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ABSTRACT

The Charpy V Notch toughness (CVN) of steel is an important property while considering structural and heavy loading 
conditions. In welded structures, CVN is attributed to many variables like composition of steel, heat input of welding, 
pre- and post-heat treatments of the weldment, type of welding process etc. The regression analysis works accurately for 
three to four variables. The property of weldment is associated to more than three-four variables. So this conventional 
regression analysis couldn’t capture associated trends among the variables due to their non-linearity. This complexity is 
countered well by artificial neural network (ANN) modelling. In the present work, artificial neural network approach is 
utilized for the prediction of CVN of ferritic steel welds, which is multi-phase complex engineering material. The multilayer 
perceptron (MLP) method is used for formulating the neural network models. Numerous models were made by adjusting the 
hyperparameters and a best model was selected having least training error. The crucial results obtained from this model 
where analysed from response graphs and contour plot. This (MLP) approach for formulating neural network model was 
proved to be efficient after validation procedure and the same model could be exploited well for predicting accurate value 
of CVN in a very time and cost-effective manner. 
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INTRODUCTION

The neural network is a non- linear regression method which 
is capable of capturing magnanimous complexity in the data 
due to its inherent flexibility and avoiding overfitting both at 
the same time (Dimitriu et al. 2009; Keehan et al. 2002). The 
ANN modelling is used ubiquitously in science in general 
and particularly in materials science for the understanding 
of complex property relationships. Apart from this, the 
scope of ANN has been widened to the fields of hydrological 
sciences, atmospheric sciences, civil engineering, process 
engineering and structural engineering (Carlan et al. 
2004). The field of materials science essentially involves 
rigorous experimental characterization and mathematical 
modelling. This generates enormous amounts of data, which 
is used for analysing properties of matter, formulating and 
validating theories. Neural network modelling turns out 
to be a wonderful, amenable and promising tool, which 
helps in developing quantitative expressions without even 
compromising the known complexity of the problem 
(Bhadeshia et al. 1999). The present work is focused on 
prediction of CVN of ferritic steel with the help of ANN. 
The Figure 1 represents the 20 input variables and output 
variable- Charpy toughness.  

FIGURE 1. A non-linear network representation showing input 
nodes (input variables), hidden layer and output node (output 

variable).

The ferritic steel comprises majorly of ferrite phases 
like acicular, allotriomorphic and widmanstatten ferrite in 
conjunction with other microphases (pearlite, bainite 
and martensite) as shown below in Figure (2,3). By 
varying the proportions of microphases in the ferritic steel 
by subjecting it to heat treatments, enhances it 
mechanical properties. Ferritic steel is classified into 
three classes on the basis of their properties 
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and applications, namely heat resistance steel, Cr-Mo steel 
and structural steel. They are generally characterised by 
high strength and toughness (Lalam et al. 2000; Bhadeshia 
et al. 2007). 

FIGURE 2. Schematic showin different components of the primary 
microstructure in the columnar austenite grains of ferritic steel 

weld (Bhadeshia 1992)

FIGURE 3. SEM micrograph of the primary microstructure of the 
ferritic steel weld, α- allotriomorphic ferrite, αw - Widmanstatten 

ferrite and αa- acicular ferrite (Honeycombe et al. 1995)

Ferritic steel finds its application in many fields. 
Ferritic steel supersedes austenitic steel in the construction 
of power plant. Latter is susceptible to thermal fatigue 
owning to tis high thermal expansion (Bhadeshia et al. 
2008). The usage for nuclear applications is concerned 
with the least swelling of ferrite as compared to austenite 
when bombarded with neutrons (Bhadeshia 2007). The 
most unmanageable problem lies in predicting the 
mechanical behaviour of a weldment. This is generated 
due to many variables like variety of 
heterogeneities, chemical composition, process 
parameters, heat treatment, imperfections and changes 
occurring during service. The test is usually carried out 
at a variety of temperatures in order to characterise the 
ductile–brittle transition inherent to body–centred cubic 
metals (Bhadeshia 2002). The charpy toughness test 
encompasses the usage of square sectioned notched bar 
fractured under specific conditions, which yields an 
empirical value not suitable for engineering design, yet a 
useful quality control test recognised internationally. The 

toughness of steel depends of many variables while that of 
weld involves more variables due to perplexity of welding 
process. To predict this toughness using linear regression 
analysis in a conventional manner hasn’t proved to be 
reliable. A neural network approach is rather chosen to deal 
with the non-linearity associated among the variables. The 
trained network result consists of conditioning the function, 
which in combination with a series of coefficients (weights), 
relates the inputs to output (Bhadeshia et al.1995). In present 
work, multilayer perceptron neural network method is 
used. Figure (4) shows the actual representation of the 
ANN model. 

FIGURE 4. Network model illustration

MODELLING WORK

The database for the modelling work consisted of weld 
deposits. These were intended for minimum dilution 
enabling measurement of various weld metal properties.  
The welded joints were made using MMAW, SAW and TIG 
welding processes. These experimental data were collected 
from numerous sources like research papers, journals 
and handbooks (Chauhan, B. J., Personal 
communication to Welding Industries; Technical 
handbook of Bohler welding products, edition 2005; 
Welding consumables product catalogue, LINCOLN 
ELECTRIC, CC11-17-rev.0; Welding electrode booklet, 
Ador welding; Welding consumables catalogue, ESAB 
INDIA; Welding consumables catalogue, OERLIKON; 
Technical handbook of Bohler welding products, edition 
2009; Welding consumables product catalogue, 
LINCOLN ELECTRIC, CC 10-14; Welding 
consumables catalog C1.10, LINCOLN ELECTRIC). The 
sole purpose of this project work is to predict CVN 
accurately as a function of different input variables. The 
data base comprises of 100 weld deposit experimental 
data. The data has 20 input and CVN as output variable. 
The statistical value of data is showed in table 1, this is 
indicative of the diversity in the experimental data that 
was used in the present work. In the present work, 
multilayer perceptron neural network method was used. 
Each MLP model entails three layers i.e., input layer, 
hidden and output layer. Numerous models were 
trained in the statistica software by adjusting crucial 
hyperparameters like no of hidden layers, activation function 
and epochs. The best model suitable for practical work 
was selected on the basis of least training error (Bhadeshia 
1995; Chauhan et al. 2020]. 
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TABLE 1. The statistical data of 20 input variables and output 
variable (CVN)

Variable Min 
value

Max 
value

Mean Standard 
Deviation

Carbon(wt%) 0.029 0.119 0.07 0.025
Silicon(wt%) 0.169 0.569 0.332 0.086
Manganese (wt%) 0.51 2.169 1.18 0.559
Sulphur(wt%) 0.004 0.0089 0.0068 0.0014
Phosphorus(wt%) 0.005 0.016 0.01 0.0026
Nickel(wt%) 0 10.8 3.71 3.87
Chromium(wt%) 0 9.1 0.73 1.95
Molybdenum(wt%) 0 1.04 0.263 0.285
Vanadium(wt%) 0 0.24 0.02 0.048
Copper(wt%) 0 0.3 0.058 0.106
Oxygen(ppmw) 249.99 642 374.08 85.568
Titanium(ppmw) 0 460 55.78 114.31
Nitrogen(ppmw) 17 459 96.23 87.956
Boron(ppmw) 0 64 2.13 7.36
Niobium(ppmw) 0 699.99 36.999 126.359
Heat input
(kJ.mm-1)

1 1.39 1.15 0.156

Interpass_
temperature(C)

150 199.99 191.74 17.786

Post-weld_
heat_treatment_
temperature(C)

0 749.99 203.1 219.653

Post-weld_heat_
treatment_time(h)

0 16 6.7 7.523

Testing_
temperature_
for_Charpy_
toughness(K)

77 296.99 214.039 58.81

Charpy-
Toughness/J

4.499 113.499 70.391 36.098

The above Figure 5 constitutes graph of CVN predicted 
vs observed. Each point on the graph indicates the data that 
was used and is divided into three- training data, validation 
data and testing data for which blue, red and green colours 
are used respectively. The best model was selected from 
numerous trained models on the ground of least training 
error of 0.017966.Test error 0.182680 and validation error 
0.221990 where noted. This model was utilized to fetch 
results in the form of response graphs and contour plots to 
comprehend trends among input and output variable (CVN).

FIGURE  5. Combined training, validation and testing data of best 
model – CVN (J)

SIGNIFICANCE OF EACH VARIABLE

The trained model gave information (table 2) regarding the 
most significant variables, in accordance to its effect on 
CVN. This Ranking is correlated to the metallurgical aspects 
related to CVN variation by the variables. Vanadium(wt%) is 
ranked one as it is grain refiner, nitrogen(ppmw) second as 
it restricts the grain growth, Testing temperature(K) as third 
has a crucial impact on CVN whereas phosphorus(wt%), 
Sulphur(wt%) and interpass temperature(C) contribute 
least towards varying the CVN of ferritic steel welds. All 
variables considered in the modelling had noteworthy effect 
on the output, which is indicative of appropriate choice 
of input variables. The relevance obtained, represents the 
extent to which a particular input explains variation in 
output, rather like a particular correlation coefficient in the 
linear regression analysis (Lalam et al. 2000).

TABLE 2. Ranking of variables on the basis of their affect on CVN

Variable Rank (most 
affecting to 
toughness)

Vanadium(wt%) 1
Nitrogen(ppmw) 2
Testing_temperature_for_Charpy_toughness(K) 3
Chromium(wt%) 4
Copper(wt%) 5
Post-weld_heat_treatment_time(h) 6
Nickel(wt%) 7
Boron(ppmw) 8
Carbon(wt%) 9
Molybdenum(wt%) 10
Oxygen(ppmw) 11
Heat input(kJ.mm-1) 12

continue ...
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Silicon(wt%) 13
Post-weld_heat_treatment_temperature(C) 14
Titanium(ppmw) 15
Manganese (wt% 16
Niobium(ppmw) 17
Phosphorus(wt%) 18
Sulphur(wt%) 19
Interpass_temperature(C) 20 

INTERPRETATION OF RESPONSE GRAPHS

 Varying trends where observed in the response graphs of the 
input variables. Carbon, silicon, niobium, phosphorus, Post 
weld heat treatment temperature and Testing temperature for 
Charpy toughness shows an increasing trend towards CVN 
as shown in figures 6,7,8,9,10,11 the trends are explained 
as follows. 

FIGURE 6. Response graph of Carbon( wt%) Vs Charpy 
Toughness (J)

FIGURE 7. Response graph of silicon ( wt%) Vs Charpy 
Toughness (J)

FIGURE 8. Response graph of Niobium ( ppmw) Vs Charpy 
Toughness (J)

FIGURE 9. Response graph of phosphorus( wt%) Vs Charpy 
Toughness (J)

FIGURE 10. Response graph of testing temperature for Charpy 
toughness(k) Vs Charpy Toughness (J)

FIGURE 11. Response graph of post weld heat treatment( C) Vs 
Charpy Toughness (J)

... continued
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Carbon increase the CVN from 51J to 104 J. The least 
value of CVN is observed at 0.03% carbon. And highest 
value of CVN is observed at  0.12% carbon. At higher 
concentration of carbon, favourable acicular ferrite phase 
is formed leading to increase in toughness (LALAM et al. 
2000).The least value of CVN 85.1 J is observed at 0.17 % 
silicon and highest value of 89.45 J at 0.57 % silicon. The 
lowest value of CVN 86J  is observed at 0 ppmw of niobium. 
The highest value 147 J is observed at 530 ppm of niobium. 
The least of CVN  75 J is observed at 0.006% phosphorus. 
Before receding to this value, at 0.005% phosphorus 75.7 J 
is observed. The highest value of CVN 96.8 J is observed at 
0.016% phosphorus. The lowest value of CVN of 81.1J at 
0 degree Celsius of post weld heat treatment temperature. 
Highest value of 96J of CVN at 700 degree Celsius of post 
weld heat treatment temperature. The least value of 35 J is 
observed at testing temperature of 79K. The highest value 
of 104.9 J is observed at testing temperature of 290.8 k. 
The decreasing trend in CVN is observed in manganese, 
chromium, molybdenum, nitrogen, vanadium, titanium, 
heat input and post weld heat treatment time as shown in 
figures 12,13,14,15,16,17,18, 19, the trends observed in this 
above-mentioned graph are as follows. 

FIGURE 12. Response graph of manganese(wt%) Vs Charpy 
Toughness (J)

FIGURE 13. Response graph of chromium( wt%) Vs Charpy 
Toughness (J)

FIGURE 14. Response graph of molybdenum( wt %) Vs Charpy 
Toughness (J)

FIGURE 15. Response graph of nitrogen ( ppmw) Vs Charpy 
Toughness (J)

FIGURE 16. Response graph of vanadium (wt%) Vs Charpy 
Toughness (J)

FIGURE 17. Response graph of titanium(ppmw) Vs Charpy 
Toughness (J)
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FIGURE 18. Response graph of heat input(KJ.mm ) 
VosbCshearrvpeydTfourgshunlepshsu(Jr)

FIGURE 19. Response graph of post weld heat treatment time(h) 
Vs Charpy Toughness (J)

Maximum CVN of 100 J is observed at 0.53% 
manganese and least value of 74 J at 2.6% manganese. Very 
low manganese concentration lead to poor microstructure 
while very high leads to more strength. So there is always 
an optimum combination of these two needed for required 
toughness value (LALAM et al. 2000) .The highest value 
of CVN 89 J at 0% chromium. The lowest value of CVN 
50 J is observed at 9.1% chromium. The highest value of 
94.8 J is achieved at 0% molybdenum. The lowest value of 
44.9 J at 1.1 % molybdenum. The highest value of 89.2 J is 
observed at 25 ppm of nitrogen. The lowest value of 72.8 J 
at 440 ppm of nitrogen. The highest value of CVN of 91 J 
is observed at 0% vanadium. The lowest value of CVN of 
24 J is observed at 0.23% vanadium. The highest value of 
92 J is observed at 0 ppwm of titanium. Least value 48 J 
is observed at 460 ppwm of titanium. The highest value of 
CVN 90.4 J at 1.00 KJ.mm-1. The lowest value of 78.8 J at 
1.40 KJ.mm-1 heat input. The highest value of CVN of 88.4 
J at 0-hour post weld heat treatment time. The lowest value 
of CVN of 84.4 J at 16 hours of post weld heat treatment 
time. Other graphs showed different trends wherein there 
was increasing and decreasing  in value of CVN as value 
of input variable increases. This was observed for sulphur, 
nickel, copper, oxygen, boron and interpass temperature as 
shown in Figure 20,21,22,23,24 and 25, the trends as above 
mentioned is discussed here as follows. 

FIGURE 20. Response graph of sulphur (wt%) Vs Charpy 
Toughness (J)

FIGURE 21. Response graph of nickel (wt%) Vs Charpy 
Toughness (J)

FIGURE 22. Response graph of copper (wt%) Vs Charpy 
Toughness (J)

FIGURE 23. Response graph of oxygen (ppmw) Vs Charpy 
Toughness (J)
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FIGURE 23. Response graph of oxygen (ppmw) Vs Charpy 
Toughness (J)

FIGURE 24. Response graph of boron (ppmw) Vs Charpy 
Toughness (J)

FIGURE 25. Response graph of Interpass temperature (C) Vs 
Charpy Toughness (J)

Least value of CVN 84.4 J is observed at 0.0040 % 
sulphur. The maximum value of 86.9 J at 0.0070% sulphur. 
The other lower value of CVN  85.6 J is observed at 0.0090 
% sulphur. The least value of CVN of 83 J is observed at 0% 
nickel. Highest value of 89.2 J is observed at 8% nickel. 
Other lower value of 87.4 J is observed at 10.6 % nickel. 
Nickel is known to enhance CVN up to a certain limit, but 
this is highly determined by concentration of manganese, 
as both increase hardenability and strength of weld deposit 
(LALAM et al. 2000). The least value of CVN of 80.9 J 
is observed at 0% copper. Highest value of 93.1 J is 
observed  at 0.21 % copper. Other lower value of 89.8 J is 
observed at 0.30 % copper. Least value of 86.4 J is 
observed at 260 ppwm of oxygen. A Higher value of 86.94 
J is observed at 400 ppwm of oxygen. A lower value of 
86.83 J is observed at 550 ppwm of oxygen. The highest 
value of 86.96 J is observed at 640 ppwm of oxygen. Oxide 
inclusions are sight of nucleation for acicular ferrite which 
enhances CVN value (BAILEY, N .1994).

The least value of CVN of 83 J is observed at 0 ppwm of 
boron. Highest value of 101.9 J is observed at 11 ppwm of 
boron. A lower value of 96.4 J is observed at 17 ppwm of 
boron. First there is increase then there is decrease in the 
trend. The least value of 82.8J is observed at Interpass 
temperature of 150 C. the highest value of 92.6 J is 
observed at Interpass temperature of 175 C. A lower value of 
84 J is observed at Interpass temperature of 200 C.  The trends 
observed in the above response graphs are generalised within 
the data set considered in modelling.

INTERPRETATION OF CONTOUR PLOT

Figure 26 shows relations between carbon, manganese 
and CVN.The CVN values varies from 0J to 100 J 
across the graph in a nonlinear way where darker colour 
hues indicate more value of CVN and vice-versa. The higher 
values of toughness are observed at two locations in the 
graph, first between 0.7- 1.6 % manganese and carbon 
range of 0.02- 0.06 % carbon and second between 1.3-1.8 
% manganese and carbon range of 0.12-0.14 % carbon. In 
the other regions there is a general decrease in CVN across 
the graph. The above response graphs and counter plots 
suggested that the association between the input variables 
and CVN is nonlinear in nature.

VALIDATION THROUGH THE OPTIMISED MODEL

MLP model had a good accuracy in predicting the value of 
CVN of ferritic steel welds. The MLP model was used for 
predicting the CVN of unseen weld deposits of ferritic steel 
weld (Chauhan, B. J., Personal communication to Welding 
Industries; Technical handbook of Bohler welding products, 
edition 2005; Welding consumables product catalogue, 
LINCOLN ELECTRIC, CC11-17-rev.0; Welding electrode 
booklet, Ador welding; Welding consumables catalogue, 
ESAB INDIA; Welding consumables catalogue, OERLIKON; 
Technical handbook of Bohler welding products, edition 
2009; Welding consumables product catalogue, LINCOLN 
ELECTRIC, CC 10-14; Welding consumables catalog 
C1.10, LINCOLN ELECTRIC). The model ran on unseen 
experimental data. The model was able to give accurate 
result of CVN value, both the data for input variables  and 
output variable with the predicted value of CVN(in bold) 
are given in the table (3) below. The same model can be 
exploited well for the development of ferritic steel alloys, in 
research work and in welding sector. 

FIGURE 26: Predicted variations in charpy toughness(J) as a 
function of carbon and manganese concentrations.
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TABLE 3. Unseen experimental data for validation of Best model for prediction of  CVN

Variable Weld alloy 1* Weld alloy 2* Weld alloy 3*
0.037 0.046 0.049
0.300 0.320 0.320
0.650 1.810 1.410

0.00900 0.00700 0.00700
0.01100 0.01500 0.01400
3.500 2.330 2.320
0.0300 0.0300 0.0300
0.0050 0.0050 0.0050
0.0120 0.0120 0.0120
0.0300 0.0300 0.0300
440.000 440.000 440.000
55.000 55.000 55.000
69.000 200.000 69.000

2 20.000 2
20.000 0 20.000
1.000 243.000 1.000

200.000 100.000 200.000
580.000 95.2436 20.000

2 69.000 0
210.000 2 235.000
100.000 20.000 100.000

Carbon(wt%)
Silicon(wt%)
Manganese(wt%
Sulphur(wt%)
Phosphorus(wt%)
Nickel(wt%)
Chromium(wt%)
Molybdenum(wt%)
Vanadium(wt%)
Copper(wt%)
Oxygen(ppmw)
Titanium(ppmw)
Nitrogen(ppmw)
Boron(ppmw)
Niobium(ppmw)
Heat input(kJ.mm-1)
Interpass_temperature(C)
Post-weld_heat_treatment_ 
temperature(C)
Post-weld_heat_treatment_time(h) 
Testing_temperature_for_CVN (K) 
Measured CVN (J)
Predicted CVN (J) 99.9562 1.000 95.3185

*Data sourced from welding procedure specification  and subsequent physical validation with procedure qualification records of reputed
welding industries [13].

CONCLUSION

The Multilayer perceptron method was utilised for 
this research work. The huge experimental database 
was exploited well by the neural network model for 
understanding nonlinear behaviour among input variable 
and the output variable (CVN). The response graph and 
contour plot analysis gave a good insight on input variable 
effects on CVN value both individually (response graph) and 
in a combined form (contour plot). This model when utilized 
in practice can greatly reduce time and money invested for 
trial and error calculations of CVN of ferritic steel welds. 
It provides a much easier and accurate approach when 
compared to conventional methodology. 
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