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ABSTRACT  

Unlike a Shewhart chart, the exponentially weighted moving average (EWMA) and 
cumulative sum (CUSUM) charts are memory control charts (also known as time weighted 
control charts) that are used for a quick detection of small shifts in the process mean. Control 
charts that combine information from present and past samples, like the EWMA and CUSUM 
charts have the ability to detect process changes based on past information. A trend could exist 
on the EWMA and CUSUM charts, where all the sample points fall in one particular direction 
on the charts, for example, only above or below the center line. For this case, if a shift in the 
process mean occurs in the opposite sides of the chart, then such a shift cannot be detected 
quickly. This phenomenon is known as the inertia problem. A simulation study is conducted 
using Statistical Analysis System (SAS) to study and compare the effects of inertia on EWMA 
and CUSUM charts. It is found that the EWMA chart is affected by the inertia problem but not 
the CUSUM chart.  
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ABSTRAK 

Berbeza daripada carta Shewhart, carta purata bergerak berpemberat eksponen (EWMA) dan 
hasil tambah longgokan (CUSUM) adalah carta kawalan beringatan (juga dikenali sebagai 
carta kawalan berpemberatkan masa) yang digunakan untuk pengesanan cepat anjakan kecil 
dalam min proses. Carta kawalan yang menggabungkan maklumat daripada sampel baru dan 
lama, seperti carta EWMA dan CUSUM mempunyai kebolehan untuk mengesan anjakan 
dalam proses berdasarkan maklumat lama. Suatu tren mungkin wujud pada carta-carta EWMA 
dan CUSUM, yang mana semua titik sampel jatuh pada suatu arah tertentu di atas carta, 
misalnya, hanya di atas atau di bawah garisan tengah. Untuk kes ini, jika anjakan dalam min 
proses berlaku dalam arah yang bertentangan di atas carta, maka anjakan sedemikian tidak 
dapat dikesan dengan cepat. Fenomena ini dikenali sebagai masalah inersia. Suatu kajian 
simulasi dijalankan dengan menggunakan Sistem Analisis Berstatistik (SAS) untuk mengkaji 
dan membandingkan kesan inersia ke atas carta EWMA dan CUSUM. Adalah didapati 
bahawa carta EWMA dipengaruhi oleh masalah inersia tetapi bukan carta CUSUM.      

Kata kunci: carta EWMA; carta CUSUM; inersia; purata panjang larian (ARL)  

                       

1. Introduction  

In statistical process control (SPC) implementation, Shewhart control charts are useful in the 
phase I process, where the process is likely to be out-of-control due to large shifts 
(Montgomery 2005). The patterns of the sampling points on Shewhart charts give information 
concerning the behaviour of assignable causes. Shewhart charts are slow in detecting small 
shifts as they use only the information contained in the last sampling point.    
 The exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 
charts are time weighted control charts that are suggested as superior alternatives to the 
Shewhart chart when the detection of small shifts are desired. The EWMA and CUSUM 
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charts have comparable average run length (ARL) performances (Montgomery 2005). The 
ARL of a chart is defined as the expected number of sample points that must be plotted on a 
chart before the first out-of-control is signaled. Both the EWMA and CUSUM charts are more 
commonly used for individual observations, i.e., the sample size, n = 1, instead of subgrouped 
data, where n > 1. The EWMA chart was proposed by Roberts (1959) while the CUSUM 
chart originated from Page (1954). 

Some of the recent works on EWMA charts are as follow: Serel and Muskowitz (2008) 
presented an EWMA cost minimization model to design a joint control scheme for the mean 
and variance based on economic and statistical performance criteria. Apley and Lee (2008) 
developed analytical expressions for the sensitivity of EWMA charts applied to residuals and 
to autocorrelated data. Eyvazian et al. (2008) proposed an exponentially weighted moving 
sample variance chart to monitor process variance when the sample size is one. Shu (2008) 
extended the adaptive EWMA chart for process location to monitoring process dispersion. 
Sheu et al. (2007) suggested a Poisson generally weighted moving average chart which 
improves upon the ARL performance of the Poisson EWMA chart. Castagliola et al. (2007) 
discussed the construction of a variable sampling interval S2 EWMA chart for monitoring of 
the sample variance of a process. An EWMA chart for detecting joint shifts in both the mean 
and variance for autocorrelated data was proposed by Thaga and Yadavalli (2007). Chou et al. 
(2006) developed the economic design of variable sampling intervals EWMA charts to 
determine the values of six test parameters.  

Recent works on CUSUM charts include the following: A CUSUM chart based on both 
adaptive and variable sampling interval (VSI) features are developed by Luo et al. (2009). Wu 
et al. (2009) discussed the construction of an upward CUSUM chart in the presence of 
inspection error. Zantek (2008) proposed an analytic method for computing the run-length 
distribution of the CUSUM of a statistic. Shu et al. (2008) presented a Markovian-type mean 
estimating procedure in the conventional CUSUM scheme to update its reference value in an 
adaptive way. MacEachern et al. (2007) provided a robust-likelihood CUSUM chart that 
discounts outliers and yet has the ability to detect large shifts quickly. Testik (2007) 
quantified the effect of estimated process mean on the conditional and marginal performance 
of the Poisson CUSUM chart. Zhang and Wu (2007) investigated the weighted loss function 
(WLC) CUSUM chart with a variable sample size feature. Wu et al. (2007) proposed a 
variable sample size and sampling interval WLC CUSUM chart. 

The layout of this paper is as follows: Section 2 and 3 explain the EWMA and CUSUM 
charts, respectively. Section 4 studies and compares the effects of inertia on EWMA and 
CUSUM charts. Conclusions and suggestions for future works are drawn in Section 5. 

2. An EWMA Control Chart  
The EWMA chart was introduced by Roberts (1954). Crowder (1987) and Lucas and 
Saccucci (1990) provided excellent discussions on the EWMA chart. The EWMA chart is 
more desirable than the Shewhart chart in the detection of small shifts. Let X1, X2, …, 
represent a sequence of measurements from a  2, N  distribution. The EWMA chart is 
based on the following statistic (Montgomery 2005): 
 

1(1 ) ,  for 1,2,     i i iZ X Z i  .            (1) 
 

Note that 0 <   1 is a smoothing constant and the starting value is 0 0 Z . Here, 0  is the 
desired mean value when the process is in-control. When 0  is unknown, the average of the 
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preliminary data can be used as the starting value, i.e., 0 Z X . The limits of the EWMA 
chart are 
 

   2
0UCL 1 1

2
          

iL                  (2a) 

and 

 2
0LCL 1 1

2
          

iL ,     (2b) 

 
where L is the factor that controls the width of the limits. An out-of-control is signaled when 
Zi exceeds the limit in Equation (2a) or (2b). Several theoretical studies in selecting the  and 
L combination based on some ARL properties of the EWMA chart were made by Crowder 
(1987) and Lucas and Saccucci (1990). The term  21 1 i   

 
 approaches unity as i becomes 

larger. Thus, the asymptotic limits of an EWMA chart are as follow: 
 




2
UCL 0 L        (3a) 

and 

  



2

LCL 0 L .       (3b) 

Crowder (1989) provided plots for selecting the  and L combination based on a desired 
ARL0 value for the case of asymptotic limits. 

3. A CUSUM Control Chart 

The CUSUM chart was proposed by Page (1954). Several versions of CUSUM charts exist 
but the tabular CUSUM is the most commonly used. The tabular CUSUM works by 
accumulating deviations from the target mean, 0  that are above the target with a statistic C+ 
and accumulating deviations from 0  that are below the target with another statistic C . The 
statistics C+ and C  are called one-sided upper and lower CUSUMs, respectively, and are 
computed as follow (Montgomery 2005): 
 

+ +
0 1= max[0, ( + ) + ] i i iC X K C ,  for i = 1, 2, ...               (4a) 

and 
0 1= max[0, ( ) + ] 

  i i iC K X C ,  for i = 1, 2, ...,               (4b) 
 

where +
0 0= 0 C C . The reference value, K is usually chosen as one-half the magnitude of 

the shift, i.e.,  
1 0| |=

2
 K .                                                 (5) 

Here, 1  is the out-of-control mean, where a quick detection is needed. If either 
iC  or 

iC  
exceeds the decision interval, H, the process is considered as out-of-control. Gan (1991) gave 
plots for selecting H and K values based on a desired ARL0 value. In addition, by defining 
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hH  and kK , Hawkins (1993) gave combinations of (h, k) values (see Table 1) based 
on an ARL0 of 370, which corresponds to a false alarm rate of 0.0027. In general, k is chosen 
relative to the size of the shift, where a quick detection is desired, i.e., k = 0.5. Here,  is the 
size of the shift in standard deviation units. A widely used value in practice is k = 0.5. After k 
is chosen, one should choose h to give the desired ARL0 performance.  
 

Table 1: Combinations of (h, k) values for a two-sided tabular CUSUM chart based on 0ARL  = 370 

h 8.01 4.77 3.34 2.52 1.99 1.61 
k 0.25 0.5 0.75 1.0 1.25 1.5 

 

4. A Study on the Effects of Inertia on EWMA and CUSUM Charts 

A simulation study is conducted using Statistical Analysis System (SAS) version 9 to 
compute the ARL values of the EWMA and CUSUM charts in the presence of inertia. Two 
different cases are considered, i.e., when the process is in-control and out-of-control. The 
sample size, n = 1 is used as the EWMA and CUSUM charts are usually used for individual 
measurements. The in-control process is assumed to follow a standard normal distribution, 
i.e., 0 0  . Similar results will be obtained for a normal distribution having other values of 
mean and variance. For the design of upper-sided EWMA and upper-sided CUSUM charts, 
the in-control ARL (ARL0) of 500 is considered. This is equivalent to setting the false alarm 
rate as 0.002. For the upper-sided EWMA chart based on the EWMA statistic in Equation (1) 
and UCL in Equation (3a), the values of the smoothing constant considered are {0.1, 0.3, 
0.5, 0.7, 0.9}. The corresponding values of L are determined to be L{2.52, 2.78, 2.85, 2.87, 
2.87}, respectively, for the asymptotic UCL, using the method described in Crowder (1989).  

For the upper-sided CUSUM chart, based on the CUSUM statistic in Equation (4a), the 
values of {0.2, 0.4, 0.6, 0.8, 1}K  are considered. The corresponding values of 

{8.32, 5.20, 3.75, 2.90, 2.32}H  are found from Gan (1991).  
Various levels of inertia are considered by using different levels of headstarts. The 

headstarts used for both the upper-sided EWMA and upper-sided CUSUM charts are 
+
0/ {0, 0 2 0 3 0 9 }. , . ,..., .   0Z C w w w , where  

 
  0UCL  w                       (6) 

and 
  0  w H ,                      (7) 
 
for the upper-sided EWMA and upper-sided CUSUM charts, respectively. The ARL 
performances for the two charts in detecting increasing shifts in the mean are studied. Here, 
the mean shifts from its target value, 0  to the out-of-control value 1 0     , where 

{0, 0.05, 0.10, 0.20, 0.5, 1, 2, 4}  are considered. Note that the lower-sided EWMA and 
lower-sided CUSUM charts are not considered as similar results will be obtained due to the 
symmetrical properties of the two charts. 

Due to space constraint, only the ARL profiles for the upper-sided EWMA chart when  = 
0.1, 0.5 and 0.9 and for the upper-sided CUSUM chart when K = 0.2, 0.6 and 1, are shown in 
Tables 2 and 3, respectively.  
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It is shown in Table 2 that the problem of inertia on the EWMA chart is more pronounced 
for a smaller value of . For example, the out-of-control ARL (ARL1) profiles for  = 0.05 
and {0, 0.1 , 0.2 , ... , 0.9 }   0Z w w w  are 1ARL  {301.1, 303.8, 305.6, …, 315.9}, 

1ARL {383.7, 384.2, 384.6, …, 386.1} and 1ARL {419.4, 419.4, 419.4, …, 419.9} when 
 = 0.1, 0.5 and 0.9, respectively. It is obvious that as the value of Z0 increases, or similarly, 
when the level of inertia increases, the difference in the ARL1 values between say, Z0 = 0 and 
Z0 = 0.9w, is more pronounced for a smaller . Thus, the speed of an upper-sided EWMA 
chart in detecting an increasing shift in the mean decreases as the level of inertia increases and 
the severity of this problem is greater for a smaller .  

Table 2: ARL profiles for the upper-sided EWMA chart 

  
Z0 

0 0.1w 0.2w 0.3w 0.4w 0.5w 0.6w 0.7w 0.8w 0.9w 

0.1 
(L=2.52) 

0.00 500.0 502.0 503.3 504.7 506.5 507.3 509.7 511.2 512.2 513.2 
0.05 301.1 303.8 305.6 307.3 309.7 311.2 312.2 313.6 315.2 315.9 
0.10 195.9 198.2 200.6 201.9 203.2 204.7 205.9 207.1 208.2 209.1 
0.20 93.5 94.8 96.0 97.4 98.3 99.5 100.4 101.1 101.8 102.4 
0.50 24.2 25.1 25.8 26.6 27.3 28.0 28.6 29.2 29.7 30.3 
1.00 8.9 9.4 9.9 10.4 10.8 11.2 11.6 12.0 12.4 12.7 
2.00 3.9 4.2 4.4 4.7 4.9 5.2 5.4 5.6 5.9 6.1 
4.00 2.1 2.1 2.3 2.4 2.5 2.7 2.8 3.0 3.1 3.2 

            

0.5 
(L=2.85) 

0.00 500.0 500.2 500.4 501.0 501.1 501.5 501.8 502.1 502.1 502.6 
0.05 383.7 384.2 384.6 384.8 385.1 385.1 385.2 385.3 385.9 386.1 
0.10 305.0 305.2 305.5 305.6 306.0 306.1 306.2 306.3 306.4 306.4 
0.20 188.8 189.1 189.7 189.9 190.0 190.3 190.3 190.5 190.6 190.9 
0.50 55.3 55.5 55.7 55.8 56.0 56.1 56.2 56.4 56.5 56.6 
1.00 12.8 13.0 13.2 13.3 13.5 13.7 13.7 13.9 14.0 14.0 
2.00 3.1 3.3 3.4 3.5 3.6 3.6 3.7 3.8 3.9 4.0 
4.00 1.3 1.3 1.4 1.4 1.5 1.6 1.6 1.7 1.8 1.8 

            

0.9 
(L=2.87) 

0.00 500.0 500.0 500.1 500.1 500.1 500.2 500.3 500.6 500.7 500.7 
0.05 419.4 419.4 419.4 419.8 419.8 419.8 419.8 419.9 419.9 419.9 
0.10 351.2 351.2 351.2 351.2 351.2 351.2 351.2 351.2 351.2 351.5 
0.20 250.7 250.7 250.8 250.8 250.8 250.8 250.8 250.8 250.8 250.8 
0.50 98.1 98.1 98.1 98.3 98.3 98.3 98.5 98.6 98.6 98.7 
1.00 26.6 26.7 26.7 26.7 26.8 26.8 26.9 27.0 27.0 27.1 
2.00 4.4 4.5 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 
4.00 1.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 

 

In Table 3, we observe that inertia has little effect on the ARL1 performance of the upper-
sided CUSUM chart, irrespective of the value of K when  is small or moderate. This is 
because for an arbitrary K, with a small or moderate , the difference in the ARL1 values 
between say, +

0 = 0C  and +
0 = 0.9C w , is negligible. However, the effect of inertia on the 

upper-sided CUSUM chart, in terms of the percentage of difference between the ARL1 values, 
of say +

0 = 0C  and +
0 = 0.9C w , increases with . 

The usefulness of the EWMA and CUSUM charts lie in their abilities in detecting small 
shifts, where both charts have equal ARL1 performances. The values of 0 <   0.25 and 0 < 



 
Michael B.C. Khoo & S.Y. Teh 

78 

K < 0.5, are usually used in practice, as smaller values of λ  and K enable the EWMA and 
CUSUM charts, respectively, to respond quickly to a small shift. In view of this, it can be 
concluded that the use of an upper-sided CUSUM chart, instead of an upper-sided EWMA 
chart, is recommended if past experience indicates that a process is likely to be affected by 
inertia, as Table 2 shows that the latter is easily affected by inertia for a small value of  while 
Table 3 indicates that the effect of inertia on the former is negligible, irrespective of the value 
of K.   

Table 3: ARL profiles for the upper-sided CUSUM chart 

K  
+
0C  

0 0.1w 0.2w 0.3w 0.4w 0.5w 0.6w 0.7w 0.8w 0.9w 

0.2 
(H=8.32) 

0.00 500.0 500.5 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 
0.05 299.3 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 300.2 
0.10 188.1 188.8 188.8 188.8 188.8 188.8 188.8 188.8 188.8 188.8 
0.20 89.7 90.4 90.6 90.6 90.6 90.6 90.6 90.6 90.6 90.6 
0.50 26.0 26.8 27.0 27.1 27.1 27.1 27.1 27.1 27.1 27.1 
1.00 11.2 11.8 12.1 12.2 12.2 12.2 12.2 12.2 12.2 12.2 
2.00 5.3 5.7 6.0 6.2 6.2 6.3 6.3 6.3 6.3 6.3 
4.00 2.7 3.0 3.2 3.4 3.5 3.6 3.7 3.7 3.7 3.7 

            

0.6 
(H=3.75) 

0.00 500.0 500.6 500.9 501.0 501.1 501.1 501.1 501.1 501.1 501.1 
0.05 360.3 361.0 361.1 361.2 361.2 361.2 361.2 361.2 361.2 361.2 
0.10 262.6 263.2 263.3 263.7 263.7 263.7 263.8 263.8 263.8 263.8 
0.20 142.4 142.7 142.9 143.2 143.3 143.3 143.3 143.3 143.3 143.3 
0.50 35.0 35.4 35.5 35.6 35.7 35.7 35.7 35.7 35.7 35.7 
1.00 9.3 9.7 9.9 10.1 10.2 10.2 10.3 10.3 10.3 10.3 
2.00 3.4 3.6 3.8 4.0 4.1 4.2 4.3 4.3 4.4 4.4 
4.00 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.4 2.5 

            

1.0 
(H=2.32) 

0.00 500.0 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 500.6 
0.05 391.2 391.7 392.1 392.1 392.2 392.2 392.2 392.2 392.2 392.2 
0.10 304.7 305.0 305.1 305.2 305.2 305.2 305.3 305.3 305.3 305.3 
0.20 193.7 194.3 194.8 195.0 195.1 195.2 195.2 195.2 195.2 195.2 
0.50 56.1 56.6 56.8 57.0 57.2 57.2 57.2 57.2 57.2 57.2 
1.00 12.3 12.5 12.7 13.0 13.1 13.2 13.3 13.3 13.3 13.3 
2.00 3.1 3.3 3.4 3.6 3.7 3.8 3.9 3.9 4.0 4.0 
4.00 1.3 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.0 

5. Conclusions  

This paper compares the ARL1 performances of the upper-sided EWMA and upper-sided 
CUSUM charts. Since both EWMA and CUSUM charts have comparable performances in the 
detection of a small shift, a question may arise as to which chart to use when inertia is present 
in the underlying process. This paper provides the answer to this potential, yet practical 
question which addresses any doubts faced by practitioners. This study can be extended to the 
multivariate EWMA (MEWMA) and multivariate CUSUM (MCUSUM) charts, as most data 
are multivariate in nature. Future works could also consider the inertia problem of the EWMA 
and CUSUM charts and that of the MEWMA and MCUSUM charts when the underlying 
distribution is nonnormal, i.e., for either skewed or heavy tailed distributions as the normality 
assumption is often violated in most real situations.  
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