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ABSTRACT 

In this paper, the problem of unsteady magnetohydrodynamic (MHD) viscoelastic fluid 
flowing towards a stagnation point on a vertical surface is studied. The temperature of the 
surface is assumed to vary linearly with the distance from the stagnation point. The partial 
differential equations which governed the flow are transformed into a system of ordinary 
differential equations, which are then solved numerically by an implicit finite-difference 
scheme known as the Keller-box method. The effects of the viscoelastic parameter K, mixed 
convection parameter λ, magnetic parameter M and Prandtl number Pr on the flow and heat 
transfer characteristics are presented in this paper. The numerical solutions obtained are 
uniformly valid for all dimensionless time from initial unsteady-state flow to final steady-state 
flow in the whole spatial region. 

Keywords: magnetohydrodynamic (MHD); mixed convection; unsteady stagnation point flow; 
vertical surface; viscoelastic fluid  

 
ABSTRAK  

Dalam makalah ini, masalah aliran bendalir likat-kenyal magnetohidrodinamik (MHD) tak 
mantap yang mengalir ke arah suatu titik genangan pada permukaan tegak dikaji. Suhu 
permukaan dianggap berubah secara linear terhadap jarak daripada titik genangan. Persamaan 
pembezaan separa yang  menakluk aliran kemudiannya dijelmakan kepada sistem persamaan 
pembezaan biasa, yang seterusnya diselesaikan secara berangka menggunakan skema beza 
terhingga tersirat yang dikenali sebagai kaedah kotak Keller. Kesan parameter likat-kenyal K, 
parameter olakan campuran λ,  parameter magnetik M dan nombor Prandtl Pr terhadap ciri-
ciri aliran dan pemindahan haba dipertimbangkan dalam makalah ini. Penyelesaian berangka 
yang diperoleh adalah sah secara seragam bagi julat masa tak bermatra bermula daripada 
aliran awal tak mantap kepada aliran akhir mantap. 

Kata kunci: magnetohidrodinamik (MHD); olakan campuran; aliran titik genangan tak 
mantap; permukaan tegak; bendalir likat-kenyal 

 

1. Introduction  

Viscoelastic fluid is one type of second grade fluid (non-Newtonian fluid) that has received 
much attention recently, as this class of fluid exhibits viscous and elastic-like characteristics 
when undergoing deformation.  Honey, plastic films, and artificial fibers are some examples 
of viscoelastic fluid. Hence, industrially, this kind of fluid has become one of the topics 
discussed. Pioneering work by Oldroyd (1950), Beard and Walters (1964a) and Rajagopal et 
al. (1984), who have developed the boundary layer theory for the second grade fluid have 
motivated many researchers to really explore this kind of fluid with various situations. It 
seems that the boundary layer equations for this fluid are an order higher than those for the 
Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to 
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determine the solution of these equations completely. Therefore, Rajagopal (1984, 1995) and 
Rajagopal and Kaloni (1989)  have done further investigation on this matter. 

The study of a non-Newtonian fluid flow in the region of stagnation point has been done 
by several authors (Srivatsava 1958; Rajeswari & Rathna 1962; Beard & Walters 1964b; Garg 
& Rajagopal 1990; Ariel 2002; Mahapatra & Gupta 2004). Ayub et al. (2008) studied the 
stagnation point flow of viscoelastic fluid towards a stretching sheet, Li et al. (2009) 
investigated the case of oblique stagnation point flow of a viscoelastic fluid with the effect of 
heat transfer and very recently, Labropulu et al. (2010) considered the two-dimensional 
stagnation point flow of a viscoelastic second-grade fluid over a stretching surface with heat 
transfer and Robert et al. (2010) established the existence and uniqueness results over the 
semi-infinite interval [0,1) for a class of nonlinear fourth order ordinary differential equations 
arising in the hydromagnetic stagnation point flow of a second grade fluid over a stretching 
sheet. Further, the effect of mixed convection stagnation point flow in a viscoelastic fluid 
adjacent to a vertical surface has been studied by Hayat et al. (2008), and Anwar et al. (2008) 
considered the flow of a viscoelastic fluid over a horizontal circular cylinder, while the steady 
MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional 
stagnation point with magnetic field has been investigated by Kumari and Nath (2009). 

Most of the recent researches on convective flows in non-Newtonian fluids have been 
directed to the problems of steady cases. However, unsteady convective boundary layer flow 
problems have not, so far, received as much attention. Therefore, there are few literatures 
reported on problems that took into account the time factor. Several unsteady problems were 
done by, for example, Nazar et al. (2004), Ishak et al. (2006) and Hassanien and Al-Arabi 
(2009) for the case of mixed convection flow in viscous fluid and porous medium. Lok et al. 
(2006) studied the unsteady mixed convection flow for the case of micropolar fluid, whilst 
unsteady boundary layer for second-grade fluid flow can be found in the paper by Labropulu 
et al. (2003). Sujit and Pop (2006) investigated the unsteady boundary layer free convection 
flow of an incompressible electrically conducting viscoelastic second-order fluid over a 
vertically permeable flat plate, where temperature and concentration differences are 
responsible for the convective buoyancy current while Qi and Xu (2007) considered the 
unsteady flow of viscoelastic fluid with the fractional derivative Maxwell model in a channel. 

Problems of mixed convection flow near the stagnation point with associated MHD has 
been pointed out by Abdelkhalek (2006), who presented problem of steady two-dimensional 
laminar magnetohydrodynamic-mixed convection owing to the stagnation flow against a 
heated vertical semi-infinite permeable surface for viscous fluid. Ishak et al. (2008) 
considered a steady MHD flow towards a stagnation point on a vertical surface immersed in a 
micropolar fluid and recently, Ishak et al. (2010) investigated the problem of MHD mixed 
convection boundary layer flow of a viscous and electrically conducting fluid near the 
stagnation-point on a vertical permeable surface for viscous fluid flow. On the other hand, 
Hayat et al. (2010) has presented the analytical analysis of steady MHD two-dimensional 
mixed convection boundary layer flow of a viscous and incompressible fluid near the 
stagnation-point on a vertical stretching surface embedded in a fluid-saturated porous medium 
and thermal radiation using the homotopy analysis method (HAM). 

Motivated by the work of Hayat et al. (2008) and Lok et al. (2006), we investigate in this 
paper the unsteady MHD mixed convection boundary layer flow of a viscoelastic fluid near 
the stagnation point on a vertical surface. The transformed governing partial differential 
equations in two variables are solved numerically using the Keller-box method for certain 
values of the viscoelastic parameter K, magnetic parameter M, mixed convection parameter λ 
and Prandtl number Pr. 



Unsteady MHD mixed convection stagnation point flow of a viscoelastic fluid on a vertical surface  
  
  

107 

2. Basic equations  

Consider the mixed convection boundary layer stagnation point flow over a semi-infinite 
vertical surface, which is placed in a viscoelastic fluid of uniform ambient temperature T∞.  It 
is assumed that a uniform magnetic field of strength Bo is applied in the positive y-direction 
and the surface of the plate is heated or cooled to a variable temperature Tw(x), where Tw(x) > 
T∞ is for a heated plate and Tw(x) < T∞  is for a cooled plate. It is also assumed that at time t=0 
the outside flow starts in motion impulsively from rest towards the plate with a steady 
velocity ue(x), as shown in Fig. 1. Figures 1(a) and 1(b) illustrate the assisting and opposing 
flows, respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) assisting flow           (b)  opposing flow 
            

Figure 1: Physical model and coordinate system 
 
 

The flow in the neighbourhood of the stagnation line has the same characteristics 
irrespective of the shape of the body (Hiemenz 1911). It is further assumed that the 
temperature of the plate Tw(x) varies linearly with the distance x along the plate. Thus the 
plate temperature and the condition far from the plate is assumed to be given by 
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where Ue is the reference velocity, L is the characteristic length and T0 > 0 is a reference 
temperature. In the absence of heat generation and viscous dissipation, along with the 
Boussinesq approximation, the boundary layer equations are given by 
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where u and v are the velocity components in the x-and y-directions, respectively, t denotes 
the time, T, , g, , , σ, ρ, Bo and k0 are the temperature, kinematic viscosity, gravity 
acceleration, thermal expansion coefficient, thermal diffusivity, electrical conductivity, 
density, magnetic field and viscoelastic parameter, respectively. The   sign in Eq. (3) 
corresponds to the assisting and opposing flows, respectively. Introducing the new variables 
as follows (Williams & Rhyne 1980), where prime denotes differentiation with respect to : 
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Substituting (6) into Eqs. (3) and (4) yields  
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for 0 1  . Here 2Re
Gr   is the mixed convection parameter, where 
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  are the Grashof and Reynolds numbers, respectively. It is worth mentioning that   

λ > 0, λ < 0 and λ = 0 correspond to the assisting flow, opposing flow and forced convection 
flow, respectively. On the other hand, M and  0K  are the dimensionless magnetic and 
viscoelastic parameters, respectively, given by 
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The boundary conditions (5) become   
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for  0 1  .  
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The physical quantities of interest in this problem are the skin friction coefficient Cf and 
the local Nusselt number Nux, which are defined as  

                                           
 2 ,,w w
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where w  and wq  are the wall shear stress and the surface heat flux, respectively, which are 
given by 
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Substituting variables (6) into (12), we obtain  

     1/ 2 1/ 2Re (0),xfC f       1/ 2 1/ 2Re (0).x xNu         (13) 

for  0 1  . Equations (7) and (8) subject to boundary conditions (10) are coupled nonlinear 
parabolic partial differential equations. Hence, we can obtain some particular cases of this 
problem. 

2.1.  Initial unsteady flow 

For early unsteady flow, we have *0 ( 0)t   , thus Eqs. (7) and (8) reduce to  

 21 2 0,
2

ivf K f f f f f f                           (14) 

1 1 0
Pr 2
             (15) 

and the boundary conditions (10) become 

   
(0) (0) 0, (0) 1,

1, 0, 0 as
f f
f f


 

  
    

                  (16)

      

2.2.  Final steady-state flow 

For this case, *1( )t   , Eqs. (7) and (8) take the following form:  

                      2 21 2 1 0,ivf f f K f f f f f f M f                         (17) 

  Pr ( ) 0f f       ,       (18) 

subject to the same boundary conditions (16).  

3. Results and Discussion  

The nonlinear partial differential equations (7) and (8) subject to boundary conditions (10) 
have been solved numerically using an implicit finite-difference scheme known as the Keller-
box method as described in the book by Cebeci and Bradshaw (1988).  
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Tables 1 and 2 present the numerical values of the skin friction coefficient 
1/2 (0)Rexf fC   and the local Nusselt number 1/ 2Re (0)x xNu    , respectively, when ξ=1 

(final steady-state flow) for various values of the viscoelastic parameter K when Pr=0.2 and 
Pr=10  for the case of assisting flow (λ > 0) and opposing flow (λ < 0). In order to validate 
the accuracy of the present method, the results for the final steady-state flow obtained were 
compared with those of Hayat et al. (2008) and it is found that they are in good agreement. 
Therefore, we are confident that the developed code used in this study is suitable to solve the 
present problem discussed in this paper.  
 
 

Table 1: Values of 21 /
xf ReC  for various values of K and Pr when λ=0.2, -0.2. Results shown in ( ) are those of 

Hayat et al. (2008) 
 

M K Pr=0.2 Pr=10 
λ=0.2 λ= -0.2 λ=0.2 λ= -0.2 

0 0.2 
 

1 
 

2 

1.1559 
(1.1559) 
0.8174 

(0.8174) 
0.6472 

(0.6474) 

0.9561 
(0.9558) 
0.6844 

(0.6844) 
0.5432 

(0.5432) 

1.1058 
 

0.7905 
 

0.6291 

1.0096 
 

0.7141 
 

0.5636 

1 0.2 
1 
2 

1.4554 
1.0513 
0.8419 

1.2948 
0.9470 
0.7617 

1.4171 
1.0312 
0.8287 

1.3346 
0.9682 
0.7758 

10 0.2 
1 
2 

3.0220 
2.2416 
1.8193 

2.9401 
2.1901 
1.7805 

3.0067 
2.2338 
1.8143 

2.9555 
2.1979 
1.7856 

 
 
 

Table 2: Values of Nux Rex
-1/2 for various values of K  and Pr number when  λ=0.2, -0.2. Results shown in ( ) are 

those of Hayat et al. (2008) 
 

M K Pr=0.2 Pr=10 
λ=0.2 λ= -0.2 λ=0.2 λ= -0.2 

0 0.2 
 

1 
 

2 

-0.4261 
(-0.4261) 
-0.3919 

(-0.3920) 
-0.3696 

(-0.3698) 

-0.4096 
(-0.4094) 
-0.3784 

(-0.3785) 
-0.3575 

(-0.3578) 

-1.7909 
 

-1.6090 
 

-1.4957 

-1.7564 
 

-1.5764 
 

-1.4641 

1 0.2 
1 
2 

-0.4403 
-0.4085 
-0.3872 

-0.4288 
-0.3993 
-0.3791 

-1.9159 
-1.7320 
-1.6160 

-1.8907 
-1.7096 
-1.5950 

10 0.2 
1 
2 

-0.4832 
-0.4585 
-0.4408 

-0.4795 
-0.4555 
-0.4382 

-2.3336 
-2.1334 
-2.0042 

-2.3243 
-2.1259 
-1.9975 

 
 

 
From Table 1, it can be seen that the values of 1/2RexfC  decrease as the viscoelastic parameter 

K increases regardless whether the flow is assisting or opposing. The same phenomenon 
happened for  1/ 2Rex xNu   as can be seen from Table 2. Increasing Pr  and   heating the plate 
causing 1/2RexfC  to decrease and the opposite trends are observed for absolute values of  
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1/ 2Rex xNu  . On the other hand, cooling the plate will increase the values of (0)f   and 
(0)  . The magnetic parameter M gives huge impact to the flow as it  increases the values of 

(0)f  and (0)  for both assisting and opposing flows. 
Figures 2 and 4 show the velocity profiles of the final steady-state flow (ξ=1) for various 

values of the viscoelastic parameter K and magnetic parameter M when Pr=10 for assisting 
and opposing flows, respectively. For a particular value of K, the velocity boundary layer 
thickness increases monotonically with η, and becomes unity at the outside of the boundary 
layer, which actually satisfies the boundary condition f (∞)→1. It is also illustrated that for a 
specific value of K as the magnetic parameter M increases, the velocity thickness decreases. 
The temperature profiles of the final steady-state flow are shown in Figs. 3 and 5 for both 
assisting and opposing flows, respectively. It is observed that as K increases, the temperature 
profile increases. The thermal boundary layer thickness is slightly smaller when M=10 
compared to M=1. This justify that the magnetic parameter M reduces the thickness of the 
thermal boundary layer. Comparatively, the velocity profiles for the assisting and opposing 
flows seem alike and thus, it can be concluded that the effects of the plate either being cooled 
or heated are not significant. The same trend also occurs for the temperature profiles. 
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Figure  2: Velocity profiles of the final steady-state flow for various K and M when Pr=10 for λ=0.2  
(assisting flow)  



Kartini Ahmad & Roslinda Nazar   

112 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 
( 

)

             M=1
             M=10

Pr=10, =0.2

K=0, 1, 2

 

Figure  3: Temperature profiles of the final steady-state flow for various K and M when Pr=10 for λ=0.2 
(assisting flow)  
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Figure  4: Velocity profiles of the final steady-state flow for various K and M when Pr=10 for λ=-0.2 
(opposing flow)  

 



Unsteady MHD mixed convection stagnation point flow of a viscoelastic fluid on a vertical surface  
  
  

113 

       

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



 
( 

)

             M=1
             M=10

Pr=10, = -0.2

K=0, 1, 2

 

Figure  5: Temperature profiles of the final steady-state flow for various K and M when Pr=10 for λ=-0.2 
(opposing flow)  

 
 

Figures 6 and 7 show the velocity and temperature profiles when Pr=0.7 and K=1 by 
considering various values of the magnetic parameter M. It is observed that the thickness 
of the velocity and thermal boundary layer decreases as M increases, and valid for both 
assisting and opposing flows. Again, the effects of the plate either being cooled or heated 
are not significant, especially for large values of M. 
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Figure  6: Velocity profiles of the final steady-state flow for various M when Pr=0.7 and K=1  for λ=0.2 

(assisting flow) and  λ=-0.2 (opposing flow). 
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Figure  7: Temperature profiles of the final steady-state flow for various M when Pr=0.7 and K=1  for λ=0.2 

(assisting flow) and  λ=-0.2 (opposing flow). 
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Figure  8: Variation of the skin friction coefficient with ξ for various K. 
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Figure  9: Variation of the local Nusselt number with ξ for various K. 
 
 
 

Figures 8 and 9 present the variation of the skin friction coefficient 1/2RexfC
 
and the local 

Nusselt number 1/ 2Rex xNu  , respectively, as a function of ξ for various values of K. At the 
start of the motion (initial unsteady-state flow), both the skin friction 
coefficient and the local Nusselt number have large magnitude (due to impulsive motion) and 
decrease monotonically and finally reach the steady-state value ξ .The flow 
transition is very smooth from small-time solution to the large-time solution. The values of 

1/2RexfC  and 1/ 2Rex xNu   seem to decrease when the viscoelastic parameter K increases, while 

the viscoelastic parameter K is not really affecting the value of 1/ 2Rex xNu 
 at ξ = 1 since the 

changes in 1/ 2Rex xNu    are comparatively small for variation in K. 

4.   Conclusions 

In the present study, we have investigated theoretically the unsteady MHD mixed convection 
flow of a viscoelastic fluid near the stagnation point on a vertical surface. Both the assisting 
flow and opposing flow situations are considered.  Numerical computation has been carried 
out to study the effects of the material parameter K, magnetic parameter M, mixed convection 
parameter λ and Prandtl number Pr on the skin friction coefficient, the local Nusselt number, 
as well as the velocity and temperature profiles. Results are presented in tables and figures for 
certain parameter conditions. From the solutions of the skin friction and heat transfer 
coefficients it is found that there is a smooth transition from the small-time solution (initial 
unsteady-state) to the large-time solution (final steady-state). 
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