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NOTES ON MEROMORPHIC FUNCTIONS WITH POSITIVE
COEFFICIENTS DEFINED BY BESSEL FUNCTION

(Catatan Berkenaan Fungsi Meromorfi Berpekali Positif yang Ditakrif oleh Fungsi Bessel)

BOLINENI VENKATESWARLU∗, PINNINTI THIRUPATHI REDDY, SIBEL YALÇIN &
SETTIPALLI SRIDEVI

ABSTRACT

In this article, a new subclass of univalent meromorphic under Bessel mapping function is
defined. Some properties such as coefficient estimates, starlikeness and convexity radii, and
extreme points are derived. Finally, partial sums and neighbourhood properties are given.
Keywords: meromorphic; extreme point; partial sums; neighbourhood

ABSTRAK

Dalam kertas kerja ini, suatu subkelas fungsi meromorfi univalen baharu dibawah pemetaan
Bessel ditakrif. Beberapa sifat seperti anggaran pekali, jejari kebakbintangan dan kecembungan,
dan titik ekstrim diperoleh. Akhir sekali, hasil tambah separa dan sifat kejiranan diberi.
Kata kunci: meromorfi; titik ekstrim; hasil tambah separa; kejiranan

1. Introduction

Let Ω signify the type’s meromorphic mapping class

ϑ(ø) =
1

ø
+

∞∑
ℓ=1

ϱℓø
ℓ (1)

which are defined in the punctured disc

∆∗ = {ø : ø ∈ C and 0 < |ø| < 1} = ∆ \ {0},

are holomorphic. Also, let Ωp indicate the subclass of Ω of mapping of Eq. (1) with ϱℓ ≥ 0.
A mapping ϑ ∈ Ω is known to be meromorphic starshaped of order ϖ if it fulfils

ℜ
{
−øϑ′(ø)

ϑ(ø)

}
> ϖ

for some ϖ, (0 ≤ ϖ < 1) and for all ø ∈ ∆∗. Further, a mapping ϑ ∈ Ω is known to be
meromorphically convex of order ϖ if it fulfils

ℜ
{
−1− øϑ′′(ø)

ϑ′(ø)

}
> ϖ

for some ϖ, (0 ≤ ϖ < 1) and for all ø ∈ ∆∗.
Pommerenke (1963), Miller (1970), Mogra et al. (1985), Cho (1990), Cho et al. (2003),

Aouf (1989, 1991), and Venkateswarlu et al. (2019) have described and examined some sub-
classes of Ω.
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We remember the first-order generalised Bessel mapping γ (see Deniz et al. (2011)), which
is symbolised by

w(ø) =

∞∑
ℓ=0

(−ι)ℓ

ℓ!Γ(γ + ℓ+ b+1
2 )

(ø
2

)2ℓ+γ

(ø ∈ ∆),

the Euler Gamma mapping is represented as Γ. This is the second-order linear homogeneous
differential equation’s solution,

ø2w′′(ø) + bøw′(ø) + [ιø2 − γ2 + (1− b)γ]w(ø) = 0,

where ι, γ, b ∈ R+. For more information, see Watson (1994). In general, when it comes to the
Bessel mapping w, the mapping is added φ as

φ(ø) = 2γΓ

(
γ +

b+ 1

2

)
øℓ,

by using Pochhammer symbol for the Euler gamma mapping (a)µ exact for a ∈ C as

(ξ)µ =
Γ(ξ + µ)

Γ(ξ)
=

{
1, (µ = 0);
ξ(ξ + 1)(ξ + 2) · · · (ξ + ℓ− 1), (µ = ℓ ∈ {1, 2, 3 · · · } = N).

The mapping φ(ø), is represented belows,

φ(ø) =
1

ø
+

∞∑
ℓ=0

(−ι)ℓ+1

4ℓ+1(ℓ+ 1)!(τ)ℓ+1
øℓ

(
τ = γ +

b+ 1

2
/∈ Z−

0 = {0,−1,−2, · · · }
)
.

For ϑ ∈ Ω indicate by Eq. (1) and g ∈ Ω,

g(ø) =
1

ø
+

∞∑
ℓ=1

bℓø
ℓ,

we’ve described the Hadamard product of ϑ and g by

(ϑ ∗ g)(ø) = 1

ø
+

∞∑
ℓ=1

ϱℓbℓø
ℓ.

The Bessel operator S τ ι by the convolution that corresponds to the mapping φ is defined by

S ι
τ ϑ(ø) = (φ ∗ ϑ)(ø) = 1

ø
+

∞∑
ℓ=0

(−ι
4

)ℓ+1
ϱℓ

(ℓ+ 1)!(τ)ℓ+1
øℓ

=
1

ø
+

∞∑
ℓ=1

ϕ(ℓ, τ, ι)ϱℓø
ℓ, (2)

where ϕ(ℓ, τ, ι) =
(−ι

4 )
ℓ

(ℓ)!(τ)ℓ
.

Its easy to check from Eq. (2) that

ø[S ι
τ+1ϑ(ø)] = τS ι

τ ϑ(ø)− (τ + 1)S ι
τ+1ϑ(ø). (3)

We are going to create subclasses σ∗
p(ℵ, ℘, τ, ι) of Ωp based on Sivaprasad et al. (2005), Atshan

et al. (2007) and Venkateswarlu et al. (2019).
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Definition 1.1. Let σ∗
p(ℵ, ℘, τ, ι) be the subclass of Ωp comprising of mapping of the type Eq.

(1) and fulfilling

−ℜ
(
ø(S ι

τ ϑ(ø))′

S ι
τ ϑ(ø)

+ ℵ
)

> ℘

∣∣∣∣ø(S ι
τ ϑ(ø))′

S ι
τ ϑ(ø)

+ 1

∣∣∣∣ . (4)

Lemma 1.2. To demonstrate our arguments, we must use the associated lemmas introduced by
Aqlan et al. (2004). Let ℵ ∈ R and d ∈ C. Then

(i) ℜ(d) ≥ ℵ ⇔ |d+ 1− ℵ| − |d− 1 + ℵ| ≥ 0.

(ii) −ℜ(d) ≥ ℘|d+ 1|+ ℵ ⇔ −ℜ
[
d(1 + ℘eiθ) + ℘eiθ

]
≥ ℵ,−π ≤ θ ≤ π.

The primary objective of this research is to analyze some objects or items mapping theory
characteristics for the class σ∗

p(ℵ, ℘, τ, ι).

2. Coefficient estimates

In this section, we establish the necessary and sufficient conditions for a mapping ϑ ∈ σ∗
p(ℵ, ℘, τ, ι).

Theorem 2.1. Let ϑ ∈ Ωp be indicate by Eq. (1). Then ϑ ∈ σ∗
p(ℵ, ℘, τ, ι)

⇔
∞∑
ℓ=1

[ℓ(1 + ℘) + (℘+ ℵ)]ϕ(ℓ, τ, ι) ϱℓ ≤ 1− ℵ. (5)

Proof. Let ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Then by Definition 1.1 and applying Lemma 1.2 (ii), it should

suffice to say that

−ℜ
{(

ø(S ι
τ ϑ(ø))′

S ι
τ ϑ(ø)

)
(1 + ℘eiθ) + ℘eiθ

}
> ℵ. (6)

For simply, let

C(ø) = −
[
ø(S ι

τ ϑ(ø))′
]
(1 + ℘eiθ)− ℘eiθS ι

τ ϑ(ø),

D(ø) = S ι
τ ϑ(ø).

Then Eq. (6) is equivalent to

−ℜ
(
C(ø)

D(ø)

)
≥ ℵ.

In view of Lemma 1.2 (i), we have

|C(ø) + (1− ℵ)D(ø)| − |C(ø)− (1− ℵ)D(ø)| ≥ 0.

Now

|C(ø) + (1− ℵ)D(ø)| ≥(2− ℵ)|ø|−1 −
∞∑
ℓ=1

[ℓ(1 + ℘) + (ℵ+ ℘− 1)]ϕ(ℓ, τ, ι) ϱℓ|ø|ℓ,
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and

|C(ø)− (1− ℵ)D(ø)| ≤ℵ|ø|−1 +

∞∑
ℓ=1

[ℓ(1 + ℘) + (ℵ+ ℘+ 1)]ϕ(ℓ, τ, ι) ϱℓ|ø|ℓ.

It’s indicate that

|C(ø) + (1− ℵ)D(ø)| − |C(ø)− (1 + ℵ)D(ø)|

≥2(1− ℵ)|ø|−1 − 2

∞∑
ℓ=1

[ℓ(1 + ℘) + (℘+ ℵ)]ϕ(ℓ, τ, ι) ϱℓ|ø|ℓ

≥0, by the indicate condition Eq. (5).

On the other hand ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Then by Lemma 1.2 (i), we have Eq. (6).

Selecting the values of ø on the positive x-axis the inequality Eq. (6) decreases to

ℜ


(1− ℵ )ø−1 −

∞∑
ℓ=1

[ℓ (1 + ℘eiθ) + (ℵ+ ℘eiθ)]ϕ(ℓ, τ, ι)ϱℓø
ℓ

ø−1 +
∞∑
ℓ=1

ϕ(ℓ, τ, ι)ϱℓøℓ

 ≥ 0.

Since ℜ(−eiθ) ≥ −|eiθ| = −1, the aforementioned difference is reduced to

ℜ


1− ℵ −

∞∑
ℓ=1

[ℓ(1 + ℘) + (℘+ ℵ)]ϕ(ℓ, τ, ι)ϱℓrℓ+1

1 +
∞∑
ℓ=1

ϕ(ℓ, τ, ι) ϱℓrℓ+1

 ≥ 0.

Letting r → 1− , we’ve found the disparity Eq. (5).

Corollary 2.2. If ϑ ∈ σ∗
p(ℵ, ℘, τ, ι), then

ϱℓ ≤
1− ℵ

[n(1 + ℘) + (℘+ ℵ)]ϕ(n, τ, ι)
. (7)

Theorem 2.3. If ϑ ∈ σ∗
p(ℵ, ℘, τ, ι), then for 0 < |ø| = r < 1,

1

r
− 1− ℵ

(2℘+ ℵ+ 1)ϕ(1, τ, ι)
r ≤ |ϑ(ø)| ≤ 1

r
+

1− ℵ
(2℘+ ℵ+ 1)ϕ(1, τ, ι)

r. (8)

The mapping has produced an accurate findings

ϑ(ø) =
1

ø
+

1− ℵ
(2℘+ ℵ+ 1)ϕ(1, τ, ι)

ø. (9)

Proof. Since ϑ(ø) = 1
ø +

∞∑
ℓ=1

ϱℓø
ℓ, we have

|ϑ(ø)| = 1

r
+

∞∑
ℓ=1

ϱℓr
ℓ ≤ 1

r
+ r

∞∑
ℓ=1

ϱℓ. (10)
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Since

(2℘+ ℵ+ 1)ϕ(1, τ, ι) ≤ [ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι), ℓ ≥ 1,

applying Theorem 2.1, we have

(2℘+ ℵ+ 1)ϕ(1, τ, ι)

∞∑
ℓ=1

ϱℓ ≤
∞∑
ℓ=1

[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)ϱℓ

≤ 1− ℵ

⇒
∞∑
ℓ=1

ϱℓ ≤
1− ℵ

(2℘+ ℵ+ 1)ϕ(1, τ, ι)
.

From Eq. (10), we have

|ϑ(ø)| ≤ 1

r
+

1− ℵ
(2℘+ ℵ+ 1)ϕ(1, τ, ι)

r

and

|ϑ(ø)| ≥ 1

r
− 1− ℵ

(2℘+ ℵ+ 1)ϕ(1, τ, ι)
r.

The mapping has produced an accurate findings ϑ(ø) = 1
ø + 1−ℵ

(2℘+ℵ+1)ϕ(1,τ,ι) ø.

Corollary 2.4. If ϑ ∈ σ∗
p(ℵ, ℘, τ, ι) then

1

r2
− 1− ℵ

(2℘+ ℵ+ 1)ϕ(1, τ, ι)
≤ |ϑ′(ø)| ≤ 1

r2
+

1− ℵ
(2℘+ ℵ+ 1)ϕ(1, τ, ι)

and Eq. (9) is sharp.

3. Extreme points

Theorem 3.1. Let ϑ0(ø) =
1
ø and

ϑℓ(ø) =
1

ø
+

∞∑
ℓ=1

1− ℵ
[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)

øℓ, ℓ ≥ 1. (11)

Then ϑ ∈ σ∗
p(ℵ, ℘, τ, ι) ⇔ it can be written in the type

ϑ(ø) =

∞∑
ℓ=0

vℓϑℓ(ø); vℓ ≥ 0 and
∞∑
ℓ=0

vℓ = 1. (12)

Proof. Suppose ϑ(ø) can be written as in Eq. (12). Then

ϑ(ø) =

∞∑
ℓ=0

vℓϑℓ(ø) = v0ϑ0(ø) +

∞∑
ℓ=1

vℓϑℓ(ø)

=
1

ø
+

∞∑
ℓ=1

vℓ
1− ℵ

[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)
øℓ.
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Therefore

∞∑
ℓ=1

vℓ
1− ℵ

[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)
[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)

1− ℵ
øℓ

=

∞∑
ℓ=1

vℓ = 1− v0 ≤ 1.

So from Theorem 2.1, ϑ ∈ σ∗
p(ℵ, ℘, τ, ι).

Conversely, ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Since

ϱℓ ≤
1− ℵ

[ℓ(℘+ 1) + (℘+ ℵ)]ϕ(ℓ, τ, ι)
, ℓ ≥ 1.

We set

vℓ =
[ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

1− ℵ
ϱℓ, ℓ ≥ 1 and v0 = 1−

∞∑
ℓ=1

vℓ.

Then we have

ϑ(ø) =

∞∑
ℓ=0

vℓϑℓ(ø) = v0ϑ0(ø) +

∞∑
ℓ=1

vℓϑℓ(ø). □

4. Properties of Radii

Theorem 4.1. Let ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Then ϑ is meromorphically starshaped of order ℏ, (0 ≤

ℏ < 1) in the unit disc |ø| < r1, where

r1 = inf
ℓ

[
(1− ℏ)[n(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

(1− ℵ )(ℓ+ 2− ℏ)

] 1

ℓ+1

, ℓ ≥ 1.

The mapping has produced an accurate findings ϑ(ø) indicated by Eq. (11).

Proof. The mapping ϑ ∈ σ∗
p(ℵ, ℘, τ, ι) of the type Eq. (1) is meromorphically starshaped of

order ℏ in the disc |ø| < r1 ⇔ it fulfils the condition∣∣∣∣øϑ′(ø)

ϑ(ø)
+ 1

∣∣∣∣ < 1− ℏ. (13)

Since

∣∣∣∣øϑ′(ø)

ϑ(ø)
+ 1

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣
∞∑
ℓ=1

(ℓ+ 1)ϱℓø
ℓ+1

1 +
∞∑
ℓ=1

ϱℓøℓ+1

∣∣∣∣∣∣∣∣ ≤
∞∑
ℓ=1

(ℓ+ 1)ϱℓ|ø|ℓ+1

1−
∞∑
ℓ=1

ϱℓ|ø|ℓ+1

.

The calculation above is less than (1− ℏ) if
∞∑
ℓ=1

(ℓ+2−ℏ)
(1−ℏ) ϱℓ|ø|ℓ+1 < 1.
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Making use of the fact that ϑ(ø) ∈ σ∗
p(ℵ, ℘, τ, ι) ⇔

∞∑
ℓ=1

[ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

1− ℵ
ϱℓ ≤ 1.

Thus, Eq. (13) will be true if

ℓ+ 2− ℏ
1− ℏ

|ø|ℓ+1 <
[ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

1− ℵ
,

or equivalently

|ø|ℓ+1 <
(1− ℏ)[ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

(1− ℵ )(ℓ+ 2− ℏ)
,

which gives the starshaped of the family.

Theorem 4.2. Let ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Then ϑ is meromorphically convex of order ℏ, (0 ≤ ℏ <

1) in the unit disc |ø| < r2, where

r2 = inf
ℓ

[
(1− ℏ)[ℓ(1 + ℘) + (ℵ+ ℘)]ϕ(ℓ, τ, ι)

ℓ(1− ℵ )(ℓ+ 2− ℏ)

] 1

ℓ+1

, ℓ ≥ 1

and Eq. (11) is sharp.

Because the theorem’s evidence is similar to that of Theorem 4.1, we will skip the proof of
Theorem 4.2

5. Partial Sums

Let ϑ ∈ Ωp be a maping of the type Eq. (1). The partial sums are defined as ϑρ described by
Silverman (1997), Silvia (1985) and Aouf Aouf et al. (2006)

ϑρ(ø) =
1

ø
+

ρ∑
ℓ=1

ϱℓø
ℓ, (ρ ∈ N). (14)

We’ll look at partial sums of mapping from the class σ∗
p(ℵ, ℘, τ, ι) in this part and find lower

bounds for the real part of the ratios ϑ to ϑρ and ϑ′ to ϑ′
ρ.

Theorem 5.1. Let ϑ ∈ σ∗
p(ℵ, ℘, τ, ι) be provided by Eq. (1) and indicate the partial sums ϑ1(ø)

and ϑρ(ø) by

ϑ1(ø) =
1

ø
and ϑρ(ø) =

1

ø
+

ρ∑
ℓ=1

ϱℓø
ℓ, (ρ ∈ N \ {1}). (15)

Suppose also that
∞∑
ℓ=1

tℓϱℓ ≤ 1, where

tℓ ≥

{
1 , if ℓ = 1, 2, · · · , ρ
[ℓ(1+℘) +(ℵ+℘)]ϕ(ℓ,τ,ι)

(1−ℵ) , if ℓ = ρ+ 1, ρ+ 2, · · · . (16)
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Then ϑ ∈ σ∗
p(ℵ, ℘, τ, ι). Moreover

ℜ
(

ϑ(ø)

ϑρ(ø)

)
> 1− 1

tρ+1
(17)

and

ℜ
(
ϑρ(ø)

ϑ(ø)

)
>

tρ+1

1 + tρ+1
. (18)

Proof. For the coefficient tℓ indicate by Eq. (16), it’s not difficult to establish this

tρ+1 > tρ > 1. (19)

Therefore, we have
ρ∑

ℓ=1

ϱℓ + tρ+1

∞∑
ℓ=ρ+1

ϱℓ ≤
∞∑
ℓ=1

ϱℓtρ ≤ 1, (20)

by using the hypothesis Eq. (16). By forming

χ1(ø) = tρ+1

(
ϑ(ø)

ϑρ(ø)
−
(
1− 1

tρ+1

))
= 1 +

tρ+1

∞∑
ℓ=ρ+1

ϱℓø
ℓ−1

1 +
∞∑
ℓ=1

ϱℓøℓ−1

,

then only demonstrating that is sufficient

ℜ
(
χ1(ø)

)
≥ 0, (ø ∈ ∆∗) or

∣∣∣∣χ1(ø)− 1

χ1(ø) + 1

∣∣∣∣ ≤ 1, (ø ∈ ∆∗),

and applying Eq. (20), we find that

∣∣∣∣χ1(ø)− 1

χ1(ø) + 1

∣∣∣∣ ≤
tρ+1

∞∑
ℓ=ρ+1

ϱℓ

2− 2
ρ∑

ℓ=1

ϱℓ − tρ+1

∞∑
ℓ=ρ+1

ϱℓ

≤ 1,

which gives the assertion Eq. (17) of Theorem 5.1. In order to notice this

ϑ(ø) =
1

ø
+

øρ+1

tρ+1
, (21)

gives sharp result for

ø = re
iπ

ρ that
ϑ(ø)

ϑρ(ø)
= 1− rρ+2

tρ+1
→ 1− 1

tρ+1
as r → 1−.

Similarly, if we takes χ2(ø) = (1+ tρ+1)
(
ϑρ(ø)
ϑ(ø) − tρ+1

1+tρ+1

)
and making use of Eq. (20), we

indicate that

∣∣∣∣χ2(ø)− 1

χ2(ø) + 1

∣∣∣∣ <
(1 + tρ+1)

∞∑
ℓ=ρ+1

ϱℓ

2− 2
ρ∑

ℓ=1

ϱℓ − (1− tρ+1)
∞∑

ℓ=ρ+1

ϱℓ

,
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which yields the assertion Eq. (18) of Theorem 5.1.
The bound in Eq. (18) is sharp for each ρ ∈ N with extremal mapping ϑ(ø) provided by Eq.
(21).

Theorem 5.2. If ϑ ∈ σ∗
p(ℵ, ℘, τ, ι) be provided by Eq. (1) and satisfies the condition Eq. (5)

then

ℜ
(
ϑ′(ø)

ϑ′
ρ(ø)

)
> 1− ρ+ 1

tρ+1
,

and

ℜ
(
ϑ′
ρ(ø)

ϑ′(ø)

)
>

tρ+1

ρ+ 1 + tρ+1
,

where

tℓ ≥

{
ℓ , if ℓ = 2, 3, · · · , ρ
[ℓ(1+℘)+(ℵ+℘)]ϕ(ℓ,τ,ι)

1−ℵ , if ℓ = ρ+ 1, ρ+ 2, · · ·
.

The mapping has produced an accurate findings ϑ(ø) of the type Eq. (7).

Because the theorem’s argument is similar to that of Theorem 5.1, we will skip the proof of
Theorem 5.2.

6. Neighborhoods property

The definition of the neighbourhood for the class σ∗ξ
p (ℵ, ℘, τ, ι) is as follows.

Definition 6.1. A mapping ϑ ∈ Ωp is said to be in the class σ∗ξ
p (ℵ, ℘, τ, ι) if there exits a

mapping g ∈ σ∗
p(ℵ, ℘, τ, ι) such that∣∣∣∣∣ϑ(ø)g(ø)

− 1

∣∣∣∣∣ < 1− ξ, (ø ∈ ∆, 0 ≤ ξ < 1). (22)

We define the ℏ− neighbourhoods of mapping ϑ ∈ Ωp by following Goodman (1957) and
Ruscheweyh (1981) earlier works on neighbourhoods of analytic mapping.

Nℏ(ϑ) =
{
g ∈ Ωp : g(ø) =

1

ø
+

∞∑
ℓ=1

bℓø
ℓ and

∞∑
ℓ=1

ℓ|ϱℓ − bℓ| ≤ ℏ
}
. (23)

Theorem 6.2. If g ∈ σ∗
p(ℵ, ℘, τ, ι) and

ξ = 1− ℏ(2℘+ ℵ+ 1)ϕ(1, τ, ι)

(2℘+ ℵ+ 1)ϕ(1, τ, ι)− (1− ℵ)
, (24)

then Nℏ(g) ⊂ σ∗ξ
p (ℵ, ℘, τ, ι).
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Proof. Let ϑ ∈ Nℏ(g). Then we find based on Eq. (23) that

∞∑
ℓ=1

ℓ|ϱℓ − bℓ| ≤ ℏ ⇒
∞∑
ℓ=1

|ϱℓ − bℓ| ≤ ℏ.

Since g ∈ σ∗
p(ℵ, ℘, τ, ι), we’ve

∞∑
ℓ=1

bℓ ≤
1− ℵ

(2℘+ ℵ+ 1)ϕ(1, ι, τ)
. (25)

Now

∣∣∣∣∣ϑ(ø)g(ø)
− 1

∣∣∣∣∣ <

∞∑
ℓ=1

|ϱℓ − bℓ|

1−
∞∑
ℓ=1

bℓ

≤ ℏ(2℘+ ℵ+ 1)ϕ(1, ι, τ)

(2℘+ ℵ+ 1)ϕ(1, τ, ι)− (1− ℵ)
= 1− ξ

provided ξ is indicated by Eq. (24). Hence by definition, ϑ ∈ σ∗ξ
p (ℵ, ℘, τ, ι) for ξ provided by

which completes the proof.
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