The Weightage of Environmental Elements for Malaysia State Green Road Index of Rural Area

Nurul Ashikin Shuhaimia*, Noraziah Hamida & Rozana Zakariab

^aDepartment of Civil Engineering (DCE), Politeknik Ungku Omar, Malaysia ^bFaculty of Engineering, Universiti Teknologi Malaysia, Malaysia

*Corresponding author: nurulashikin.mi@puo.edu.my

Received 1 May 2021, Received in revised form 28 July 2021 Accepted 14 September 2021, Available online 30 May 2022

ABSTRACT

"Green road" is a concept introduced to meet the requirements of economic, societal, and environmental aspects in road construction and its operation. Towards the responsive efforts of sustainable development, many countries had established their environmentally friendly green road assessment tools including for highways and roads. However, the application of the tools is somehow limited to specific project life cycle such for design and planning assessment and/or only for the higher cluster of the road such as toll road or federal highway, but rarely focus on road in rural area. This paper therefore aims to identify the appropriate environmental criteria and elements as proposal for Malaysia State Road Index for the rural area. The weightage of environmental elements for the Malaysia State Road Index for the rural area was established in the discussion of this paper. The environmental criteria and elements were reviewed via critical literature review of content analysis were of 'green tools'. The confirmation of weightage was conducted via questionnaires development and responded by the focus group discussion (FGD) and validation survey. The FGD were the experts involved in road infrastructure development. The data is analysed using the Statistical Package for the Social Sciences (SPSS) software. This study discovered ten sub-criteria and thirty-three elements under 'green road' of significant environmental sustainability elements. The result showcases a fair distribution of weightage for each element within their sub-criteria.

Keywords: Green roads; green tools; environmental sustainability; criteria; weightage

INTRODUCTION

Many developments on highway and road networks causal to the loss of natural scenic beauty area's along highways and roadways. Undoubtedly, the highway and road development sacrificing the existing surrounding nature, and in the context of history, the historical value of the area may disappear. It is observed that many developments deteriorate the current natural landscape. However, with redeveloped landscape, it is hardly to maintain many valuable natural and historical areas (Jaal and Abdullah 2012). Between 2010 and 2015 alone, Malaysia's road network increased 58 percent in order to providing accessibility, mobility, and connectivity that accelerated the growth of cities as well as urban and rural areas (Malaysia Sustainable Development Goals Voluntary National Review, 2017). Since road construction in Malaysia is growing, the use of green road tools is vital for the developers to consider the environmental sustainability. In other words, to achieve green road development, a sustainable principles approach of road construction needs to be applied at every stage of the road project life-cycle that indirectly minimizes adverse impacts on the environment.

In response to the importance of sustainable development, various initiatives have been taken by the

Malaysian government and private sectors to support the mandate of Sustainable Development Goals 2030 (SDG 2030). To response to green highway, several researchers, highway experts, and organizations, including the Malaysian Highway Authority (MHA), have successfully produced the Manual of Malaysian Green Highway Index (MyGHI) (Seng 2018).

This indicates that green construction practices in road construction are valuable to them. Other than MHA, the Public Works Department (JKR) also supports green development by issuing the Penarafan Hijau JKR (phJKR) to measure the green level of federal buildings and roads (Adzar J.A et al. 2019). However, most of Malaysia's green road initiatives have their limitation, either focusing on toll highways or only federal roads. Despite this, there is a big doubt on environmental impacts on rural roads as most of them are still under state roads.

According to the Public Work Department (JKR) Malaysia, in the year 2018, Malaysia's road network covers 237,022.353 km. From the entire road network, Federal roads consist of 17,949.731 km length and another 2,000.880 km, is a highway network—the other 217,071.742 km of the network contributing for state roads. The data shows that 90% of Malaysia's road network falls under the state road category, contributing to the most significant proportion of the network in Malaysia (Adzar J.A et al. 2019). These roads are categorized into four main categories; main federal roads, Felda federal roads, federal roads to an institution, and federal roads to the industrial area. State roads are defined as a road system in every state in Malaysia where respective states funded the road maintenance. Therefore, every road construction, including State roads, should preserve green guidelines such as federal roads with phJKR for green road recognition. Table 1 shows no green tools of State Road, representing the largest network of a road in Malaysia that needs to be to think and realize.

TABLE 1. Road Category and Rating Tools

	6						
No	Road Category	Length	Green Tools				
1	Highway	2,000.880 km	MyGHI				
2	Federal Road	17,949.731 km	pH JKR (Jalan)				
3	State Road	217,071.742 km	None				

To claim a certification of green road, the assessment of sustainability elements is required to be used; thus, the green road assessment tool is employed. This tool is used to mitigate the environmental impact as well as achieving sustainability goals. However, there are some limitations to the available green road assessment tools. They are only suitable for a higher-ranked cluster of roads that are only restricted to particular areas. Nonetheless, this tool exists only for evaluation instead of for construction.

Meanwhile, all of the assessment tools differ in terms of their distribution. The existing phJKR criteria and subcriteria may not be suitable for all types of roads based on its current selection criteria, explicitly designed for Federal Road assessment. Despite the criteria being specific, many existing projects are not inclusive of these criteria, resulting in them not adhering to the assessment due to their unsuitability, according to Adzar J.A et al. (2019), results from the cross review on average weightage from other rating system compares to phJKR (Roads) criteria weightage of environment criteria only 4% in the content of Penarafan Hijau JKR (phJKR) which is below average compared to other green tools average was 11%. Although Penarafan Hijau JKR (phJKR) exists as a tool to assess non-toll roads in Malaysia, phJKR (Roads) was found lacking in the content of the environmental element.

Additionally, it is lacking for current available green road tools since the environmental elements are not relevant to all phases of project lifecycles, such as road planning and design, construction, and operation and maintenance. Table 2 portrays environmental criteria found in most extensive scope of green tools that some of them overlap with other elements such as economic, material, and procurement in the sustainability assessment. The environmental criteria in Table 2 below had been taken out from many worldwide green road rating tools. Hence, it is essential to investigate the environment's elements with a significant weightage for green road assessment.

Therefore, the cross-reference of major elements under environmental criteria had been conducted in this study to current available green road tools. Thus, there is also a need to examine all relevant environmental elements from existing green tools and find synchronicity among the elements to identify the environmental standard elements for evaluation. The analysis lead to the outcome of new criteria suitable for the environmental elements for the Malaysia Green State Road Index of the rural area.

Rating System	Year	Organization	Characteristic
Leadership in Energy and	1998 US Green Building		7 Criteria Categories:
Environmental Design (LEED)		Council (USGBC)	Sustainable Sites, Water Efficiency,
(LEED)			Energy and Atmosphere, Materials and Resources, Indoor Environmental Quality, Innovation in Design, Regional Priority
Green Leadership	2008	New York State Department of Transportation	5 Criteria Categories:
In Transportation			Sustainable Sites, Water Quality,
Environmental Sustainability			Material Resources, Atmosphere,
(GreenLITES)			Innovation
Sustainable Sites Initiative 2009		American Society of	9 Criteria Categories:
(SITES)		Landscape Architects	Site selection, Pre-design assessment and planning, Site design- water, Site design-soil and vegetation, Site design-materials selection, Site design-human health, and well-being,
			Construction Operations and maintenance, Monitoring, Innovation

TABLE 2. Environmental Elements in Various Infrastructure Green Rating Tools

continue ...

BCA Green Mark	2009	Singapore	7 Criteria Categories:				
			Landscape, ecology, and land efficiency				
			Energy, Renewable energy, Water				
			Project management, Waste management and environmental protection, Innovation				
Greenroad	2010	University of Washington	7 Criteria Categories:				
			Basic Project Requirements (Plans),				
			Environment & Water, Access & Equity,				
			Construction Activities, Materials and Resources, Pavement Technologies,				
			Custom Credits				
Livable and Sustainable	2010	Illinois Department	8 Criteria Categories:				
Transportation Rating		of Transportation	Planning, Design, Environmental				
System and Guide (I- LAST)			Water Quality, Transportation, Lighting,				
			Materials, Innovation				
Sustainable Transportation	2010	Portland (Oregon)	5 Criteria Categories ;				
Access Rating System		Bureau of Transportation;	Integrated Process, Access,				
(STARS)			Climate & Energy Ecological Function,				
			Cost Effectiveness Analysis, Innovation				
Building Environmentally	2010	Recycled Materials Resource Center and University of Wisconsin-Madison	8 Criteria Categories:				
and Economically			Social Requirements, Regulation				
Sustainable Transportation Infrastructure- Highways (BE2ST in-Highways)			Local Ordinances, Greenhouse Gas Emission, Energy Use, Waste Reduction				
(Water Consumption, Social Carbon				
Low Carbon Cities	2011	Ministry of Energy,	4 Criteria Categories:				
Framework (LCCF) v2		Green Technology and Water, KeTTHA	Urban Environment, Urban Transportation, Urban Infrastructure Building				
FHWA Infrastructure	2012	Federal Highway	3 Criteria Categories:				
Voluntary Evaluation		Administration	System Planning and Processes,				
Sustainability Tool (INVEST)			Project Development, Operations and Maintenance				
Envision	2012	Institute for	5 Criteria Categories:				
	2012	Sustainable	Quality of Life, Leadership, Resource Allocation, Natural World,				
		Infrastructure Ranking System	Climate and Risk				
Greenways	2012	Jackson State	5 Criteria Categories:				
		University (Mississippi	Materials, Environment/Water,				
		(WIISSISSIPPI	Traffic Efficiency, Lifecycle/Maintenance, Community/Multimodal				
pHJKR	2013	Environment and	7 Criteria Categories:				
		Energy Efficient Division of Public	Sustainable Site Planning &				
		Works Department of Malaysia	Management, Environment & Water, Access & Equity, Construction Activities,				
			Material & Resources, Pavement Technologies, Innovation				
MyGHI	2014	Universiti Teknologi	5 Criteria Categories:				
		Malaysia & Malaysian Highway Authority	Sustainable Design and Construction Activities, Energy Efficiency, Environmental and Water Management, Material and Technology, and Social and Safety				

continue ...

456

... continued

SITES V2	2014	Green Business	10 Criteria Categories:					
		Certification Inc.	Site Context, : Pre-Design Assessment + Planning, Site Design – Water, 4: Site Design - Soil + Vegetation, Site Design - Materials Selection, Site Design - Human Health + Well-Being, Construction, Operations + Maintenance, Education + Performance Monitoring, Innovation Or Exemplary Performance					
CEEQUAL V5.2	2015	Building Research	9 Criteria Categories:					
		Establishment (BRE)	Project/Contract Strategy (optional)					
		Group, UK	Project/Contract Management, People & Communities, Land Use (above & below water) & Landscape, The Historic Environment, Ecology & Biodiversity					
			Water Environment (Fresh & Marine)					
			Physical Resources Use & Management					
			Transport					
BREEAM Infrastructure	2015	BREGlobal Limited	12 Criteria Categories:					
			Integrated design, Resilience, Stakeholders, Local wellbeing, Transport, Land use and ecology, Landscape and heritage, Pollution, Materials, Carbon and energy, Waste, Water					
(Infrastructure Rating	2016	Infrastructure	7 Criteria Categories:					
Scheme) ISCA v1.2		Sustainability Council of Australia	Management & Governance, Using Resources, Emissions, Pollution & Waste, Ecology, People and Place, Innovation					

METHODOLOGY

According to John W. Creswell (2013), the questionnaire design provides a numerical description of a population's trends, attitudes, or opinions by studying a population sample. This study, therefore, used questionnaires to gather information and data. Several steps were taken to design the questionnaires for this study, including survey objectives, determining sample groups, designing questionnaires, administering questionnaires, and interpreting results. Figure 1 shows the methodology flow chart for this research which consist of three phases before achieving the weightage of environmental sub-criteria and elements for the Malaysia State Green Road Index for rural area.

The first phase of the literature review includes identifying the research problem, determining the research title, problem statement, objectives, and scope. A literature review was conducted to gather information about sustainable development, environmental criteria, and green roads. The research problem was identified through intensive review and understand the concept of green roads and current researches or guidelines regarding green roads. 15 standards or green road rating tools and research papers were selected comprehensive in providing green road environmental criteria. The questionnaire method was developed with a given alternatives (5-point Likert scale) for each question. Afterward, a pre-expert discussion with UTM academic staff on the environmental criteria and subcriteria of road infrastructure has conducted at CREATE JKR on 10-12 February 2019.

The second phase was focused group sitting, internal expert discussion, the study of the questionnaire design concept, and confirmation of template for the questionnaire survey. Firstly, the list was reviewed and analyzed during the briefing session with several road branches under the Public Work Department (JKR). Following that, the semi-structured open-ended questionnaire was created consisting of a list of environmental criteria. After deep discussion of focused group, a decision on the needed data or inputs for this work was taken; the proposed environmental criteria and sub-criteria were identified. Ten sub-criteria and 35 elements were obtained, which should be considered for environmental Criteria in the rural area's Malaysia Green State Road Index.

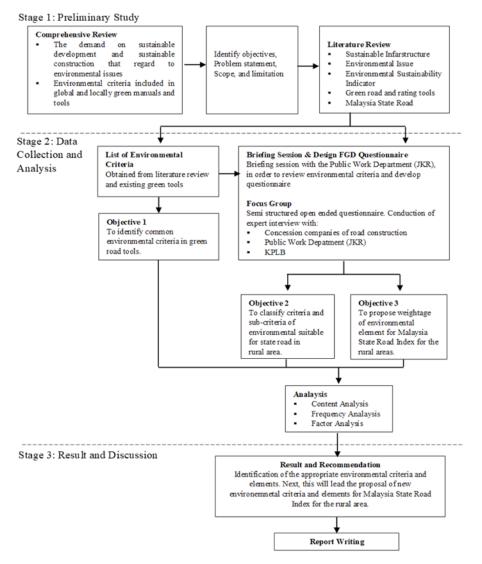


FIGURE 1. Research Flow

Lastly, environmental criteria, sub-criteria, and elements relevant to Malaysian State Green Road Index development in the questionnaire survey template were validated and finalized by experts from concession companies of road construction, Public Work Department (JKR), and Kementerian Pembangunan Luar Bandar during external expert discussion. Subsequently, the questionnaires were distributed at other focus group sessions and conducted in UTM, KL on 25 September 2019, and the rest using the Google Form platform. The total number of respondents involved in this study were 53.

Data analysis started as soon as the relevant data was collected, as presented in the third phase of the research. The data collected were analyzed by using Statistical Package for Social Science (SPSS) software. Reliability test, Average Mean Index, Factor analysis, and Weightage were conducted in these phases of analyses.

RESULT AND DISCUSSION

In order to confirm the criteria and sub-criteria, Factor Analysis was carried out step by step as described in the methodology. Factor Analysis was adopted to prioritized and rank the criteria (Abidin et al. 2017). The reliability test shows that the Cronbach alpha resulted in 0.941. It shows that the alpha coefficient for the 36 variables, indicating high internal consistency for the data set (Rooshdi et al. 2014). From the value of the average index for each element, all elements resulted in above 3.5 and were proceed to undertake the KMO & Bartlett Test. This test aimed to identify whether the criteria are sufficient to conduct factor analysis (De Vaus, 2002). The KMO & Bartlett Test measure of sampling adequacy was 0.510, which is more than 0.5, indicating that the present data were suitable for principal component analysis.

KMO and Bartlett's Test								
Kaiser-Meyer-Olkin Measure of Sampling Adequacy510								
Bartlett's Test of Sphericity	Approx. Chi-Square	2233.570						
	df	595						
	Sig.	.000						

Similarly, Bartlett's test of sphericity was significant (p < 0.001), indicating sufficient correlation between the items to proceed with the analysis, as shown in Table 3. The result component matrix is less meaningful than without rotation. The rotated component matrix helps to determine what the components represent. The matrix identifies the items that correlate the highest to one factor and the lowest on the remaining factors.

Varimax rotation was performed, and the component matrix shows factor 1 contains eight items, while factor 2 contains five items, factor 3 contains four items, factor 4 have five items, factor 5 has three items, and factor 6 has four items. Lastly, factors 7 and 8 each have two items. Table 4 shows the rotated component matrix. The result obtained was arrange based on the value of the importance of the criteria.

TABLE 4. Rotated Component Matrix for Environment Criteria

Rotated Component Matri	ла			Comp	anont			
	1	2	3	4	5	6	7	8
Avoid or minimize habitat fragmentation	0.89				-			
Wildlife habitat restoration	0.86							
Re-plant native plants in reclaimed or abandoned areas	0.84							
Provide wildlife crossing and barriers	0.83							
Protective fencing	0.79							
Tree replacement or relocation	0.71							
Replacing hardscape with softscape (green vegetation)	0.61							
Water pollution reduction	0.5							
Stormwater Management Plan according to MSMA & MS ISO 14001:2015		0.77						
Stormwater Best Management Practice, MSMA & MS ISO 14001:2015		0.74						
Protection of special natural and man made scenery		0.69						
Topsoil preservation and reuse		0.66						
Protection of waterway		0.54						
MS ISO 14001:2015 certification			0.96					
EMS certification			0.93					
Environmental Monitoring Report (EMR);			0.93					
Provision of EPW in contract			0.88					
Using quiet p avement				0.69				
Noise mitigation plan; noise barrier, working hours & etc.				0.69				
Using low decible site equipment				0.68				
Use ultra low sulphur diesel fuel for all non-road diesel equipment				0.67				
Description of noise monitoring standards				0.6				
Implement a preventive maintenance plan for all equipment according to engine								
manufacturer specifications					0.82			
Establish any policy to reduce emissions of construction equipment					0.8			
Application of techniques to reduce emissions of all on-site diesel engines					0.8			
Provide a designated location to segregate construction waste on-site						0.8		
Provide guidelines for noise limits and controls						0.62		
Create, establish, implement and maintain a formal construction waste						0.56		
Minimize usage of portable water						0.54		
Renewable energy							0.85	
Energy efficiency							0.84	
Recycle the waste								0.73
Proper handling of recyclable (or reusable) materials								0.65

The Factor Loading (FL) for each element were determined from the rotated component matrix table. However, two items were removed due to cross-loadings. Table 5 showed the ranking by factor loading of the sub-

criteria and elements of environmental criteria. Thirtythree elements resulted in significant FL, suitable for the environmental criteria of Malaysia State Green Road Index of rural area.

Number of the sector	Sub	Sub criteria Elements			Rotated Component Matrix							Elements	Factor	
Product of EPW in contract 10 100 <th>criteria</th> <th></th> <th>1</th> <th>2</th> <th>3</th> <th>4</th> <th>5</th> <th>6</th> <th>7</th> <th>8</th> <th></th> <th></th> <th>Loading (FL)</th>	criteria		1	2	3	4	5	6	7	8			Loading (FL)	
Note of the section of the sectio of the section of the section of the section of the se		EM S certification			0.933						1	MS ISO 14001:2015 certification	0.955	
I c g ward arbained meet contract I c g ward arbained meet arbained meet arbained meet arbained meet arbain meet arbained meet arbaine meet arbained meet arbained meet arbained meet arba	R H	Provision of EPW in contract			0.878						2	EM S certification	0.933	
I c g ward arbained meet contract I c g ward arbained meet arbained meet arbained meet arbained meet arbain meet arbained meet arbaine meet arbained meet arbained meet arbained meet arba	vironmen anagemei stem (EM	MSISO 14001:2015 certification			0.955						3		0.931	
Part of the second se	En Sys				0.931						4	Provision of EPW in contract	0.878	
registici control contro control control <	h nd		0.843								1		0.843	
registici control contro control control <	bant crva	Tree replacement or relocation	0.705								2	Tree replacement or relocation	0.705	
Marka Device width Coro	Tr I Pres		0.607								3		0.607	
Protective finding 0.794 (Wildlife habitat restoration	0.864								1	Avoid or minimize habitat fragmentation	0.891	
Protective finding 0.794 (life	Provide wildlife crossing and barriers	0.834								2	Wildlife habitat restoration	0.864	
Protective finding 0.794 (Wild	Avoid or minimize habitat fragmentation	0.891								3	Provide wildlife crossing and barriers	0.834	
Water polition reduction 0.50 Image: polition reduction 0.70 0.	-	Protective fencing	0.794								4	Protective fencing	0.794	
Number of the set Management Practice according to MAA & A SISO 1000 Normater Best Management Practice according to MAA & A SISO 10000 Normater Best Management Practice according to MAA & A SISO 10000 Normater Management Practice according to MAA & A SISO 10000 Normater Management Practice according to MAA & A SISO 10000 Normater Management Practice according to MAA & A SISO 10000 Normater Management Practice according to MAA & MSISO 10000 <		Water pollution reduction									-			
Potection of waterway Image: solution of waterway Imag	-	Promotion Dent Management Densiling	0.501								1		0.773	
Potection of waterway Image: solution of waterway Imag	Iservatio	according to MSMA & MS ISO		0.737							2	according to MSMA & MS ISO	0.737	
Potection of waterway Image: solution of waterway Imag	/ater Coi			0.773							3	Minimize usage of portable water	0.54	
Provide a designated location to segregate formal construction wate on-site Construction (construction wate on-site) Construction (construction equipment (construction equipment) Construction (construction equipment) <t< td=""><td>-</td><td>Protection of waterway</td><td></td><td>0.539</td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>Protection of waterway</td><td>0.539</td></t<>	-	Protection of waterway		0.539							4	Protection of waterway	0.539	
Provide a designated location to segregate formal construction waste Creat, establish, implement and maintain a formal construction waste Creat, establish, implement and maintain a formal construction waste on site 0.799 Provide a designated location to segregate construction waste Noise milipation plan, noise barrier, working hours & etc. 0.694 1 Creat, establish, implement and maintain a formal construction waste on site 0.694 Provide a designated location to segregate construction waste 0.694 1 Noise milipation plan, noise barrier, working hours & etc. 0.694 Provide guidelines for noise limits and controls 0.694 0.617 2 Using quiet pavement 0.694 Description of noise monitoring standards 0 0.697 1 Vising hours & etc. 0.644 Using low decible site equipment 0.684 0 1 9 1 0.617 0.617 0.617 0.641 0.644 0.617 <td></td> <td>M inimize usage of portable water</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.54</td> <td></td> <td></td> <td>5</td> <td>Water pollution reduction</td> <td>0.501</td>		M inimize usage of portable water						0.54			5	Water pollution reduction	0.501	
Image: space														
Image: space	n en	formal construction waste						0.555			1	construction waste on-site	0.799	
Provide puidelines for noise limits and controls Noise mitigation plan; noise barrier, working hours & etc. Proper plant Proper handing of recolupes montoring standards 0.667	Wa: Manago Pla							0.799			2		0.555	
Post problem in the province of noise monitoring standards Image: controls Image: controls <th< td=""><td></td><td></td><td></td><td></td><td></td><td>0.694</td><td></td><td>0.799</td><td></td><td></td><td></td><td></td><td></td></th<>						0.694		0.799						
Using low decible site equipment Image: Sing of the state equipment <th cou<="" td=""><td>atrol</td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.617</td><td></td><td></td><td>2</td><td>Using quiet pavement</td><td>0.694</td></th>	<td>atrol</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.617</td> <td></td> <td></td> <td>2</td> <td>Using quiet pavement</td> <td>0.694</td>	atrol							0.617			2	Using quiet pavement	0.694
Using low decible site equipment Image: Sing of the state equipment <th cou<="" td=""><td>oise Co</td><td>Description of noise monitoring standards</td><td></td><td></td><td></td><td>0.597</td><td></td><td></td><td></td><td></td><td>3</td><td></td><td>0.684</td></th>	<td>oise Co</td> <td>Description of noise monitoring standards</td> <td></td> <td></td> <td></td> <td>0.597</td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td></td> <td>0.684</td>	oise Co	Description of noise monitoring standards				0.597					3		0.684
Using quiet pavement Image of the particular sector of the particular secto	z	Using low decible site equipment				0.684					4		0.617	
opport Application of techniques to reduce emissions of all on-site diesel engines Implement approventive maintenance plan for all equipment according to engine manufacturer specifications 0.819 Establish any policy to reduce emissions of construction equipment 0.802 Implement approventive maintenance plan for all equipment according to engine manufacturer specifications 0.819 Implement a preventive maintenance plan for all equipment according to engine manufacturer specifications 0.802 Implement approventive maintenance plan for all equipment according to reduce emissions of construction equipment 0.802 Use ultra low sulphur disel fuel for all non-road disel equipment 0.667 Implement approventive maintenance plan for all equipment disel fuel for all non-road disel equipment 0.667 Use ultra low sulphur disel fuel for all non-road disel equipment 0.667 Implement approventive maintenance plan for all equipment disel fuel for all non-road disel equipment 0.667 Use ultra low sulphur disel fuel for all non-road disel equipment 0.667 Implement approventive maintenance plan for all equipment 0.667 Toget her waste Implement approventive maintenance plan for all equipment 0.667 Implement approventive maintenance plan for all equipment 0.667 Toget her waste Implement approventive maintenance plan for all equipment 0.667 Implement approventive disel equipment 0.667 <		Using quiet pavement												
Proper handling of recyclable (or reusable) materials Image: Constraint of the constraint	ontrol					0.071	0.795					for all equipment according to engine		
Proper handling of recyclable (or reusable) materials Image: Constraint of the constraint	nst C											Establish any policy to reduce emissions of		
Proper handling of recyclable (or reusable) materials Image: Constraint of the constraint	& D	construction equipment					0.802				2	construction equipment	0.802	
road diesel equipment i <th< td=""><td>Pollutant</td><td>for all equipment according to engine</td><td></td><td></td><td></td><td></td><td>0.810</td><td></td><td></td><td></td><td>2</td><td></td><td>0.795</td></th<>	Pollutant	for all equipment according to engine					0.810				2		0.795	
Sec view Recycle the waste Image: sec view Recycle the waste Image: sec view Recycle the waste Image: sec view Proper handling of recyclable (or reusable) materials Image: sec view Image	Air	Use ultra low sulphur diesel fuel for all non-				0.00	0.819							
Internation Image of the state						0.667					4		0.667	
Internation Image of the state	Site cycling Plan									0.725	1	-	0.725	
Protection of special natural and man made 0.687 0.687										0.65	2		0.65	
Protection of special natural and man made 0.687 0.687	lovat	Renewable energy							0.848		1	Renewable energy	0.848	
End scenery 0.687 1 scenery 0.687	Inn								0.838		2		0.838	
	pu	·		0.687							1		0.687	
1 opson preservation and reuse 0.664 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	La	Topsoil preservation and reuse		0.664							2	Topsoil preservation and reuse	0.664	

TABLE 5. The Factor Loading of the Sub criteria of Environmental Criteria

In achieving the weightage, the factor score should be calculated for environmental elements description (Ismail M.A. 2014). The factor score represents the score point for each item, and they were calculated based on factor loading multiply with a mean index. Next, once factor scores were

achieved, the weightage was calculated, as showed in Table 6. The total weight of all criteria should be equivalent to 1.000 since the maximum percentages of the stratum in variables are equal to 100%.

Sub Criteria	Rank	Elements	Mean	Factor Loading (FL)	Average Mean	Factor Score	Total Factor Score	Weightage	%
al (1	MS ISO 14001:2015 certification	4.170	0.955		3.982		0.259	25.859
nent meni EMS	2	EMS certification	4.150	0.933	4.165	3.872	15.400	0.251	25.143
Site Site Air Pollutant & Dust Noise Control Management Water Conservation Wildlik Protection Plants Management Control Plan Plan Plan	3	Environmental Monitoring Report (EMR); (e.g water/air/noise) in the contract	4.210	0.931	4.105	3.920	15.400	0.255	25.451
Envi Mai Syste	4	Provision of EPW in contract	4.130	0.878		3.626		0.235	23.546
			4.165			15.400		1.000	100.000
_ 5	1	Re-plant native plants in reclaimed or abandoned areas	4.110	0.843		3.465		0.397	39.702
s and nts vatio	2	Tree replacement or relocation	4.020	0.705	4.043	2.834	8.727	0.325	32.476
Frees Pla eser	3	Replacing hardscape with softscape (green vegetation)	4.000	0.607	1	2.428		0.278	27.822
L I			4.043			8.727		1.000	100.000
u o	1	Avoid or minimize habitat fragmentation	4.040	0.891		3.600		0.265	26.538
tecti	2	Wildlife habitat restoration	3.960	0.864	1	3.421	1	0.252	25.224
Pro	3	Provide wildlife crossing and barriers	3.980	0.834	4.010	3.319	13.564	0.245	24.471
ldlife	4	Protective fencing	4.060	0.794	1	3.224		0.245	23.766
IIM		· · ·	4.010	0.794		13.564		1.000	100.000
	,	Stormwater Management Plan according to MSMA & MS ISO 14001:2015	4.010	0.773		3.285			
tion		Stormwater Best Management Practice according to MSMA & MS ISO 14001:2015	4.250	0.775				0.247	24.678
erva	2		4.320	0.737	4.314	3.184	13.312	0.239	23.916
Cons	3	Minimize usage of portable water	4.260	0.54	4.514	2.300	15.512	0.173	17.280
ter (4	Protection of waterway	4.320	0.539		2.328	-	0.175	17.491
Wa	5	Water pollution reduction	4.420	0.501		2.214		0.166	16.634
			4.314			13.312		1.000	100.000
n emer	1	Provide a designated location to segregate construction waste on-site	4.400	0.799	4.400	3.516	5.958	0.590	59.010
Was nag Pla	2	Create, establish, implement and maintain a formal construction waste	4.400	0.555	2.4	2.442		0.410	40.990
Ms			4.400			5.958		1.000	100.000
	1	Noise mitigation plan; noise barrier, working hours & etc.	4.150	0.694		2.880	-	0.216	21.582
Irol	2	Using quiet pavement	3.960	0.694		2.748		0.206	20.594
Cont	3	Using low decible site equipment	4.040	0.684	4.062 <u>2.763</u> 13.345 <u>2.517</u>			0.207	20.707
oise	4	Provide guidelines for noise limits and controls	4.080	0.617				0.189	18.864
z	5	Description of noise monitoring standards	4.080	0.597		2.436		0.183	18.252
			4.062			13.345		1.000	100.000
Dust	1	Implement a preventive maintenance plan for all equipment according to engine manufacturer specifications	4.250	0.819		3.481	-	0.274	27.425
nt &	2	Establish any policy to reduce emissions of construction equipment	4.090	0.802	4.105	3.280	12.692	0.258	25.845
Cont	3	Application of techniques to reduce emissions of all on-site diesel engines	4.230	0.795		3.363		0.265	26.496
r Po	4	Use ultra low sulphur diesel fuel for all non-road diesel equipment	3.850	0.667		2.568		0.202	20.233
Ņ			4.105			12.692		1.000	100.000
ß	1	Recycle the waste	4.170	0.725	4 160	3.023	5 721	0.528	52.847
Site cycli Plan	2	Proper handling of recyclable (or reusable) materials	4.150	0.65	4.160	2.698	5.721	0.472	47.153
Re			4.160			5.721		1.000	100.000
ion	1	Renewable energy	3.830	0.848		3.248		0.498	49.780
ovat	2	Energy efficiency	3.910	0.838	3.870	3.277	6.524	0.502	50.220
Ĩ			3.870			6.524		1.000	100.000
	1	Protection of special natural and man made scenery	4.130	0.687		2.837		0.512	51.156
and	2	Topsoil preservation and reuse	4.080	0.664	4.105	2.709	5.546	0.488	48.844
Alr Pollutant & Dust Noise Control Management Control Plan	<u> </u>		4.105	0.004		a. 70,7		0.100	10.011

TABLE 6. Weightage of Environmental Elements

From the analysis, each of the sub-criteria carries significant importance of the elements which the total Factor score shows Environmental Management System (EMS) is the highest concerned followed by Wildlife protection, Noise Control, Water Conservation, Air Pollution, and Dust Control, Tree and Plants preservation, Innovation, Waste Management Plan, Site Recycling Plan and the least is Land. The highest weightage of the elements is (1) Provide a designated location to segregate construction waste on-site, (2) recycle the waste, (3) Protection of special natural and man-made scenery, (4) energy efficiency, and (5) renewable energy. However, the overall weightage analysis brought fair distribution of each environmental element. Therefore, the implementation of these sub-criteria and elements in the proposed Malaysia State Green Road Index is considered.

CONCLUSION

In conclusion, it is necessary to identify appropriate subcriteria and environmental elements that can provide an assessment method to assess Malaysia's rural state roads. Thus, it is crucial to figure out the criteria that have been considered in the current green road and highway assessment tools.

Environmental is main criteria would seem to have high consideration in current green rating tools for road in rural area. This is because the identified environmental criteria are the basis in the development of assessment tools by the state government who managing the maintenance of state road in rural area. The criteria can be used as a measurement for improving existing roads and guidelines for the new road to be more environmentally friendly. It is also an established environmental element for state roads in the rural area, contributing to the criteria Malaysia Green State Road Index.

The research findings from this study showed a fair distribution weightage of the sub-criteria and elements of the environment. There were ten sub-criteria and 33 elements that are suitable for environmental criteria. The elements were identified appropriated to be proposed to the rural area's Malaysia Green State Road Index. The road stakeholders have verified this finding in expert discussion related to the framework of the green road index.

ACKNOWLEDGEMENT

The author thanks Jabatan Kerja Raya and all stakeholders for their efforts and contributions to this study. This author would also like to acknowledge UTM Collaborative Research Grant (CRG): No. Q.J130000.2451.07G92 for supporting throughout the whole research. DECLARATION OF COMPETING INTEREST

None

REFERENCES

- Abidin, N.I., Zakaria, R., Aminuddin, E., Hamid, A.R., Munikanan, V., Sahamir, S.R. & Shamsuddin, S.M. 2017. Factor analysis on criteria affecting lean retrofit for energy efficient initiatives in higher learning Institution buildings. The 6th International Conference of Euro Asia Civil Engineering Forum (EACEF 2017). 138.
- Adzar, J. A., Zakaria, R., Aminudin, E., Rashid, M. H. S. Munikanan, A. V., Shamsudin, S. M. Rahman, M. F. A., and Wah, C. K. 2019. Development of operation and maintenance sustainability index for Penarafan Hijau Jabatan Kerja Raya (pHJKR) green road rating system. *Materials Science and Engineering* 527(2019): 012058
- Construction criteria for green highway. Procedia Environmental Sciences 20: 180–186.
- De Vaus, D. A. 2002. Survey in Social Research. 5th edition. London: Routledge.
- Edmonds, W. A., & Kennedy, T. D. 2012. An applied reference guide to research designs: Quantitative, qualitative, and mixed methods. *The Canadian Journal of Program Evaluation* 29.
- Hamzah, F. B. Abdullah, V. a/l Muniandy, Z. B. Hashim, eds. 2018. Kuala Lumpur: Road Facilities Maintenance Branch, PWD Headquarters Kuala Lumpur.
- Ismail, A., Rozana, Z., Sani, B. A., Foo, K. S., Naadia, M. A., Salfiza, Y. Y., et al. 2013. Fundamental Elements of Malaysia Green Highway. Applied Mechanics and Materials 284-287: 1194-7.
- Jaal, Z., & Abdullah, J. 2012. User's preferences of highway landscapes in Malaysia: A review and analysis of the literature. *Procedia - Social and Behavioral Sciences* 36: 265–272.
- Creswell, J. W. 2013. *Research Design: Qualitative, Quantitative, and Mixed Methods Approaches*. California: SAGE Publications.
- Malaysia Sustainable Development Goals Voluntary National Review (2017) High-level Political Forum.
- PWD Malaysia 2013 pH. Manual Penarafan Hijau JKR. Sektor Bangunan, Bangunan Sediaada Bukan Kediaman - KB2. Jabatan Kerja Raya Malaysia. Kuala Lumpur 0-12.
- PWD Malaysia. 2018. Road Statistics 2018 Edition. (M. Z. B. M. Zain, M. I. Bin Mahmood, N. S. B. Abdullah, H. F. B.Hamzah, F. B. Abdullah, V. a/l Muniandy, Z. B. Hashim, Eds.) (2018th ed.). Kuala Lumpur: Road Facilities Maintenance Branch, PWD Headquarters Kuala Lumpur.
- Rooshdi, R. R. R. M., Rahman, N. A., Baki, N. Z. U., Majid, M. Z. A. and Ismail, F. 2014. An Evaluation of Sustainable Design and and construction criteria for green highway.
- Salfiza, Y., Aifa, W. N., Balubaid, S., Seng, F. K., Bujang, M. B., Hamzah, B. & Shafaghat, A. 2014. Development of green highway index in malaysia. In 9th Malaysian Road Conference Proceedings.