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ABSTRACT

Transversal foliations and jets modulo foliations are studied. It is shown that multifoliations provides
a way for a more general description of (R, S, Q)-jets.
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ABSTRAK

Foliasi rentas lintang dan jet modulo foliasi dikaji. Ditunjukkan bahawa multifoliasi membuka jalan
untuk pemerihalan yang lebih umum bagi jet-(R, S, Q).
Kata kunci: Kawalan optimum; regulasi; foliasi; multifoliasi; kerentas-lintangan; jet; jet-(R, S, Q)

1. Introduction

This paper represents an extended version of the author’s contribution (Kureš 2008) to the Inter-
national Symposium on New Developments of Geometric Function Theory and its Applications,
Bangi 2008. In particular, the first section is completely new and it represents a possible motivation
for a study of foliations and multifoliations. It refers to fundamentals of geometric optimal control
theory and it also refers to some classical examples (cf. Chapter 15 of La Valle (2006)) which are
elaborated in detail here. The second section is focused to the study of foliations of smooth mani-
folds. We introduce concepts of ∩-transversality and ∪-transversality as we hope that this approach
provides a more precise view to the transversality in itself and gives a good arrangement of various
multifoliated structures. Further, we initialise jet formalism for such multifoliated structures. We
have two main inspirations here: Ikegami’s paper (Ikegami 1986) about jets modulo foliations and
the concept of (R, S, Q)-jet, see e.g. Kolář et al. (1993) or Doupovec & Kolář (1999). We present
a way to a generalisation and unification (in a way) of both these jet languages.

We remark that multifoliations can be meaningfully used just in the optimal control. Indeed,
partitions of manifolds induced by integrable distributions even satisfy some of transversality con-
ditions (introduced in Section 2) in a number of practical situations.

As usually, all manifolds and maps are assumed to be smooth, i.e. of class C∞.
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2. Possible motivations for study of foliations by differential geometry

2.1. Lie bracket

Let M be a smooth manifold, dimM = m, for an initial simplification it suffices think about
M = Rm. Points of M are written as

x = (x1, . . . , xm), x0 = (x1
0, . . . , x

m
0 ), etc. (1)

We consider a smooth map γ : I → M , where I is an interval in R, usually containing 0. Such a
map is called a (smooth) curve in M . Its equations1 are

xi = γi(t), i = 1, . . . , m. (2)

Let γ(0) = x0, then dγ
dt (0) determines a tangent vector to γ in x0 with coordinates

(
x1

0, . . . , x
m
0 , y1

0, . . . , y
m
0

)
=

(
γ1(0), . . . , γm(0),

dγ1

dt
(0), . . . ,

dγm

dt
(0)

)
. (3)

Tangent vectors to all curves γ going through x0 form a m-dimensional vector space Tx0M , tangent
space in x0. The vector coordinates are

(
x1

0, . . . , x
m
0 , y1, . . . , ym

)
. (4)

We define the tangent bundle TM by the (disjoint) union

TM =
⋃

x0∈M

Tx0M ; (5)

TM is 2m-dimensional as a manifold with coordinates
(
x1, . . . , xm, y1, . . . , ym

)
= (x, y). (6)

We have a canonical projection π : TM → M sending (x, y) to (x). The vector field on M is a
smooth section X : M → TM , i.e. such a smooth map, for which π ◦X = idM . In coordinates,

X :
(
x1, . . . , xm

) 7→ (
x1, . . . , xm, ξ1(x), . . . , ξm(x)

)
(7)

and X(x0) is (for a fixed point x0) a tangent vector as in (3). If f : M → R is a smooth function
and X a vector field on M , we define a new function Xf : M → R called the Lie derivative of f
along X by

Xf(x0) =
∂f

∂xi
ξi(x0). (8)

We also write Xf = ∂f
∂xi ξ

i and X = ξi ∂
∂xi . The vector field X is called smooth, if Xf is smooth

for every smooth function f . If X is a given vector field on M , then the integral curve ofX is such
a curve γ which has a tangent vector in every its pointx0 equal to X(x0), i.e.

(
dγ1

dt
, . . .

dγm

dt

)
=

(
ξ1(γ(t)), . . . , ξm(γ(t))

)
; (9)

1for a general M ( 6= Rm) we have local expressions in local coordinates
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for a finding of integral curves is necessary to solve a system of m first order ordinary differential
equations

γ̇ = X(γ). (10)

In particular, we apply maximal integral curves: such a integral curve can not be a proper subset of
another integral curve. If γx : I → M is a maximal integral curve of X satisfying γx(0) = x, then,
by

FlXt (x) = FlX(t, x) = γx(t), (11)

are defined maps

FlXt : M → M and FlX : I ×M → M. (12)

The map FlX is called the flow 2 of the vector field X . Evidently,

d
dt

FlXt (x) = X
(
FlXt (x)

)
(13)

holds. The important property of the flow is

FlX(t + s, x) = FlX
(
t, FlX(s, x)

)
. (14)

A real vector space V is called the Lie algebra, if it contains a binary operation named the bracket
and denoting by [, ] having the following properties:

1. (u, v) 7→ [u, v] is bilinear,

2. (u, v) 7→ [u, v] is antisymmetric,

3. Jacobi identity [u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 holds.

We define the Lie bracket [X, Y ] of vector fields X = ξi ∂
∂xi , Y = ηi ∂

∂i by

[X, Y ]f = X(Yf)− Y (Xf), (15)

it follows coordinates of Z = [X, Y ] = ζi ∂
∂xi are

ζi = ξj ∂ηi

∂xj
− ηj ∂ξi

∂xj
(16)

and this bracket provides the structure of Lie algebra to every vector space Tx0M . We say that
vector fields X, Y commute, if [X, Y ] = 0.

2the flow maps the point x to another point lying just on the maximal curve going through x; viewing this curve as a
motion, x has time 0 and its image a time t
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2.2. Why is the Lie bracket so important in optimal control

The system (10) can be written as

ẋi = ξi(x) = ξi(x1, . . . , xm), i = 1, . . . , m. (17)

In optimal control, we investigate the system

ẋi = φi(x, u) = φi(x1, . . . , xm, u1, . . . , uk), i = 1, . . . , m, (18)

where u1(t), . . . , uk(t) is so-called regulation3. The linear system has a form

ẋi = Ai
jx

j + Bi
pu

p, i = 1, . . . , m, (19)

otherwise we have nonlinear systems. A frequent nonlinear system is so-called affine system

ẋ = Xp(x)up + X0(x), p = 1, . . . , k (20)

where X1, . . . , Xk, X0 are vector fields. For X0 = 0, we talk about the driftless affine system (X0

is called the drift term). In particular, let us consider a driftless affine optimal control system

ẋ = X(x)u1 + Y (x)u2, where u(t) =
(
u1(t), u2(t)

)
=





(1, 0) for t ∈ [0, ε]
(0, 1) for t ∈ [ε, 2ε]
(−1, 0) for t ∈ [2ε, 3ε]
(0,−1) for t ∈ [3ε, 4ε]

(21)

We compute Taylor expansions for the first part of the motion as

x(ε) = x(0) + εẋ(0) +
1
2
ε2ẍ(0) +O(ε3)

= x(0) + εX(x(0)) +
1
2
ε2

∂X

∂x
(x(0))X(x(0)) +O(ε3), (22)

and for the second part as

x(2ε) = x(ε) + εẋ(ε) +
1
2
ε2ẍ(ε) +O(ε3)

= x(ε) + εY (x(ε)) +
1
2
ε2

∂Y

∂x
(x(ε))Y (x(ε)) +O(ε3), (23)

in which we substitute x(ε) from (22) and use the fact that for the infinitesimal ε the relation
Y (x(0) + X(x(0))) = ε∂Y

∂x (x(0))X(x(0)) holds 4; we obtain

x(2ε) = x(0) + Y (x(0)

+ ε2
(

1
2

∂X

∂x
(x(0))X(x(0)) +

∂Y

∂x
(x(0))X(x(0)) +

1
2

∂Y

∂x
(x(0))Y (x(0))

)
(24)

+ O(ε3).
3see the next section
4this fact is a slight generalisation of the well-known expression f(x0 + ε) ≈ εf ′(x0) for a function f and a point x0
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The same process is used for x(3ε) and x(4ε), the final result is

x(4ε) = x(0) + ε2
(

∂Y

∂x
(x(0))X(x(0))− ∂X

∂x
(x(0))Y (x(0))

)
+ O(ε3). (25)

The computation shows that, at each point, infinitesimal motion is possible not only in the directions
contained in the span of the input vector fields X and Y , but also in the directions of their Lie bracket
[X, Y ] = ∂Y

∂x X− ∂X
∂x Y . It is also possible to obtain motion in the direction of higher-order brackets,

such as [X, [X, Y ]], [Y, [X, Y ]], etc.

2.3. A note about regulations

For the regulation u : R → Rk, u(t) =
(
u1(t), . . . , uk(t)

)
are not any requirements for a smooth-

ness nor even for a continuity of functions up : R → R, p = 1, . . . , k. Hereafter regulations are
considered to be piecewise constant functions, it means there is a partition of the time line into
intervals and in every such an interval J is

u(t) = c = (c1, . . . , ck), t ∈ J, cp, p = 1, . . . , k, are real constants. (26)

(Cf. (21) as an example.) Moreover, only some special subclasses of piece-wise constant functions
are considered. Then we talk about admissible regulations and the subclass of admissible regulations
is denoted by U, so we write u ∈ U.

2.4. Distributions and foliations

Suppose that for each x0 ∈ M and k < m a k-dimensional vector subspace Dx0M of Tx0M . Let
us consider the (disjoint) union

DM =
⋃

x0∈M

Dx0M. (27)

The k-distribution on M is a smooth section D : M → DM , i.e. such a map, which assigns to each
point x0 such a k-dimensional subspace. This is possible by such a way that

D(x) = span{X1(x), . . . , Xk(x)}, (28)

where X1, . . . , Xk are linear independent smooth vector fields. Nevertheless, if arbitrary vector
fields X1, . . . , Xk are given, then a dimension of span{X1(x), . . . , Xk(x)} can be less than k and
can differ in different points. (Such a map is counted as a distribution, not a k-distribution.) Let
D be a k-distribution on M and N a n-dimensional submanifold of M , n ≤ k. Then N is said an
integral manifold of D, if Tx0N ⊆ D(x0). An integral manifold of D is called the maximal integral
manifold if it is not contained in any strictly larger integral manifold of D. The k-distribution D on
M is called an integrable distribution, if each point of M is contained in some integral manifold
of D. Then each point is contained in a unique maximal integral manifold, so the maximal integral
manifolds form a partition of M . This partition is called the foliation of M induced by the integrable
distribution D, and each maximal integral manifold is called a leaf of this foliation. Further, we say
that a vector field X lies in D, if X(x0) ∈ D(x0) for all x0 ∈ M . If X lies in D, then integral
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Figure 1: The vector fields X and Y

curve of X going through x0 stays in the leaf through x0. If [X, Y ] lies in D for any X, Y lying in
D, we say that D is an involutive distribution. Now, we give the famous theorem on the geometry
of distributions.
Frobenius Theorem. D is an integrable distribution if and only if D is an involutive distribution.

2.5. A simplified model for differential drives and cars

Let us consider a simplified model for differential drives and cars, i.e. a driftless affine system in
M = R3 of a form

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2. (29)

Thus, X = (cos θ, sin θ, 0), Y = (0, 0, 1).

We obtain integral curves of X and Y going through [x0, y0, θ0] by the solving of systems

ẋ = cos θ

ẏ = sin θ (30)

θ̇ = 0

having the solution

x = (cos θ0)t + x0, y = (sin θ0)t + y0, θ = θ0 (31)

and

ẋ = 0
ẏ = 0 (32)

θ̇ = 1

24
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Figure 2: The integral curves of X and Y

having the solution

x = x0, y = y0, θ = t + θ0. (33)

The distribution D maps every point to a plane given by this point and by direction vectors of lines
above:

D : (x0, y0, θ0) 7→ {(x0, y0, θ0) + u1(cos θ0, sin θ0, 0) + u2(0, 0, 1);u1, u2 ∈ R} (34)

The distribution is a 2-distribution, because it is 2-dimensional in every point. Nevertheless,

[X, Y ] = (sin θ,− cos θ, 0) (35)

and this vector field is not a linear combination of X and Y . Hence [X, Y ] does not lie in D and D
is not involutive. By Frobenius theorem, D is not integrable.

2.6. Trapped on a sphere

Let us consider a system in M = R3 of a form

ẋ = u1y + u2z

ẏ = u1x (36)

ż = −u2x.

Thus, X = (y,−x, 0), Y = (z, 0,−x).
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Figure 3: The vector fields X and Y

We obtain integral curves of X and Y going through [x0, y0, z0] by the solving of systems

ẋ = y

ẏ = −x (37)

ż = 0

having the solution

x = x0 cos t + y0 sin t, y = −x0 sin t + y0 cos t, z = z0 (38)

and

ẋ = z

ẏ = 0 (39)

ż = x

having the solution

x = x0 cos t + z0 sin t, y = y0, y = −x0 sin t + z0 cos t (40)

The distribution D maps every point to a plane given by this point and by direction vectors of lines
above:

D : (x0, y0, z0) 7→ {(x0, y0, z0) + u1(y0,−x0, 0) + u2(z0, 0,−x0);u1, u2 ∈ R} (41)

The distribution is a 2-distribution, because it is 2-dimensional in every point. The Lie bracket is

[X, Y ] = (0, z,−y) (42)
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Figure 4: The integral curves of X and Y

and it is the following linear combination of X and Y (in every point of M )

[X, Y ] = − z

x
X +

y

x
Y. (43)

Hence [X, Y ] does lies in D and D is involutive. By Frobenius theorem, D is integrable. Each point
with x0 6= 0 lies on a sphere leaf

ẋ = x0 cosφ cos θ + y0 sin θ + z0 cosφ sin θ

ẏ = −x0 sinφ cos θ + y0 cos θ − z0 sinφ sin θ (44)

ż = −x0 sin θ + z0 cos θ;

or, it is trapped on a sphere. 5

2.7. Orbits and reachable sets

Now, we take a set of vector fields Xq , q = 0, 1, ..., k from (20). Let i0, . . . , iq ∈ {0, . . . , q}. We
define the orbit O(x) of x as

O(x) =
{

Fl
Xiq

tiq
(x) ◦ . . .Fl

Xi0

ti0
(x); ti0 , . . . , tiq ∈ R

}
. (45)

Further, the reachable set R(x) of x is defined as

R(x) =
{

Fl
Xiq

tiq
(x) ◦ . . .Fl

Xi0

ti0
(x); ti0 , . . . , tiq ≥ 0

}
, (46)

5The parametric expression is obtained by the application of the rotation matrix gained as the product of(
cos φ sin φ 0
− sin φ cos φ 0

0 0 1

)
and

(
cos φ 0 sin φ

0 1 0
− sin φ 0 cos φ

)
onto [x0, y0, z0]. Let us realise that we have obtained only incomplete sphere

by this rotation: the reverse order of factors (rotation matrices) in the product gives another part of this sphere; a more
refined rotation is necessary for the whole sphere.
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the reachable set R(x, τ) in time τ of x is defined as

R(x, τ) =
{

Fl
Xiq

tiq
(x) ◦ . . .Fl

Xi0

ti0
(x); ti0 , . . . , tiq ≥ 0, ti0 + · · ·+ tiq = τ

}
(47)

and the reachable set RT (x) until time T of x is defined as

RT (x) =
⋃

τ≤T

R(x, τ) =
{

Fl
Xiq

tiq
(x) ◦ . . .Fl

Xi0

ti0
(x); ti0 , . . . , tiq ≥ 0, ti0 + · · ·+ tiq ≤ T

}
(48)

There are two notable restrictions of sets above. The first one is a restriction on admissible regula-
tions and the second one is a restriction on trajectories contained in a given neighborhood V of x.
Then we write, e.g., RU

T (x), RV
T (x), RU,V

T (x).

3. The foliations again and more precisely, and moreover the multifoliations

3.1. Foliations

We refer to Milnor (1970), Lawson (1974) and Bejancu and Farran (2006) for detailed introductions
to the theory of foliations; our adoption is as follows. Let M be a m-dimensional smooth manifold,
m = p + q, m ∈ N, p, q ∈ N ∪ {0}, (x, y) = (x1, . . . , xp, y1, . . . , yq) ∈ Rp × Rq = Rm. For
constants c̄ ∈ Rp, c ∈ Rq, we consider spaces Rq

c̄ = {(x, y) ∈ Rm;x1 = c̄1, . . . , xp = c̄p} and
Rp

c = {(x, y) ∈ Rm; y1 = c1, . . . , yq = cq}. Intersections of Rq
c̄ and Rp

c with open sets (balls)
with respect to the standard topology are denoted by P q

c̄ and P p
c and called the (c̄, q)-coplaque and

the (p, c)-plaque in Rm. Suppose that F = {Lt}t∈J is a partition of M into connected subsets,
M =

⋃
t∈J Lt, Lt ∩ Ls = ∅ for t 6= s. Further, we consider a foliated atlas on M , i.e., a collection

{Ui, ϕi}i∈I , ϕi = αi × βi, αi : Ui → Rp, βi : Ui → Rq, of charts satisfying

(i) {Ui}i∈I is a cover of M by open sets

(ii) each connected component of Lt ∩ Ui (for all i ∈ I , t ∈ J) is mapped by ϕi onto an (p, c)-
plaque in Rm, i.e., for u ∈ Ui

xa = αa
i (u) a = 1, . . . , p (49)

yb = βb
i (u) = cb b = 1, . . . , q

(iii) transition functions ϕij = ϕj ◦ ϕ−1
i on Ui ∩ Uj , ϕij = αij × βij , send (p, c)-plaques onto

(p, c)-plaques, i.e.

xa = αa
ij(x, y) a = 1, . . . , p (50)

yb = βb
ij(y) b = 1, . . . , q.

(Maps are regarded as smooth.) ThenF is called the foliation of M of dimension p and codimension
q, Lt, t ∈ J leaves of F and M the foliated manifold written shortly by (M,F). Trivial cases arise
for p = 0, q = m (leaves = points) and for p = m, q = 0 (the unique leaf = M ).

Let F , F ′ be two foliations of M with dimensions p and p′. Then F ′ is called a subfoliation of
F and F is called a superfoliation of F ′, denoted by F ′ ¹ F , if the following conditions hold:
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(i) 0 ≤ p′ ≤ p ≤ m

(ii) for any leaf L′ of F ′, there exists a leaf L of F such that L′ ⊆ L, and the restriction of F ′ on
a leaf L of F is a foliation of dimension p− p′ of L.

The relation ¹ is an order in the set of foliations of M .
Fibered manifolds are canonically foliated, their fibers can be viewed as leaves. On the other

hand, there exist manifolds, which are foliated but not fibered.

3.2. Transversality of maps, transversality of foliations, multifoliations

Concepts of a transversality is rather varied, we suggest e.g. Tamura & Sato (1981). Let ∆ be an
integer greater than 1. Let us consider manifolds Hδ, δ = 1, . . . ,∆, and M . Let fδ : Hδ → M ,
δ = 1, . . . ,∆, be (smooth) maps.

We take an arbitrary non-empty subset E ⊆ {1, . . . ,∆} and denote by Im fE the intersection of
all images of fε, ε ∈ E.

For uE ∈ Im fE and every ε ∈ E, let (Tfε)uE denote the image of the tangent map to fε in
uE ; tangent vectors belonging to (Tfε)uE generate a vector subspace of TuEM ; we denote it by
〈(Tfε)uE 〉. Further, we denote by 〈⋃

E

(Tfε)uE 〉 the vector space generated by the union of vectors

in all (Tfε)uE , ε ∈ E, and by 〈⋂
E

(Tfε)uE 〉 the vector space generated by vectors belonging to the

intersection of all (Tfε)uE , ε ∈ E.
For simplicity, we consider only maps for which vector spaces above have constant dimensions

for all uE ∈ Im fE .
Now, it is evident that for every chosen ε0 ∈ E

0 ≤ dim〈
⋂

E

(Tfε)uE 〉 ≤ dim〈(Tfε0)uE 〉 ≤ dim〈
⋃

E

(Tfε)uE 〉 ≤ m, (51)

or, in the codimension language,

m ≥ codim〈
⋂

E

(Tfε)uE 〉 ≥ codim〈(Tfε0)uE 〉 ≥ codim〈
⋃

E

(Tfε)uE 〉 ≥ 0. (52)

Definition 1 Maps fδ : Hδ → M , δ = 1, . . . ,∆, are said to be

∩-transversal, if

codim〈
⋂

E

(Tfε)uE 〉 =
∑

E

codim〈(Tfε)uE 〉 (53)

for all E ⊆ {1, . . . ,∆};

∪-transversal, if
∑

E

dim〈(Tfε)uE 〉 = dim〈
⋃

E

(Tfε)uE 〉 (54)

for all E ⊆ {1, . . . ,∆}.
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Remark 1 The Definition 1 implies that fδ can be ∩-transversal only for

∆∑

δ=1

codim〈(Tfδ)u{1,...,∆}〉 ≤ m (55)

and, analogously, fδ can be ∪-transversal only for

∆∑

δ=1

dim〈(Tfδ)u{1,...,∆}〉 ≤ m. (56)

It is easy to show that

∆∑

δ=1

codim〈(Tfδ)u{1,...,∆}〉 ≤ m and
∆∑

δ=1

dim〈(Tfδ)u{1,...,∆}〉 ≤ m (57)

comes into being simultaneously only for ∆ = 2 and codim〈(Tf1)u{1,2}〉+ codim〈(Tf2)u{1,2}〉 =
dim〈(Tf1)u{1,2}〉 + dim〈(Tf2)u{1,2}〉 = m. In this special case, concepts of ∩-transversality and
∪-transversality are identical.

Let us consider ∩-transversal maps fδ : Hδ → M , δ = 1, . . . ,∆ in the following situation: Hδ

are subsets (submanifolds) of M and fδ : Hδ → M are their inclusion maps (immersions). Then
Hδ are called ∩-transversal, too. Moreover, if we have ∆ foliations Fδ of M , we take in every
u ∈ M their leaves: if they are ∩-transversal on each choice of u, we say that foliations Fδ of M
are ∩-transversal.

The concept ∪-transversal foliations Fδ of M comes quite analogously.

Definition 2 A collection F = {Fδ}∆
δ=1 of foliations of M (dimM = m) with dimensions pδ and

codimensions qδ is called the ∩-multifoliation (∪-multifoliation), if foliations Fk are ∩-transversal
(∪-transversal). Especially, the ∩-multifoliation (∪-multifoliation) is called total ∩-multifoliation
(total ∪-multifoliation) if ∆ = m.

Remark 2 It is clear that q1 = · · · = q∆ = 1 for total ∩-multifoliation and p1 = · · · = p∆ = 1 for
total ∪-multifoliation.

3.3. Jets modulo multifoliations

G. Ikegami has defined in his paper (Ikegami 1986) jets modulo foliations. We generalise his con-
cept by the following definition. (In this section, we mean by a multifoliation either∩-multifoliation
or ∪-multifoliation.)

Definition 3 Let H , M be two manifolds, f, g : H → M maps satisfying f(h) = g(h) = u ∈ M
and let F = {Fδ}∆

δ=1 be a multifoliation of M . Then f is said to have the (r1, . . . , r∆)-multiorder
contact modulo F with g at u, if for every ∆-tuple of charts

{
U δ 3 u, ϕδ

}
1≤δ≤∆

the maps

αδ ◦ f : U δ → Rpδ and αδ ◦ g : U δ → Rpδ (58)
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belong to the same (classical) rδ-jet at u. (It means that for every curve γ : R→ H with γ(0) = h,
the curves αδ ◦ f ◦ γ and αδ ◦ g ◦ γ have the rδ-order contact in zero.) As the relation ”have the
(r1, . . . , r∆)-multiorder contact modulo F” is evidently an equivalence relation, we denote the class
of maps having the (r1, . . . , r∆)-multiorder contact modulo F with f at u by

jr1,...,r∆

h f mod F (59)

and call it (r1, . . . , r∆)-jet modulo the multifoliation F with the source h ∈ H and the target
u = f(h) ∈ M .

We denote by Jr1,...,r∆

h (H, M ;F)u the set of all (r1, . . . , r∆)-jets modulo the multifoliation F
with the h and the target u. Further, we denote

Jr1,...,r∆

h (H, M ;F) =
⋃

u∈M

Jr1,...,r∆

h (H, M ;F)u, (60)

Jr1,...,r∆(H, M ;F)u =
⋃

h∈H

Jr1,...,r∆

h (H, M ;F)u (61)

and

Jr1,...,r∆(H, M ;F) =
⋃

u∈M

⋃

h∈H

Jr1,...,r∆

h (H, M ;F)u. (62)

For manifolds H and M and a multifoliation F of M , Jr1,...,r∆

h (H, M ;F)u, Jr1,...,r∆

h (H, M ;F),
Jr1,...,r∆(H, M ;F)u, and Jr1,...,r∆(H, M ;F) have a smooth manifold structure. We have bundle
projections

Jr1,...,r∆(H, M ;F) → H and Jr1,...,r∆(H, M ;F) → M (63)

as well as canonical bundle projections

Jr1,...,r∆(H, M ;F) → J r̃1,...,r̃∆(H, M ;F) (64)

by restricting the multiorder, i.e. for 0 ≤ r̃1 ≤ r1, . . . , 0 ≤ r̃∆ ≤ r∆. In doing so

J0,...,0(H, M ;F) = H ×M. (65)

Now, we present that (R, S, Q)-jet are included in the concept of the (r1, . . . , r∆)-jet modulo the
multifoliation F. We recall that two morphisms of fibered manifolds determine the same (R, S, Q)-
jet (R ≤ S, R ≤ Q) at a point y if they have the same R-jet in y, their restrictions to the fiber
through y have the same S-jet in y, and their base maps have the same Q-jet in the base point of y.

Let Y → M be a fibered manifold allowing global sections, dimM = q, dimY = p + q. The
fibered manifold structure of Y → M determines:

(i) the foliation F1 with p-dimensional leaves (leaves = fibers)
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(ii) the foliation F2 with q-dimensional leaves (leaves = suitable smooth sections, e.g. for vector
bundles can be taken smooth sections including zero section, such as constant smooth sections
or something like that); F2 is non-unique

Thus, we have a (non-unique) multifoliation which is simultaneously∪-multifoliation and∩-multifoliation,
see Remark 1. Our construction implies:

Theorem 1 Let F be a multifoliation given by the fibration as stated above. Then there is a repre-
sentation of every (R, S, Q)-jet as a (S, Q)-jet modulo F.
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