatile market of cryptocurrencies has 
attracted many and its modeling and predictions have 
become a hot topic among researchers and financial 
practitioners (Zhang & Lan 2014). 

Bitcoin is mainly used for investment purposes and 
the profitability of investments in the Bitcoin market 
greatly depends on the predictability of its price 
movements. Investment risk and uncertainty can be 
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minimized if a predictive model can accurately forecast 
the direction of the market. However, the dynamic 
characteristics of Bitcoin are quite complex displaying 
extreme observations, asymmetry, and several non-
normal characteristics. It has gained a prominent place in 
financial markets and portfolio management, therefore, a 
detailed examination of its volatility dynamics is crucial 
for risk management. 

Most of the studies on modeling the volatility 
of cryptocurrencies applied the popular Generalized 
Autoregressive Conditional Heteroscedastic (GARCH) 
model of Bollerslev (1986). Several GARCH models with 
Gaussian errors were employed by Katsiampa (2017) to 
model and estimate the volatility of Bitcoin. Chu et al. 
(2017) determined that the Integrated GARCH (IGARCH) 
model provided better estimates for Bitcoin’s volatility 
than other volatility models. Liu et al. (2017) reported the 
superior performance of the GARCH model with Student-t 
errors than Gaussian and reciprocal inverse Gaussian 
distributions. Several univariate and multivariate GARCH 
models were used along with vector autoregressive 
specifications in the literature to understand the dynamic 
features of Bitcoin (Stavroyiannis & Babalos 2017). The 
association between Bitcoin price returns and volatility 
was investigated through asymmetric GARCH models 
by Bouri et al. (2017) while Naimy and Hayek (2018) 
evaluated the one-step-ahead predictive performance of 
both symmetric and asymmetric GARCH models with 
various innovations and concluded the better predictive 
performance of the Exponential GARCH (EGARCH) 
model. Ardia et al. (2019) modeled the dynamics and 
regime changes of Bitcoin volatility using the Markov–
switching GARCH (MSGARCH) model. Zahid and Iqbal 
(2020) applied several stochastic volatility models 
to evaluate the dynamics of cryptocurrencies and the 
forecasting performance of a heavy-tailed stochastic 
volatility model was found superior.

Although the GARCH model and its extensions 
have been considered benchmark volatility models and 
are also popular among practitioners and researchers, 
these models treat volatility as an unobservable or latent 
variable and are mainly focused on daily data (Qu et 
al. 2018). However, daily returns are considered weak 
indicators of the present level of volatility. Generally, 
these models fail to capture the rapid volatility changes. 
Besides, jumps in volatility are also difficult to identify 
in these models (Hickey et al. 2012).

High-frequency data measure intraday observations 
of financial time series and provide a better understanding 
of dynamic characteristics of volatility as compared to 
daily data. Intuitively, intra-day data take into account 

more information than daily data, which assists market 
participants to make quicker decisions. This phenomenon 
was first studied by Andersen and Bollerslev (1998) 
when they calculated the realized volatility (RV) by 
aggregating the squared intraday returns as the measure 
of ex-post daily volatility which for the first time makes 
volatility observable. Barndorff-Nielsen and Shephard 
(2002a, 2002b) provided the theoretical foundation of 
using RV as a proxy of the unobservable volatility based 
on the theory of quadratic variation which explains that RV 
is an unbiased ex-post estimator of daily return volatility 
as well as asymptotically free of measurement error under 
suitable conditions. Nowadays, high-frequency data are 
easily available due to advancements in technology and 
new developments in financial modeling have made it 
possible to directly measure and model the volatility of 
asset returns (Qu et al. 2018). 

Corsi et al. (2003) introduced the Heterogeneous 
Autoregressive (HAR) model for RV. This model 
can capture the main empirical characteristics of 
financial data as well as long-range dependence. 
Andersen et al. (2007) incorporated the jumps and 
continuous components in the benchmark HAR model and 
constructed the generalized HAR-CJ model. They found 
improvements in the forecasting accuracy of the HAR-CJ 
model. These models have been extended and applied 
widely in modeling the financial volatility of returns due 
to their tractable estimation and competitive predictive 
forecasting performance (Cheong et al. 2017; Corsi et al. 
2008; Haugom 2011; Qu et al. 2016). 

Although realized volatility models have been 
around for some time, only a few studies have applied 
these models to model and predict the volatility of 
high-frequency cryptocurrencies data. Urquhart (2017) 
concluded that HAR model performance was better than 
the GARCH model in predicting the volatility of Bitcoin, 
though found no conclusive evidence of the leverage 
effect. Catania and Sandholdt (2019) illustrated that 
lagged jumps have no impact on the realized volatility 
of Bitcoin, though including the leverage component 
improved the volatility prediction. Yu (2019) reported that 
the leverage effect was a more powerful component as 
compared to the jump component in forecasting Bitcoin 
volatility using high-frequency data. Hattori (2020) 
analyzed the Bitcoin realized volatility by comparing 
different asymmetric volatility models and the results 
showed that EGARCH and asymmetric power ARCH 
(APARCH) models have higher predictability and the 
normal distribution fits the Bitcoin data better. Kochling et 
al. (2020) found evidence that the jump-robust volatility 
proxy based on intra-day returns and asymmetric 
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loss functions provide a greater distinction between 
equally- and out-performing GARCH-type models for the 
assessment of the quality of Bitcoin volatility forecast. 
Ahmed (2020) examined the return-volatility relation 
in Bitcoin markets employing high-frequency data and 
incorporating different RV proxies. Hung et al. (2020) 
found that the realized GARCH model with jump-robust 
realized measures can provide steady forecasts for the 
volatility of Bitcoin returns. Bouri et al. (2021) included 
a metric of US-China trade tension into an HAR model 
to forecast the daily RV of Bitcoin. 
 Nevertheless, the studies on modeling and forecasting 
the RV of cryptocurrencies using GARCH-type and RV 
models are scarce and the choice of models employed 
seems insufficient to provide a comprehensive analysis 
of different features of high-frequency cryptocurrency 
data. The intraday Bitcoin data have not been studied 
comprehensively. Hence, in this study, efforts were 
made to comprehensively analyze the dynamics of high-
frequency Bitcoin data, to evaluate the performance 
of various realized volatility models in predicting the 
volatility of Bitcoin, and to suggest the best model for 
a riskier cryptocurrency, Bitcoin. To the best of our 
knowledge, the high-frequency data of cryptocurrencies 
have not been analyzed in detail as done in this study. 
The best model that can produce accurate and reliable 
forecasts for Bitcoin volatility could not only assist 
investors to save time and resources but make timely 
and better decisions. This study may help individual 
investors and risk managers who wish to minimize risks 
and diversify their portfolios and maximize profits in 
Bitcoin investment. 

The contributions of this research can be summarized 
as follow: First, we combine existing HAR-type models 
with different variants of GARCH-type models that can 
capture the persistence, asymmetry, and long memory 
in the realized volatility of Bitcoin returns. Second, we 
further take an initiative and extend the HAR-GARCH-
type models to investigate the effect of jumps and inverse 
leverage effect by the exploitation of measurement errors 
in realized volatility estimators. Third, the HARQ-L-
GARCH-type models are then employed to investigate 
whether these innovations can improve the volatility 
forecasts of Bitcoin. These models can offer a novel 
perspective to model and forecast the realized volatility 
of Bitcoin. Finally, we employed the Diebold-Mariano 
test (DM) and Model Confidence Set (MCS) to robustly 
check the findings of the study. The DM test was applied 
to evaluate the pairwise forecasting performance of 

competing models along with six loss functions instead 
of a single one as the appropriateness of a specific 
loss function for the evaluation of volatility models is 
not obvious (Lopez 2001). The MCS procedure was 
employed to compare the forecasting performance of 
more than two models at once for the selection of the 
best model for high-frequency Bitcoin data. 

MATERIALS AND METHODS

Andersen and Bollerslev (1998) introduced a method to 
calculate the daily realized day t (RVt ) by aggregating 
the corresponding M equally spaced intra-daily returns rt,j 
    

   (1)

where rt,j = log (Pt,j)/Pt,j-1) , with Pt,j being the price at day 
t and j is the number of observations within a day. 

THE HAR-TYPE MODELS

These models were introduced by Chan et al. (2008) 
for modeling the intraday day (high-frequency) data. In 
these models, the realized variance, its continuous and 
jumps parts at a time t are represented by RVt, Ct and Jt, 
respectively. 
The first model is the simple HAR model defined as (2),
                   

     (2)

where 𝑅𝑅𝑅𝑅𝑡𝑡−1
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7  
𝑗𝑗=1 )/7  represents the realized 

variance of the past week.

The second model incorporates continuous and jump 
components and is defined as,

 (3)
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variance and 𝑅𝑅𝑅𝑅𝑡𝑡
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7
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𝑤𝑤 = (∑  𝐶𝐶𝑡𝑡−𝐽𝐽

7
𝐽𝐽=1 )/7  are used as explanatory 

variables.
In both these models, ϵ t is assumed to be 

independently and identically distributed (IID) normal 
errors. The parameters of these models can be estimated 
using the most commonly used method of ordinary least 
squares (OLS).
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THE HAR-GARCH-TYPE MODELS

The errors of the HAR-type models estimated from 
the OLS were found non-normal and showed volatility 
clustering and persistence in our empirical application 
with Bitcoin prices. Therefore, to model these non-normal 
characteristics of volatility, the residuals of (2) and (3) are 
decomposed as 𝜖𝜖𝑡𝑡=√ℎ𝑡𝑡𝑒𝑒𝑡𝑡,  where ht is the time-changing 
variance of the residuals and et is the IID innovation. 
The GARCH-type models are then applied to model ht. 
The skewed-student-t distribution for {et} was considered 
to take into account the non-normal characteristics such 
as skewness and high kurtosis. More specifically, we 
consider the basic GARCH model of Bollerslev (1986) 
the EGARCH model of Nelson (1991) and the FIGARCH 
model of Baillie et al. (1996).
The conditional variance in the GARCH model is modeled 
as,

 (4)                                                                                                  

with ω > 0, α, β ≥ 0 and α + β < 1guarantee weak 
stationarity and the positiveness of ht.
The log conditional variance in the EGARCH model is 
modeled as, 

 (5)   

where γ is the asymmetry parameter that captures the 
asymmetric characteristics in Bitcoin returns.
Similarly, the FIGARCH specification models the 
conditional variance as
                         

    (6)                                                                                   

In this way, modeling the HAR-types time-varying error 
variance with GARCH-type specification is called HAR-
GARCH types models.  

THE HARQ-L-GARCH-TYPE MODELS

Following Qu et al. (2018), we modeled the time-varying 
residual variance of the HAR-type models. However, 
these models are prone to measurement errors in any 
given finite sample and can suffer from the classical 
errors-in-variables problem. We dealt with this situation 
by incorporating the HARQ structure of Bollerslev et al. 
(2016) in the mean equation where (“Q”) represents the 
exploitation of the errors. Besides, since the asymmetry 
was observed in the RV of the Bitcoin prices (Figure 1), 
the HAR-types mean (2) and (3) were modified to HARQ-
L-type, where “L” represents the inverse leverage. The 
HARQ-L model is defined as,
 

(7)   
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FIGURE 1. The news impact curve for the realized volatility (RV) of Bitcoin prices

𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ𝑡𝑡) = 𝜔𝜔 + 𝛼𝛼𝑒𝑒𝑡𝑡−1 + 𝛾𝛾(|𝑒𝑒𝑡𝑡−1| − 𝐸𝐸|𝑒𝑒𝑡𝑡−1|) + 𝜆𝜆 𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙 (ℎ𝑡𝑡−1) ,                 
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Similarly, the HARQ-L-CJ model is defined as,
 

(8)

where the possible inverse leverage effect is measured 
by the coefficient βL. Again, the innovations {et} are 
assumed to follow the skewed-student-t distribution 
and the GARCH-type models are used for modeling the 
residuals variance {ht}. These resulting models are called 
HARQ-L-CJ-GARCH type models.  

MODEL’S EVALUATION

The out-of-sample volatility forecasts of the models were 
evaluated using the pairwise forecast comparison tests of 
Andersen et al. (2003). Let us define (9),
                 

   (9)

where RVt+1 represents the actual realized volatility at day 
t+1 and 𝑅𝑅𝑅𝑅𝑡𝑡+1 = 𝑏𝑏0 + 𝑏𝑏1ℎ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1,𝑡𝑡+1 + 𝑏𝑏2 ℎ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2,𝑡𝑡+1 + 𝑢𝑢𝑡𝑡+1,                   and𝑅𝑅𝑅𝑅𝑡𝑡+1 = 𝑏𝑏0 + 𝑏𝑏1ℎ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀1,𝑡𝑡+1 + 𝑏𝑏2 ℎ̂𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀2,𝑡𝑡+1 + 𝑢𝑢𝑡𝑡+1,                  represent its forecasts 
from two competing models and ut+1 are IID innovations. 
Firstly, to evaluate the usefulness of modeling the 
volatility of realized volatility, the HAR-type models were 
analyzed against the HAR-GARCH-type models. Secondly, 
to evaluate the value of exploiting the measurement 
errors in realized volatility estimators and inclusion of 
the inverse leverage effect, the HAR-GARCH-type models 
were compared against the HARQ-L-GARCH-type. 

The following six average loss functions were used 
to better evaluate and assess the differences between the 
out-of-sample volatility forecasts of models:

  
  

 
In these loss functions, RVt represents the observed 
realized variance at day t, 
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 is the model’s predicted 
volatility and K is the forecast length.

To further evaluate whether two competing sets of 
forecasts are equally accurate, we employed the DM test 
by Diebold and Mariano (2002) and Hansen et al. (2011) 

Model Confidence Set (MCS) procedure for comparing 
the predictive performance of multiple models.
 

DATA DESCRIPTION

This study employed the half-hourly Bitcoin price data 
extracted from the www.Bitcoinchart.com. The data 
from 28 February 2013 0:00 to 31 May 2020 0:00 (2648 
days) were used. The half-hourly returns (48 per day) 
were calculated for every day to get 2648×48+1=127,105 
half-hourly price observations. The statistical analyses 
were performed on R and Matlab software.

RESULTS AND DISCUSSION

EMPIRICAL ANALYSIS

The high-frequency intraday returns were demeaned 
using the median return �̃�𝜇𝑡𝑡,𝑗𝑗 = �̃�𝑟𝑚𝑚,𝑑𝑑,ℎ,  for half-hourly 
data, where �̃�𝜇𝑡𝑡,𝑗𝑗 = �̃�𝑟𝑚𝑚,𝑑𝑑,ℎ, represents the median return for 
the t-th day in m-th month, d-th day in a week, and (j 
= h) half-hour in a day. These demeaned (returns) are 
used to analyze the intraday, intraweek, and periodic 
trends of Bitcoin prices. The intraday returns for the 
in-sample period were used for the calculation of the 
half-hourly median returns. The demeaned intraday 
returns 𝑟𝑟𝑡𝑡,𝑗𝑗∗ = 𝑟𝑟𝑡𝑡,𝑗𝑗 − �̃�𝜇𝑡𝑡,𝑗𝑗  were used to compute realized 
estimators. 

Table 1 summarizes the summary statistics of 
the half-hourly Bitcoin prices. Large maximum, high 
standard deviation, positive skewness and high kurtosis 
indicate nonnormality in the Bitcoin prices. Table 1 also 
shows the summary statistics of realized measure, it’s 
continuous and jump components. The Ljung-Box test up 
to the twentieth order (Q20) was found highly significant 
indicating dependence or serial correlation for all the 
realized measures. The Augmented Dickey Fuller (ADF) 
test for unit root was also found highly significant at 
the given confidence level for all the realized measures 
indicating stationarity. Hence, we employed HAR-type 
models and their extensions. Moreover, the jumps in the 
standard deviation (Jt

1/2) have a mean of 4.02%, which is 
28% of the average daily realized volatility (1.11%) at the 
jump’s detection significance level of 1%. It indicates that 
price jumps cannot be neglected in the Bitcoin market. 
Therefore, besides the simple HAR models, we applied 
the HAR-CJ models in this study. 
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TABLE 1. Summary statistics for the prices, realized volatility with its continuous and jumps part along with standard deviations 
for Bitcoin for the sample period from 28 February 2013 to 31 May 2020

Mean Min Median Max SD Skewness Kurtosis Q (20) ADF

Pt 2481 33.25 630.20 19600 3382.9 1.7632 5.8938 2162757*** -0.5900

RVt 0.0026 0. 00002 0.0008 0.1238 0.0070 9.6657 125.99 1402*** -8.3363 ***

Ct 0.0004 0.00000 0.0000 0.0729 0.0071 17.0906 339.65 66.355 *** -12.952 ***

Jt 0.0030 0.00008 0.0011 0.3258 0.0109 23.3307 657.30 2255.12 *** -7.7429***

RVt
1/2 0.0111 0.00530 0.0291 0.3518 0.0330 3.3932 18.82 5535.9 *** -6.819 ***

Ct
1/2 0.0077 0.00000 0.0000 0.2699 0.0330 5.6731 52.00 109.75*** -11.395 ***

Jt
1/2 0.0402 0.00870 0.0338 0.5708 0.0330 5.0385 57.61 11697*** -6.9971 ***

 Pt are half-hourly prices; RVt,Ct, and Jt represent the realized volatility, continuous, and jumps segments, respectively. Q(20) is the Ljung-Box statistic up to 20 lags 
for the error term. ADF is the Augmented Dickey-Fuller test. *** indicates a significance level at 1%. Raw high-frequency returns demean by a half-hour of day, day 
of week, and month of year

Table 2 presents the diagnostic results of the OLS 
estimated errors of the HAR types models. The ARCH- 
LM test up to 5, 10, and 20 lags were applied to test the 
ARCH effect. This test was found highly significant at 
all lags indicating that both HAR and HAR-CJ had strong 
autoregressive conditional heteroscedastic effects in 
the residual variances. We further observed positive 
skewness and high kurtosis in the residuals. This type of 

non-normality in returns was further tested by the Jarque-
Bera test which was also found significant. The highly 
significant Ljung-Box statistic on squared residuals  (Q2)
further confirmed the long-range dependence indicating 
heteroscedasticity in residuals variance. Therefore, we 
modeled the residual variance of these models using 
GARCH-types models. The skewed-student-t distribution 
was assumed for the innovations to better model the 
skewness and high kurtosis observed in the residuals. 

TABLE 2. Results of HAR-type models diagnostic tests for the OLS estimated error variances for the sample period from 28 
February 2013 to 31 May 2020

Skewness Kurtosis ARCH(5) ARCH(10) ARCH(20) JB Q2 (20) Q2 (50)

HAR 68.00 74.769 122.1*** 3.837*** 34.2*** 9587.3*** 170.8*** 438.6 ***

HAR-CJ 42.28 50.365 94.6*** 4. 06*** 35.7*** 105826.3 *** 135.1*** 420.5***

ARCH(·) and JB denote the ARCH-LM test statistic and Jarque-Bera normality test statistics, respectively, while Q2 (·) denotes the Ljung-Box (Q-statistics) for the 
squared error terms up to lag 20 and lag 50.  ⁎⁎⁎ denotes the significance of the test at the 1% level

IN-SAMPLE FIT RESULTS

Panel A in Table 3 presents the result of fitting the HAR 
model with different variants, while Panel B presents the 
results of the HAR-CJ model and its different variants. 
The coefficients β and v are the parameters of skewed- 

student-t distribution that capture the skewness and high 
kurtosis, respectively, while the coefficient βL estimates 
the inverse leverage effect and β1Q adjusts the sensitivity 
which quantifies the errors in the realized volatility. The 
values of loglikelihood (LogL), Akaike information 
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criteria (AIC) and Schwarz information criteria (SIC) were 
also reported in the table. The estimates of β were found 
significant with values below 1, while the estimates of 
the coefficient v were also found significant with values 
between 2 and 3 in both panels. Hence, the assumption 

of the skewed-student-t distribution for innovations 
seems suitable. On the other hand, all the estimates of 
β1Q were found negative and significant (at 1% level). 
These findings indicate that accurately estimated realized 
volatility may have a significant effect on the forecasts 
than inadequate days having large measurement errors. 

TABLE 3. Comparison of the in-sample fit results for various HAR-type models for the sample period from 28 February 2013 to 
31 May 2020

Model βL β1Q β v LogL AIC SIC

Panel A: HAR models

H-G – – 0.4982*** 2.0100*** -789.0110 0.2668 0.2863

HQ-G – – 0.5392*** 2.7077*** -83.2940 0.0398 0.0449

HQ-LG 0.0159 -0.0242*** 0.4971*** 2.6602*** -54.1850 0.0188 0.0294

HQ-EG – – 0.5451*** 2.3191*** -118.1850 0.0568 0.0715

HQ-L-EG -0.0345*** -0.0890*** 0.5772*** 2.2743*** -20.6780 0.0132 0.0257

HQ-FG – – 0.5785*** 2.8266*** -78.0420 0.0324 0.0459

HQ-L-FG 0.0122 -0.0259*** 0.5354*** 2.7232*** -49.0120 0.0201 0.0365

Panel B: HAR-CJ models

H-CJ – – 0.5658*** 2.1372 -638.2900 0.2071 0.2215

H-CJ-G – – 0.5098*** 2.2178 -23.4950 0.0135 0.0229

HQ-L-CJ-G 0.0059 -0.0369*** 0.4865*** 2.1921 -13.3858 0.0118 0.0200

H-CJ-EG – – 0.5364*** 2.0512 -78.8900 0.0307 0.0048

HQ-L-CJ-EG -0.0388*** -0.1221*** 0.5682*** 2.0338 -4.9950 0.0058 0.0187

H-CJ-FG – – 0.5423*** 2.5458 32.5609 0.0200 0.0292

HQ-L-CJ-FG 0.0057 -0.0291*** 0.5245*** 2.4923 20.8920 0.0143 0.0245

H, G, EG and FG stand for HAR, GARCH, EGARCH and FIGARCH, respectively whereas Q, L and CJ stand for error measurements, inverse leverage and continuous 
and jump components, respectively. The coefficient and  measure the leverage effect (inverse) and adjust the sensitivity in models respectively.  and represent parameters 
of (skewed-student-t) distribution. LogL is the maximized log-likelihood value, AIC and SIC stand for the Akaike and Schwartz Information Criteria, respectively. ⁎⁎⁎ 

denotes significance at the 1% level

For the symmetric GARCH and FIGARCH models, 
the estimated coefficients of βL are found positive but 
not significant, whereas significant negatives values are 
observed for the asymmetric EGARCH specification. Such 
results are consistent with the inverse leverage visualized 
in Figure 1.

For the HAR-GARCH-type models, the LogL values 
were found larger and the AIC and SIC values were 
found smaller than the standard HAR-type model in both 

panels, while the corresponding HARQ-L-GARCH type 
models attained larger LogL values and smaller AIC and 
SIC values. This indicates that models like HARQ-L-
GARCH-types accomplished a better in-sample fit result 
as compared to the other two types of models. It is also 
noticed that models in Panel B attained larger LogL and 
smaller AIC and SIC values as compared to models in 
Panel A. These findings indicate the improvement in the 
in-sample fit when jumps are included in the volatility 
models.
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    OUT-OF-SAMPLE FORECASTS RESULTS

The out-of-sample predictive performance of the 
underlying models has more importance than the in-
sample fit as financial decisions are mostly based on 
forecast results. A rolling window scheme was used to 
generate one-step-ahead forecasts. We selected a rolling 
window of size T = 2225 with an estimation size of IT 
= 1500 and the forecasting length K = 725 days. The 
relative forecasting power test described in (9) was 
employed to evaluate the forecasts for out-of-sample 
volatility. 

Table 4 displays the findings of the pairwise forecast 
comparison test. It is observed from Panel A in Table 
4 that the regression coefficients b1 were all negative 
whereas b2 were positive for the HAR models. The 
significance of b1 coefficients at 5% level show that the 

volatility forecasts improve (in most of the cases) when 
the HAR model’s residual variance was modeled with 
GARCH-type specifications. Similarly, for the HAR-CJ 
models, the insignificance of b1 and the significance 
of b2 coefficients at 1% level show the importance 
of incorporating jumps and continuous components 
and modeling the residual variance with GARCH-type 
specifications. Panel B also showed that adding features 
like the inverse leverage effect and exploitation of error 
in the models such as HAR-GARCH, HAR-FIGARCH, 
and HAR-CJ-EGARCH improve the volatility forecasts. 
However, the HAR-EGARCH model was not found 
superior in terms of forecasting and no conclusion can 
be drawn from other models. This test further suggests 
the usefulness of the exploitation of measurement errors 
and incorporating the inverse leverage effect.

TABLE 4. Comparison of the out-of-sample forecasts of the HAR-type model and its different variants using relative forecasting 
power test for the sample period from 6 June 2018 to 31 May 2020

Panel A: HAR-type v HAR-GARCH-type

H v
H-G

H v
H-EG

H v
H-FG

H-CJ v
H-CJ-G

H-CJ v
H-CJ-EG

H-CJ v
H-CJ-FG

b0 – intercept 0.199*** 0.278 *** 0.259*** 0.029 0.101 0.039

b1 -  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾  ∑  (𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡)2𝐾𝐾

𝑖𝑖=1 ;  𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑  (√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡)

2
𝐾𝐾
𝑖𝑖=1 ;   (8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  (𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑅𝑅𝑉𝑉𝑡𝑡  −𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 ℎ̂𝑡𝑡 )𝐾𝐾

𝑖𝑖=1
2
; 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡|𝐾𝐾
𝑖𝑖=1  ;    (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑   |√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡|𝐾𝐾

𝑖𝑖=1  ;  𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡| 𝐾𝐾

𝑖𝑖=1  

 H-type
-1.250** -1.668 ** -1.229** -0.159 -0.821 -0. 258

b2 -  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾  ∑  (𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡)2𝐾𝐾

𝑖𝑖=1 ;  𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑  (√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡)

2
𝐾𝐾
𝑖𝑖=1 ;   (8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  (𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑅𝑅𝑉𝑉𝑡𝑡  −𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 ℎ̂𝑡𝑡 )𝐾𝐾

𝑖𝑖=1
2
; 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡|𝐾𝐾
𝑖𝑖=1  ;    (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑   |√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡|𝐾𝐾

𝑖𝑖=1  ;  𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡| 𝐾𝐾

𝑖𝑖=1  

 H-G-type 1.175*** 1.506*** 1. 398*** 1.341*** 1.989 *** 1.690 **

Panel B: HAR-GARCH-type v HARQ-L-GARCH-type

H-G v
HQ-L-G

H-E v HQ-
L-EG

H-FG v HQ-
L-FG

H-CJ-G v HQ-
L-CJ-G

H-CJ-EG v HQ-
L-CJ-EG

H-CJ-FG v HQ-
L-CJ-FG

 b0 – intercept -0.159*** 0.168 * -0.199*** -0.019 -0. 191*** -0.071

 b1 -  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾  ∑  (𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡)2𝐾𝐾

𝑖𝑖=1 ;  𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑  (√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡)

2
𝐾𝐾
𝑖𝑖=1 ;   (8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  (𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑅𝑅𝑉𝑉𝑡𝑡  −𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 ℎ̂𝑡𝑡 )𝐾𝐾

𝑖𝑖=1
2
; 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡|𝐾𝐾
𝑖𝑖=1  ;    (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑   |√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡|𝐾𝐾

𝑖𝑖=1  ;  𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡| 𝐾𝐾

𝑖𝑖=1  

 H-G-type   -0.212* 1.192 * -0.001 1.001 0. 592* 0. 642

 b2 -  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝐾𝐾  ∑  (𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡)2𝐾𝐾

𝑖𝑖=1 ;  𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑  (√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡)

2
𝐾𝐾
𝑖𝑖=1 ;   (8) 

𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  (𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 𝑅𝑅𝑉𝑉𝑡𝑡  −𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙 ℎ̂𝑡𝑡 )𝐾𝐾

𝑖𝑖=1
2
; 𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡|𝐾𝐾
𝑖𝑖=1  ;    (9) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆 = 1
𝐾𝐾 ∑   |√𝑅𝑅𝑉𝑉𝑡𝑡 − √ℎ̂𝑡𝑡|𝐾𝐾

𝑖𝑖=1  ;  𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿𝐿𝐿𝐿𝐿 = 1
𝐾𝐾 ∑  |𝑅𝑅𝑉𝑉𝑡𝑡 − ℎ̂𝑡𝑡| 𝐾𝐾

𝑖𝑖=1  

 HQ-L-G-type   -1.287 *** -0.049 1.989 *** 0.499 1.100 *** 0.721

H, G, EG and FG stand for HAR, GARCH, EGARCH and FIGARCH, respectively whereas Q, L and CJ stand for error measurements, inverse leverage and continuous 
and jump components, respectively. *, ** and *** denote significance at 10%, 5% and 1%, respectively.

The results of commonly used loss functions along 
with the DM test p-values are reported in Table 5. Panel A 
of Table 5 illustrates that all the HAR-GARCH-type models 
attained smaller values of average losses than standard 
HAR-type models. The p-values of the DM test were all 
zeros for these average losses. These results (all 36 bold 

average losses) indicated a significant improvement in 
volatility forecasts when the volatility of the realized 
volatility is modeled. The results in Panel B show that out 
of 36 losses, 21 losses were found smaller in magnitude 
as compared to the corresponding numbers in Panel A. 
Moreover, 18 out of 21 losses (in bold) had p-values of 
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the DM test smaller than 0.05. This showed that models 
like HARQ-L-GARCH-type achieved significantly better 
performance for volatility forecasts as compared to HAR-
GARCH-type models. We also observed that a few losses 
(15) attained greater values as compared to the values 
in Panel A, but most of these values do not show the 
statistically significant inferior predicting performance 

of the HARQ-L-GARCH-type models, since only three 
values (underlined in the table) are accompanied with DM 
test p-values smaller than 0.05. Therefore, these findings 
showed that the combination of leverage effect (“L”) 
and exploitation of error (“Q”) improve the forecasting 
performances of realized volatility models. 

TABLE 5. Mean losses in the out-of-sample forecasts from 6 June 2018 to 31 May 2020. The Diebold Marino test -value at 10% 
significance level in parenthesis

Panel A: HAR-type v HAR-GARCH-type

H      H-G H-EG H-FG H-CJ H-CJ-G H-CJ-EG H-CJ-FG

MSE 5.968
5.474

(0.000)
5.509

(0.000)
5.517

(0.000)
5.722

5.332
(0.000)

5.351
(0.000)

5.367
(0.000)

MAE 0.615
0.556

(0.000)
0.566

(0.000)
0.558

(0.000)
0.528

0.474
(0.000)

0.485
(0.000)

0.476
(0.000)

MSELOG 0.749
0.583

(0.000)
0.608

(0.000)
0.577

(0.000)
0.688

0.672
(0.000)

0.576
(0.000)

0.544
(0.000)

MSESD 0.386
0.227

(0.000)
0.230

(0.000)
0.230

(0.000)
0.248

0.246
(0.000)

0.245
(0.000)

0.243
(0.000)

MAELOG 0.615
0.522

(0.000)
0.544

(0.000)
0.521

(0.000)
0.589

.0.506
(0.000)

0.527
(0.000)

0.502
(0.000)

MAESD 0.189
0.156

(0.000)
0.162

(0.000)
0.156

(0.000)
0.158

0.126
(0.000)

0.133
(0.000)

0.126
(0.000)

Panel B: HAR-GARCH-type v HARQ-L-GARCH-type

HQ-LG HQ-L-EG HQ-L-FG HQ-L-CJ-G HQ-L-CJ-EG HQ-L-CJ-FG

MSE
5.376

(0.321)
6.125

(0.079)
5.480

(0.047)
5.433

(0.022)
5.581

(0.021)
5.482

(0.001)

MAE
0.538

(0.012)
0.565

(0.472)
0.540

(0.014)
0.529

(0.360)
0.545

(0.218)
0.533

(0.001)

MSELOG

0.546
(0.000)

0.567
(0.010)

0.539
(0.000)

0.536
(0.000)

0.551
(0.010)

0.535
(0.000)

MSESD

0.196
(0.042)

0.219
(0. 153)

0. 201
(0.124)

0.196
(0.496)

0.345.
(0.207)

0.200
(0.060)

MAELOG

0.503
(0.000)

0.509
(0.000)

0.500
(0.001)

0.492
(0.000)

0.503
(0.001)

0.200
(0.060)

MAESD
0.199

(0.000)
0.204

(0.015)
0.198

(0.002)
0.194

(0.157)
0.245

(0.240)
0.195

(0.432)

H, G, EG and FG stand for HAR, GARCH, EGARCH and FIGARCH, respectively whereas Q, L and CJ stand for error measurements, inverse leverage and continuous 
and jump components, respectively. Bold numbers show innovations improve the volatility forecasts significantly. The null hypothesis of the DM test is equal 
forecasting performance and the significance level is 10%
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The model evaluation results could differ with 
varying times because the RV of the Bitcoin prices shows 
a time-varying pattern in the evaluation period. Therefore, 
we further divided the forecasting period comprising 725 
days into successive sub-periods of 30 days length and 
applied the pairwise DM test. The results were reported 
in Table 6. It can be seen from Panel A that the rejection 
frequencies in parenthesis were all close to 0. This 
indicates that the HAR-type models rarely performed 
significantly better than the HAR-GARCH-type models in 
sub-periods. Moreover, the HAR-GARCH-types attained 
significantly better predictive accuracy in about half of 
the sub-periods than the HAR-type models irrespective 

of their basic structures like HAR-type, GARCH-type, 
and the specified loss functions. These results further 
strengthen the significance of modeling the volatility of 
realized variance. From Panel B of Table 6, it is noted 
that fewer rejection counts in parenthesis are significant. 
Particularly, the rejection counts were in the ranges 5 
to 11 against "Q" and "L" structure, while some of the 
rejections outside the parenthesis ranged from 8 to 27 in 
favor of these structures. However, the majority of the 
HAR-GARCH-type models show many more rejections 
in favor than against these structures. It justifies that 
the inclusion of "Q" and "L" in RV models may provide 
further improvement in the Bitcoin volatility predictions. 

TABLE 6. Comparison of the out-of-sample forecasts using the DM test rejection counts for the period from 6 June 2018 to 31 

May 2020

Panel A: HAR-type v HAR-GARCH-type

H-G H-EG H-FG H-CJ-G H-CJ-EG H-CJ-FG

MAE 38 (5) 33 (0) 39 (3) 30 (2) 29 (0) 29 (0)

MAE 31 (1) 34 (6) 28 (4) 34 (3) 31 (2) 34 (1)

MSELOG 39 (2) 38 (1) 37 (4) 34 (1) 34 (0) 34 (0)

MSESD 36 (3) 41 (1) 37 (4) 35(1) 33 (0) 34 (0)

MAELOG 40 (5) 39 (5) 39 (4) 35 (2) 35 (2) 35 (4)

MAESD 37 (5) 36 (6) 39 (6) 36 (3) 34 (2) 35 (3)

Panel B: HAR-GARCH-type v HARQ-L-GARCH type

HQ-L-G HQ-L-EG HQ-L-FG HQ-L-CJ-G HQ-L-CJ-EG HQ-L-CJ-FG

MSE 24 (7) 16 (7) 13 (8) 7 (9) 8 (10) 19 (8)

MAE 13 (6) 13 (7) 21 (7) 10 (8) 12 (8) 16 (8)

MSELOG 21 (5) 17 (8) 19 (7) 16 (7) 12 (11) 18 (6)

MSESD 18 (7) 11 (9) 24 (8) 15 (8) 8  (11) 15 (8)

MAELOG 27 (8) 19 (9) 15 (8) 19 (8) 16 (9) 20 (8)

MAESD 26 (8) 17 (8) 21 (8) 16 (9) 17 (9) 23 (8)

H, G, EG, and FG stand for HAR, GARCH, EGARCH, and FIGARCH, respectively, whereas Q, L and CJ stand for error measurements, inverse leverage and continuous 
and jump components, respectively. The rejections in favor of innovations (values outside parenthesis) against the rejections not in favor of innovations (values inside 
the parenthesis) at 10% significance level

Figure 2 illustrates the results of the MCS procedure 
on the out-of-sample forecasting performance of all the 
models. The p-values > 0.1 specify that the compatible 

models such as the HARQ-L-CJ-GARCH and the 
HARQ-L-CJ-FIGARCH models were in �̂�𝑀0.9

∗   according 
to the specified loss functions. Therefore, we can say 
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that these two models are the superior models for the 
volatility forecasts of Bitcoin returns. Furthermore, 
models like the HAR-CJ-GARCH, HAR-CJ-FIGARCH, and 
HARQ-L-FIGARCH were in �̂�𝑀0.9

∗   according to the loss 
functions, therefore, are declared favorable models in 
this study. Moreover, the application of the GARCH and 
the FIGARCH specifications for modeling the realized 

volatility was found more suitable as compared to the 
EGARCH structure. These findings showed that HAR-CJ 
based models (models 8-14) have more p-values > 0.1 
as compared to the HAR based (models 1-7). It further 
justified that dividing the RV into continuous and jumps 
components enhanced the volatility forecast of Bitcoin. 
These results are in accordance with the in-sample fit and 
further confirmed the results of Table 5. 

FIGURE 2. Comparison of the out-of-sample forecast by MCS test -values for all the models results 
for the period from 6 June 2018 to 31 May 2020. H, G, EG and FG stand for HAR, GARCH, EGARCH 
and FIGARCH, respectively, whereas Q, L and CJ stand for error measurements, inverse leverage and 

continuous and jump components, respectively. Bold horizontal line represent p-value = 0.1

The MCS test was also applied by considering a sub-
period of successive 30-day duration since the difference 
in the results of the model comparison can occur as 
time varies. The significance level is set to 10% and the 
results were shown in Figure 3. The height of the bars 
represent the persistence/survival counts in �̂�𝑀0.9

∗   of all 
the prescribed models. The leading survival frequency in 
each loss function was marked with a   . It was concluded 
from the figure that the survival frequencies of the HAR-
GARCH and HAR-FIGARCH models are much greater 
than the benchmark HAR model. Similarly, the HAR-CJ-
GARCH and HAR-CJ-FIGARCH models have much greater 
survival frequencies than the HAR-CJ model whereas 
the survival frequencies for HAR-EGARCH models were 
found slightly greater than the standard HAR model. 

Finally, the survival frequencies for the HAR-CJ-EGARCH 
model were not found higher than the HAR-CJ model.

These results indicate that whether the jumps are 
included in RV models or not, modeling the variance 
of RV with models such as GARCH and the FIGARCH 
specifications successfully improves the out-of-sample 
forecast, though it was not found true for the EGARCH 
specification. Hence, the GARCH and FIGARCH 
specifications may be considered more appropriate for 
modeling the volatility of RV than the EGARCH. These 
results were consistent with the results presented in Figure 
2. Moreover, the MCS procedure showed that survival 
counts for "Q" and "L" structures are mostly larger as 
compared to their standard models. It also showed that 
including these features in RV estimators successfully 
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enhanced volatility forecasts of the HAR-GARCH-type 
models. The HAR-CJ structure leads to larger survival 
counts indicating that dividing the RV into continuous 
and jumps components enhanced volatility forecasts 
of Bitcoin returns. The total survival frequencies of the 
HAR-GARCH and HAR-FIGARCH models were 181 and 
178, respectively, while the total survival frequencies 
for the HAR-CJ model were 159. These results showed 
that the improvement in forecasting performance by 
including jumps are less significant than properly 
modeling the error variance. Finally, the models like 
HARQL-CJ-FIGARCH and HARQ-L-CJ-GARCH were 
found high in ranking among all other competing models 
as they attained the largest (250) and second-largest 
(226) survival frequencies. For these two models, the 
survival counts range was from 31 to 49 and 30 to 44, 
respectively, indicating the HARQL-CJ-FIGARCH model 
as the best performing model for the Bitcoin volatility 
forecast in this study.

Figure 4 shows the realized volatility forecasts from 
the HAR and HARQ-L-CJ-FIGARCH models along with the 
observed realized variance from 6 June 2018 to 31 May 
2020 (725 trading days). It was evident that the forecasted 
realized volatilities are close to the observed realized 

variance. Besides, the HARQ-L-CJ-FIGARCH provides 
higher forecast accuracy as compared to the HAR model. 
These findings further confirmed the tabulated results 
presented earlier. 

Few past studies have analyzed the high-frequency 
data of Bitcoin. Urquhart (2017) and Yu (2019) compared 
the HAR and GARCH models whereas Kochling et al. 
(2020) and Hattori (2020) focused on GARCH-type 
models to forecast the RV of Bitcoin. Ahmed (2020) 
proxied the intraday Bitcoin price variability by four 
different measures. However, the present study applied 
innovative HAR-type models combined with different 
GARCH specifications for better modeling and forecasting 
of the volatility of Bitcoin. Our results suggested that 
decomposing the total realized volatility into jumps 
and the continuous components provided improved 
forecasts. Our findings are somewhat consistent with 
Yu (2019) who declared the best HAR models having 
leverage and jumps components. Additionally, this 
study exploited the measurement errors and investigated 
both the jumps and inverse leverage effect in the HAR-
GARCH-type models. Similar to the present study, Catania 
and Sandhold (2019) illustrated that the inclusion of the 
leverage component improved the performance of the 

FIGURE 3. Comparison of the out of sample forecast result by survival frequencies in the model 
confidence set  for all the models for the period from 6 June 2018 to 31 May 2020. H, G, EG and FG 

stand for HAR, GARCH, EGARCH and FIGARCH, respectively whereas Q, L and CJ stand for error 
measurements, inverse leverage and continuous and jump components, respectively. Significance level at 

10% for the MCS.    indicates the leading survival frequencies with respect to prescribed loss functions
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benchmark RV models.  However, the inclusion of jumps 
did not provide better predictions in their study all the 
time. Different from their study, Our findings showed 
that the combination of HAR-GARCH-type models with 
jumps and inverse leverage effect improved the accuracy 
of volatility forecasts of Bitcoin as compared to the simple 
HAR or GARCH-type models. Our findings are also in 
line with Ahmed (2020) and Kochling et al. (2020) who 
showed that the inclusion of jumps improves the volatility 
forecasts. 

CONCLUSION

In this article, an effort was made to model and forecast 
the Bitcoin volatility using high-frequency prices. 
The volatility of realized volatility was modeled with 
various GARCH-type models. We then extended the 
HAR-GARCH-type models to the HARQ-L-CJ-GARCH-
type models by exploiting the measurement error in the 
realized volatility estimators and investigated the effect 
of inverse leverage and jump. Our findings showed that 
the latter models significantly outperformed the former 
in in-sample fit. Besides, we also found an improvement 
in the in-sample fit when jumps are included in the 
volatility models. The DM test confirmed the superior 
out-of-sample forecasting performance of HARQ-L-
GARCH-type models under various loss functions. The 
MCS test showed that the forecasting performance of 
the HAR-type models can be effectively improved by 

modeling the time-varying volatility of the residual 
with GARCH-type models. Similarly, the inclusion of 
measurement errors and leverage effect in HAR-GARCH-
types models further improved the predictive accuracy. 
The performance of HARQ-L-GARCH-type models was 
found better than HAR-GARCH-type models. Moreover, 
we found an improvement in the out-of-sample forecasts 
when jumps were included in the volatility models. 
Finally, the HARQ-L-CJ-FIGARCH model attained 
superior forecasting accuracy for Bitcoin volatility as 
compared to other competing models validating the 
importance of inclusion of jumps, inverse leverage 
effect, and exploiting the measurement error in the 
realized volatility estimators. The findings of this study 
may benefit individual investors and risk managers who 
wish to minimize risks and diversify their portfolios to 
maximize profits in Bitcoin’s investment. 
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