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ABSTRACT

Micro-expression is a type of facial expression that is manifested for a very short duration. It is difficult to recognize the 
expression manually because it involves very subtle facial movements. Such expressions often occur unconsciously, and 
therefore are defined as a basis to help identify the real human emotions. Hence, an automated approach to micro-expression 
recognition has become a popular research topic of interest recently. Historically, the early researches on automated micro-
expression have utilized traditional machine learning methods, while the more recent development has focused on the deep 
learning approach. Compared to traditional machine learning, which relies on manual feature processing and requires 
the use of formulated rules, deep learning networks produce more accurate micro-expression recognition performances 
through an end-to-end methodology, whereby the features of interest were extracted optimally through the training process, 
utilizing a large set of data. This paper reviews the developments and trends in micro-expression recognition from the 
earlier studies (hand-crafted approach) to the present studies (deep learning approach). Some of the important topics 
that will be covered include the detection of micro-expression from short videos, apex frame spotting, micro-expression 
recognition as well as performance discussion on the reviewed methods. Furthermore, major limitations that hamper 
the development of automated micro-expression recognition systems are also analyzed, followed by recommendations of 
possible future research directions.
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INTRODUCTION

Micro-expression (ME) is a set of subconscious facial 
expressions that manifest less than 0.5s, yet it carries crucial 
and sufficient cues to disclose the real emotion of a person. 
An automated approach to ME is valuable in commercial 
and safety sectors such as for the application of clinical 
diagnosis, police interrogation, and national security (Yan et 
al. 2014). However, the short duration of ME, coupled with 

FIGURE 1. General flow of an automated micro expression recognition system

the low intensity of facial changes has posed a real challenge 
in designing an automated detection and recognition system. 
Besides that, manual detection and recognition of ME require 
a great deal of time and effort, even for a highly skilled 
expert. Therefore, an automated ME recognition system is a 
necessary tool to reduce the time-latency in identifying the 
right emotion. In general, the general flow of such a system 
can be simplified as shown in Figure 1.
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Nowadays, the training video samples containing MEs 
can be found publicly online, which will be used as input 
to the automated system. However, the available databases 
are usually constructed with posed ME events, whereby 
spontaneous databases are preferable for the development 
of an ME analyzer because they provide the real and true 
facial excitations. Usually, the input will pass through some 
pre-processing steps such as face detection to detect facial 
regions, face registration to align the detected face region, 
motion amplification, and temporal normalization. Viola-
Jones classifier (Viola & Jones 2001), multi-task learning 
(X. Zhu & Ramanan 2012), and joint cascade method          
(D. Chen et al. 2014) are some of the popular methods used 
for facial detection. Even for some applications, the image 
will be transformed into a standardized form using the color 
constancy method (Zulkifley & Moran 2010). Similar to the 
traditional machine learning approach, some of the deep 
learning-based methods have also applied face detection 
module as the pre-requisite to the ME recognization module. 
Matsugu et al. (2003) utilized a convolutional neural 
network (CNN) and a rule-based algorithm as the basis for 
their face detection. A single CNN model has also been 
applied in Ranjan et al. (2019) work to classify an image, 
either it contains a face or not. On the other hand, CNNs 
have also achieved good performances for the application 
of face landmark localization (Deng et al. 2018), (Bian et 
al. 2018).

It is worth noting that deep learning methods have even 
been applied to the data pre-processing phase of ME analysis. 
In general, research in automated ME recognition involves 
two main parts: spotting and recognition. The former part 
concerns on the localization of the peak ME occurrence in 
a video, while the latter part focuses on the classification of 
the emotion categories based on MEs. Hence, this review 
paper will discuss the application of deep learning methods 
to both parts, spotting and recognition.

The second part of the paper will discuss the existing 
popular databases and their facial feature variations. 
After that, ME spotting and recognition will be discussed 
in sections 3 and 4, respectively. In section 5, the current 
challenges, general trends, and future work will be concisely 
reviewed. Finally, the main outcomes of ME spotting and 
recognition are concisely concluded in section 6.

DATABASE AND FEATURE

DATABASE

ME analysis systems conceived by the researchers need to be 
evaluated and validated on rigorous ME databases. Besides 
that, an automated ME system usually involves two modules, 
which are training and testing modules, whereby a leave-
one-subject-out scheme is used to cross-validate system 
performance between various subjects. Hence, a good ME 
database is crucial in the development and evaluation of an 
emotion recognition system.

The posed ME database consists of deliberate 
expressions enacted by the subjects. These ME samples are 
collected by instructing the subjects to purposely produce 
the targeted emotion expression, which is a far cry from 
the unintentional nature of ME. As such, these datasets are 
heavily used during the early studies of ME and are not 
popular in the deep learning era. Table 1 is a summary of 
the posed datasets.

For ME analysis, spontaneous ME samples, which 
mimic closely the real-life expressions are needed. This 
selection is to ensure that ME analysis is capable to handle 
real-life ME challenges, including the preprocessing, 
spotting, and recognition stages. For example, during a 
police interrogation exercise, the subjects are expected to be 
far trickier and more professional in lying, as such they can 
mask their genuine emotion effectively. Table 2 summarized 
several popular public spontaneous ME datasets.

Spontaneous Micro-Expression Corpus (SMIC) consists 
of 51 samples of positive emotions, 70 negative samples, 
and 43 samples under surprise categories. The SMIC video 
samples were captured using a set of high-speed camera 
(HS), normal speed camera (VIS), and infrared camera (NIR). 
This dataset does not provide action units (AU) label and 
apex frame locations. 

Chinese Academy of Sciences Micro-Expression 
(CASME) through CASME II, which is the improved version 
of CASME has analyzed 35 Chinese youths for the dataset 
development. The emotion categories of this dataset are 
happiness (33 samples), disgust (60 samples), surprise 
(25 samples), repression (27 samples), and others (102 
samples). The major issue encountered by this dataset is 
the imbalanced data distribution between the emotions. 
Contrary to CASME II, SAMM has recruited 32 participants 
from 13 ethnicities to overcome the lack of ethnic diversity.
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TABLE 1. Posed micro-expression datasets

Dataset Reference Subjects Samples No. Emotions Emotions
Polikovsky (Polikovsky et al. 2009) 11 42 7 Smile, Surprise, Anger, Sad, Disgust, Fear, Contempt

USF-HD (Shreve et al. 2011) - 100 4 Smile, Surprise, Anger, Sad
YorkDDT (Warren et al. 2009) 9 18 2 Emotional, Non-emotional

TABLE 2. Spontaneous micro-expression datasets

Dataset Reference Subjects Samples No. Emotions Emotions

SMIC (Li et al. 2013)
16 (HS)
8 (VIS)
8 (NIR)

164
71
71

3
3
3

Positive, Negative, Surprise

CASME (Yan et al. 2013) 35 195 7 Happiness, Sadness, Disgust, Surprise, Contempt, Fear, 
Repression or Tense

CASME II (Yan et al. 2014) 35 247 5 Happiness, Disgust, Surprise, Repression, Others
CAS(ME)2 (Qu et al. 2018) 22 57 4 Positive, Negative, Surprise, Others

SAMM (Davison et al. 2018) 32 159 7 Contempt, Disgust, Fear, Anger, Sadness, Happiness, 
Surprise

FEATURE DESCRIPTOR

ME features are the unique representation of the emotion 
extracted from the raw ME video samples. Early works 
on ME recognition were mostly done based on ME feature 
analysis, whereby many researchers believed that an 
improvement in a ME recognition system can be achieved 
by designing feature extractors that could best capture 
the nuances of the face. This assumption has led to the 
introduction of various features to optimally represent the 
facial characteristics.

Local Binary Pattern (LBP) is a type of appearance-
based feature that is generated by calculating statistical 
features directly based on the pixel values. For LBP, the size 
relationship between a pixel point and its surrounding pixels 
is encoded in a binary form, which is then analyzed in a 
histogram-based representation. The generated histogram 
then will be the feature vector to represent the texture of an 
area of interest (Ojala et al. 1996). The general idea of LBP 
extraction is illustrated in figure 2. 

FIGURE 2. LBP feature extraction

The LBP representation is then improved by introducing 
a Local Binary Pattern on Three-Orthogonal Planes (LBP-
TOP) (Zhao & Pietikäinen 2007). Graphically, a video 
sample can be considered as a cube in x, y and t dimensions 
as shown in figure 3. The xy, xt and yt ortogonal planes are 
first extracted, which are then stitched together to generate 

the final LBP-TOP features. This extended LBP feature 
extraction method was initially used to extract macro-
expressions, which is then applied to ME as used in the 
studies by (Yan et al. 2014), (Li et al. 2013) and (Pfister et 
al. 2011).
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FIGURE 3. Micro-expression Video Three Orthogonal planes

Although LBP-TOP performs relatively well in the 
previous ME studies, but this method extracts the features 
in the form of high dimensionality, which is very difficult 
to down-scale to form sparse sampling representation. 

FIGURE 4. HOG feature extraction

Therefore, several extensions of LBP were published such 
as Local Binary Pattern with Six Intersection Points (LBP-
SIP) (Wang et al. 2015) and Local Binary Pattern with Mean 
Orthogonal Planes (LBP-MOP) (Wang et al. 2015).

Histogram of Oriented Gradients (HOG) is a gradient-
based feature representation that is still heavily used today 
for object detection and image recognition (Li et al. 2018). 
HOG is known to be good in detecting corners and edges 
in an image, whereby the gradient value will increase 
significantly when there is a sharp change in intensity. 

FIGURE 5. Optical flow between two frames

The process of generating the HOG feature starts from 
computing the image gradient in both x and y directions, 
followed by constructing a histogram of gradients, which is 
then further processed to produce the final HOG descriptor 
vector as shown in figure 4.



767

Contrary to the LBP feature descriptor, an optical 
flow descriptor does not consider directly the pixel values 
themselves, but rather the displacement values of certain 
feature points or areas of interest. Figure 5 illustrates the 
optical flow between the onset frame and apex frame of one 
set of SAMM ME data. This type of feature descriptor encodes 
the object movements through intensity changes of the 
image pixels. TV-L1(Zach et al. 2007) is one of the popular 
methods to calculate the optical flow approximation. While, 
Main Directional Mean Optical Flow (MDMO) as proposed 
by Liu et al. (Liu et al. 2016) considers the local static 
motion information and spatial location, which is found to 
produce better ME recognition results when it is compared to 
the LBP-TOP descriptor. In addition, Facial Dynamics Map 

(FDM) (Xu et al. 2017), Bi-Weighted Oriented Optical Flow 
(Bi-WOOF) (Liong et al. 2018)there is still plenty of room 
for improvement in terms of micro-expression recognition. 
Conventional feature extraction approaches for micro-
expression video consider either the whole video sequence 
or a part of it, for representation. However, with the high-
speed video capture of micro-expressions (100–200 fps, 
Histogram of Oriented Optical Flow (HOOF) (S. Zhang et 
al. 2017) were also used to approximate the optical flow for 
ME applications.

 MICRO-EXPRESSION SPOTTING

Short Video Detection

FIGURE 6. Micro-expression short video

ME spotting aims to locate the peak ME in a video, in 
other words, a short video of ME that was extracted from a 
raw long video. A short video of ME begins from the onset 
frame and ends once it reaches the offset frame as shown in 
Figure 6. An onset frame is the frame in which the expression 
starts to appear, while an offset frame is the frame in which 
the ME ends and reverts to the neutral expression. Among 
the frames in a short video, there is an apex frame that 
contains the greatest facial muscle movements. It plays an 
important role in the subsequent study of automated micro-
expression analysis (Liong et al. 2016).

Shreve et al. (2009), (2011) detected and distinguished 
the occurrence of macro and micro expressions in a long 
video by calculating the strain magnitude, derived from 
the optical flow method. While Polikovsky et al. (2009) 
we present a novel approach for facial micro-expressions 
recognition in video sequences. First, 200 frame per second 
(fps), (2013) have utilized 3D-HOG descriptor as the input 
feature to locate the onset, apex, and offset frames of a 
video, captured using a high-speed camera with a frame 
rate of 200 frames per second. However, these studies were 
examined and validated using posed ME datasets: Shreve 
et al. (USF-HD dataset) and Polikovsky et al. (Polikovsky 
dataset). The obvious limitations of such datasets have been 
discussed in previous section.

Thereafter, many studies have shifted their focus to 
spontaneous databases, whereby the detection of such MEs 
is more challenging but more relevant to the real situation. 
Moilanen et al. (2014) have applied LBP- χ2 distance 
method for ME spotting tested on the CASME and SMIC 
datasets. The authors utilized appearance-based of LBP 
feature difference analysis, which then calculated the Chi-
squared distance to measures the feature disparity, which are 
then further processed to detect a set of frames with ME 
movements 

that exceed a threshold value. This thresholding method 
has been adopted and modified by several later studies. 
Davison et al. have applied both, the HOG (Davison et al. 
2015) and 3D-HOG (Davison et al. 2018) feature descriptors, 
which are then used in feature difference analysis coupled 
with thresholding of Chi-Squared (χ2) distances to spot the 
MEs. They have explored different databases of CASME and 
SMIC in (Moilanen et al. 2014), SAMM and CASME II in 
(Davison et al. 2018). Thus, it is not practical to directly 
compare which of these methods is the more effective one.

In (Patel et al. 2015), the onset and offset frames of the 
SMIC dataset were identified with the aid of optical flow 
vectors. The proposed algorithm was designed to capture 
the continuity information of the movement flows and 
directions. Li et al. (2018) have proposed the first automatic 
ME analysis system (MESR) that combines the thresholding 
value of feature contrast used in ME spotting and recognition 
tasks for a long spontaneous video (SMIC and CASME II). 
The feature extractors used in this paper are LBP and HOOF, 
of which the former method produced better performance. 
Besides, Wang et al. (2017) have also utilized the threshold 
technique for their proposed Main Directional Maximal 
Difference (MDMD) Analysis of optical flow features. The 
differences of the CAS(ME)2 frame features obtained using 
MDMD features are more pronounced than those of LBP 
features. 

Apart from the popular thresholding technique, a 
random walk model was used in (Xia et al. 2016) to estimate 
the probability of the presence of ME in video frames. 
While Li et al. (2016) have used CNN for pre-processing the 
ME data. The ME detection is done based on a deep multi-
task learning method with the HOOF input feature. In the 
later Micro-Expression Spotting Challenge 2019, the LTP 
machine learning method proposed by Li et al. (2019) have 
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performed better on SAMM and CAS(ME)2 compared to the 
LBP- χ2 distance method.

APEX FRAME SPOTTING

Early studies on ME consider both the spatial image features 
and temporal timing features, thence the entire short video 
of the ME needs to be processed first before emotion can 
be recognized. However, some researchers only analyze the 
most crucial frame in the ME short video, which is the apex 
frame (Liong et al. 2018). It is a frame that lies between 
the onset frame (beginning) and the offset frame (ending) 
of a short video as depicted in Figure 3 It portrays the most 
expressive emotional state, thus the highest intensity of 
expression changes can be retrieved from this frame. Yet the 
spotting of apex frames can be a challenging task due to the 
short duration of the expression and subtle facial movement 
intensity.

The very first automated apex frame spotting research 
was designed by Yan et al. (2015), whereby the authors 
have employed two feature extractors, namely LBP and 
Constraint Local Models, pivoted on the assumption that an 
apex frame will have the largest feature differences among 
the subsequent frames. Liong et al. (2015) have argued 
that the maximum feature variations do not necessarily 
correspond to the apex frame. In addition to this, Liong 
et al. have pointed out two flaws in Yan et al.’s work that 
affects the practicability of the results. The performance 
analysis was deemed to be incorrectly done because the 
average frame distance between the spotted apex frames 
and the ground truth was not based on the absolute mean 
data. Besides that, they have also argued that the validation 
was only performed on about 20% of the video samples in 
the CASME II dataset.

Then, Liong et al. published an improved version of 
their apex spotting method in (Liong et al. 2015). An extra 
feature descriptor, the optical strain was added as part of the 
input features to the first apex spotting network. A divide-
and-conquer strategy applied to the region of interest was 

suggested to locate the occurrence of the apex frame. After 
that, Liong et al. (2016) have further extended their work 
to recognize ME from a set of long videos, also based on a 
single spotted apex frame. The spotting task is done by the 
novel eye masking approach to exclude the irrelevant ME 
movements, which is then further processed by an optical 
strain feature descriptor. Ma et al. (2017)  have proposed 
a method to automatically spot the apex frame using 
Region Histogram of Oriented Optical Flow (RHOOF) 
feature. The proposed RHOOF can reflect the changes in 
the facial movements for the video samples taken from 
CASME and CASME II datasets. 

Zhang et al. (2018) then combined a deep learning 
approach and feature matrix processing method for the 
application of apex frame spotting. A new CNN network 
namely spotting micro-expression convolutional network 
(SMEConvNet) was designed to extract the relevant features. 
Although the deep neural network is less optimal for the 
application with a medium-size dataset, specifically the 
publicly available ME datasets, SMEConvNet that consists 
of four pairs of convolution and pooling (Conv-Pool) layers 
have managed to achieve 22.36 average frames difference 
on the long video input. The number of Conv-Pool layers 
in the network will heavily affect the performance of the 
deep learning network. A lesser number of Conv-Pool 
pairs will limit the network capability in extracting high-
level features, while a larger number of layers will possibly 
cause an overfitting problem, which will subsequently cause 
worse performance. Table 3 summarized the performance 
of the reviewed apex spotting studies. The CASME-II-RAW 
database used in the studies is based on the raw long video 
of ME, which is a more challenging dataset compared to the 
short video.

The effectiveness evaluation of the apex frame spotting 
is usually measured using the Mean Absolute Error (MAE). 
MAE measures the average difference (in terms of frames) 
of the spotted apex frame compared to the ground truth label 
of the apex frame. The metric will produce a small MAE 
value for a well-performed apex spotting algorithm.

TABLE 3. Studies in Apex frame spotting

Paper Method Database Best Result

Yan et al. (2015) LBP
CLM CASME II Mean: 0.31

Mean: 1.02

Liong et al. (2015)
LBP
CLM
OS

CASME II
MAE: 13.55
MAE: 17.21
MAE: 14.43

Liong et al. (2016) LBP
OS CASME II-RAW MAE: 55.26

MAE: 27.21

Ma et al. (2017) RHOOF CASME
CASME II

MAE: 3.60
MAE: 10.97

Zhang et al. (2018) SMEConvNet CASME II-RAW MAE: 22.36
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 MICRO-EXPRESSION RECOGNITION

TRADITIONAL MACHINE LEARNING APPROACHES

As mentioned in section Feature Descriptor, much of the 
early works in ME recognition are based on the traditional 
machine learning approach, which is highly dependent on 
the handcrafted feature extraction methods. The sub-optimal 
features are then passed to the traditional classifiers such as 
Support Vector Machines (SVM) (Suykens & Vandewalle 
1999), Random Forest (RF) (Breiman 2001), Naive Bayes 
(MA et al. 2014), Multiple Kernel Learning (MKL) (Varma 
& Ray 2007) and Local Vector Space Model (LVSM) 
(Vu Thanh et al. 2015),  to classify the features, which is 
then subsequently organized into a set of predetermined 
categories.

The most representative study would be the publication 
by Pfister et al. (2011). This paper can be considered as the 
pioneering work on automated ME recognition. The authors 
have utilized LBP-TOP extractor to extract ME features 
with the aid of MKL and Temporal Interpolation Model 
(TIM), which has achieved 71.4% accuracy tested on the 
early version of SMIC database that propelled the LBP-TOP 
to be the baseline comparison model in many subsequent 
works on ME analysis. Some of the publications that have 
analyzed hand-crafted ME features are (Yan et al. 2014), 
(Li et al. 2013), and (Liong et al. 2015). Among them, the 
work in (Liong et al. 2018) has used the SVM coupled with 
the Bi-WOOF feature for the analysis of Apex frame and 
Onset frame only. On this basis, the study has achieved 
considerably good results that outperform the other methods 
with F1-scores of 0.62 (SMIC-HS) and 0.61 (CASME II). 
This paper has also shown that the information contained 
in the Apex frame is able to represent the entire ME video, 
which has inspired the subsequent studies to focus solely 
on the relationship between Apex and Onset frames for ME 
analysis. Table 4 summarizes related ME recognition studies 
utilizing traditional machine learning approaches.

DEEP LEARNING APPROACHES

Rapid advances in the development of deep neural networks 
have influenced the progress in ME recognition, whereby 
there is a less and lesser method designed based on the 
hand-crafted features. Several researchers have proposed 

and implemented optimal feature learning using a deep 
learning approach that eliminates the need of extracting 
the features manually. As a result, the CNNs methodology 
has been applied to both spotting and recognition of ME 
systems. Figure 7 compares the traditional machine learning 
approach which requires the aid of handcrafted features and 
classifier with the deep learning approach.

Several famous CNN network structures such as 
VGG-M (Zulkifley & Trigoni 2018), ResNet (He et al. 
2016), AlexNet (Krizhevsky et al. 2012), GoogleNet 
(Inception) (Szegedy et al. 2015), and VGGNet (Simonyan 
& Zisserman 2015) have been applied to the ME recognition.  
Compared to the tedious hand-crafted feature extraction in 
the traditional setting, deep learning networks extract a set 
of optimal features through deep recursive training. The 
general structure of the deep network often involves feature 
extraction through several layers of CNN, followed by fully 
connected layers for the classification task. The final layer is 
connected to several neurons that depend on the number of 
classes, whereby the probability distribution of the sample 
belonging to each class is obtained through the softmax 
activation function.

A concise summary of some published deep learning-
based ME recognition studies can be found in Table 5. The 
table shows that ME recognition system that is based on the 
deep learning paradigm started around 2016 by Kim et al. 
(2016). The authors have combined CNN and long short-
term memory (LSTM) to encode and process the spatial 
information of the following patterns: start, start to apex, 
apex, apex to end, and end. 

Another interesting ME recognition study is the Off-
ApexNet that was published by Gan et al. (2019), which 
has outperformed the other ME studies with the highest 
accuracy of 88.28% and F1-score of 0.8697, tested on the 
CASME II dataset. The overall procedure of their method 
started with locating the apex frame index using a divide-
and-conquer strategy on the region of interest to attain the 
optical flow information of the apex frame and reference 
frame. Then, the optical flow features are fed into a pre-
designed CNN model for further feature enhancement 
as well as expression classification. The evaluation of 
Off-ApexNet has been done on SMIC, CASME II, and 
SAMM databases. The recognition accuracy on the SMIC 
database is the lowest, indicating that there is still room for 
improvement in automatic apex frame spotting.
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FIGURE 7. Traditional machine learning and deep learning approach

TABLE 4. ME recognition using traditional machine learning approaches

Feature types Classifier Reference Database Best Result
LBP-TOP SVM, MKL, RF Pfister et al. (2011) Earlier version of SMIC Acc: 71.4% (with MKL)
LBP-TOP SVM Li et al. (2013) SMIC Acc: 52.11% (on VIS)
LBP-TOP SVM Yan et al. (2014) CASME II Acc: 63.41%

OSW-LBP-TOP SVM Liong et al. (2014) SMIC
CASME II

Acc: 57.54%
Acc: 66.40%

MDMO SVM Liu et al. (2016) SMIC
CASME

CASME II

Acc: 80%
Acc: 68.86%
Acc: 67.37%

3D-HOG Fuzzy Chen et al. (2016) CASME II (36 samples) Acc: 86.67%
Bi-WOOF SVM Liong et al. (2016) SMIC

CASME II
F1: 0.62 (on HS)

F1: .0.61
Bi-WOOF SVM Liong et al. (2016) SMIC

CASME II
Acc: 53.52%

F1: 0.59
LBP-TOP, HOOF RK-SVD Zheng et al. (2016) CASME

CASME II
Acc: 69.04%
Acc: 63.25%

LBP-TOP, Optical Flow KNN, SVM, RF Zhang et al. (2017) CASME II Acc: 62.50%
LBP-TOP, LBP-SIP, STLBP-IP KGSL Zong et al. (2018) CASME II and SMIC F1: 0.6125
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Method Reference Database Best Result
CNN+LSTM Kim et al. (2016) CASME II Acc: 60.98%

DTSCNN Peng et al. (2017) CASME and CASME II Acc: 66.67%

ELRCN Khor et al. (2018) CASME II
SAMM

F1: 0.5
F1: 0.409

ResNet Wang et al.(2018)
SMIC

CASME II
SAMM

Acc: 49.4%
Acc: 65.9%
Acc: 48.5%

OFF-ApexNet Gan et al. (2019)
SMIC

CASME II
SAMM

F1: 0.6709
F1: 0.8697
F1: 0.5423

3D-FCNN Li et al. (2019)
SMIC

CASME
CASME II

Acc: 55.49%
Acc:54.44%
Acc: 59.11%

STSTNet Liong et al. (2019)
SMIC

CASME II
SAMM

UF1: 0.6801
UF1: 0.8382
UF1: 0.6588

Apex-Time Network Peng et al. (2019)
SMIC

CASME II
SAMM

UF1: 0.497
UF1: 0.523
UF1: 0.429

CapsuleNet Van Quang et al. (2019)
SMIC

CASME II
SAMM

UF1: 0.5820
UF1: 0.7068
UF1: 0.6209

MER-RCNN Xia et al. (2019)
SMIC

CASME
CASME II

Acc: 57.1%
Acc: 63.2%
Acc: 65.8%

Dual-Inception Zhou et al. (2019)
SMIC

CASME II
SAMM

UF1: 0.6645
UF1: 0.8621
UF1: 0.5868

DSTICNN Zhu et al. (2020) SMIC
CASME II

Acc: 85.93%
Acc: 83.65%

TABLE 5. ME recognition using deep learning approaches

PERFORMANCE ANALYSIS

The performance of a ME recognition system is usually 
assessed using Leave-One-Subject-Out (LOSO) cross-
validation, as such the test will cover a wide range of 
emotions per subject. 

TABLE 6. ME recognition confusion matrix

Predicted Class

Yes No

Actual 
Class

Yes True Positive () False Negative ()

No False Positive () True Negative ()

The confusion matrix as shown in Table 6 is also used 
to supplement the classification performance metrics, apart 
from accuracy (Acc) and F1-score. Accuracy quantifies the 
ratio of correctly predicted observations with respect to the 
total observations. Although accuracy is a great metric, it 
can produce a biased result if the distribution between the 
sample size of true and false categories is greatly imbalanced, 
and hence will not reflect the real performance of the model. 
For such cases, F1-score is the better option to measure the 
performance of an imbalanced dataset distribution, which is 
a norm for ME analysis, whereby the subjects cannot invoke 
all the targeted emotions. This is because F1-score considers 
both the Precision and Recall metrics. Precision is defined 
as the measure of correctly identified positive cases from 
all the predicted positive cases, while Recall measures the 



772

ratio of correctly identified positive cases to all the actual 
positive cases. These performance metrics can be calculated 
as shown below:

Jurnal Kejuruteraan 34(5) 2022: xxx-xxx
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of an imbalanced dataset distribution, which is a
norm for ME analysis, whereby the subjects cannot
invoke all the targeted emotions. This is because F1-
score considers both the Precision and Recall
metrics. Precision is defined as the measure of
correctly identified positive cases from all the
predicted positive cases, while Recall measures the
ratio of correctly identified positive cases to all the
actual positive cases. These performance metrics
can be calculated as shown below:
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DISCUSSION AND FUTURE WORK

Automatic recognition of ME is now a popular
researcher field, especially in the digital era, where
an accurate measurement of the user emotion is
crucial for targeted marketing purposes. In contrast
to the early studies in this field, the number of
available spontaneous ME databases has increased
significantly, which will greatly facilitate and
benefit the development of automated ME systems.
However, the existing databases still have a few
shortcomings that include uneven sampling
distribution between the emotion categories and the
homogeneity of the subject's ethnicity. For example,
the CASME II database as discussed in this paper
only considers Chinese youth as the subject,
whereby the emotion invoked by them might be
different compared to the other nationalities.
Besides that, it is also inefficient for the largest
sample of ME to belong to the “other” category that
accounts for 64% of the total data, which is in
contrast to the “surprise” category with only 15% of
the sample. This imbalance between emotions is
mainly due to the difficulty of capturing the targeted
ME, but this is also an indicator that there is still
sizable room for improvement in the development of
ME analysis. The inadequacy of the ME database
will hamper the rapid research and development of
automated ME recognition systems. Thus,
increasing the number of ME video samples is an

unavoidable challenge that needs to be addressed
immediately.

On the other hand, our previous discussion
has also shown that a lot of researchers in the ME
recognition system have gradually moved towards
the deep learning-based paradigm. From the
laborious and time-consuming process of manually
spotting and recognition approach to the utilization
of standard machine learning approach, deep 
learning has been implemented in the most
important parts of the automated ME recognition
system, which are spotting and recognition tasks.
This is undoubtedly a great advancement in the ME
analysis study. Deep learning has been well
established in many other fields (Abdani &
Zulkifley 2019), whereby its strength in terms of
accuracy, efficiency, and timesaving have been
proven in various ME recognition systems. For
example, the previously reviewed Off-ApexNet
which utilizes CNN with optical flow input has
returned better apex frame spotting. Besides, the
research direction of ME spotting and recognition
should aim towards more practical applications,
which consequently are in line with the aims of real-
time ME recognition systems. The application of
deep learning methodology in ME analysis has
reduced the tedious and time-consuming efforts
needed in manual detection and analysis.

However, the development of automatic
ME recognition systems should not be limited to
basic deep learning techniques. Although much
research on automated ME recognition systems has
been done but still a lot of state-of-art methods have
only been evaluated on limited ME samples, and
thus not optimal for real-life applications. Another
important issue is that the development of ME
spotting is far less researched compared to ME
recognition. Li et al. (2018) have argued that the lack
of precise ME spotting methods has significantly
reduced the ME recognition system accuracy. ME
spotting is not a new topic, but over the years, there
is still no prominent breakthrough due to the lack of
spontaneous ME databases, even the available
databases are not challenging enough in mimicking
real-life applications. Sizable ME samples are
needed to explore more possibilities in ME analysis
design so that accuracy can be improved. One
possible research direction is the application of data
augmentation to synthetically create additional data,
which may help to overcome the problem of ME
samples shortage.

CONCLUSION

In brief, this article collates and discusses the past
and present development of automated ME analysis
systems. In the early studies, the development is
more skewed towards the standard machine learning
approach, while the present ones are more skewed
towards the deep learning approach. It is also worth
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field, especially in the digital era, where an accurate 
measurement of the user emotion is crucial for targeted 
marketing purposes. In contrast to the early studies in this 
field, the number of available spontaneous ME databases 
has increased significantly, which will greatly facilitate and 
benefit the development of automated ME systems. However, 
the existing databases still have a few shortcomings that 
include uneven sampling distribution between the emotion 
categories and the homogeneity of the subject’s ethnicity. 
For example, the CASME II database as discussed in this 
paper only considers Chinese youth as the subject, whereby 
the emotion invoked by them might be different compared 
to the other nationalities. Besides that, it is also inefficient 
for the largest sample of ME to belong to the “other” 
category that accounts for 64% of the total data, which is 
in contrast to the “surprise” category with only 15% of the 
sample. This imbalance between emotions is mainly due to 
the difficulty of capturing the targeted ME, but this is also an 
indicator that there is still sizable room for improvement in 
the development of ME analysis. The inadequacy of the ME 
database will hamper the rapid research and development 
of automated ME recognition systems. Thus, increasing the 
number of ME video samples is an unavoidable challenge 
that needs to be addressed immediately.

On the other hand, our previous discussion has also 
shown that a lot of researchers in the ME recognition 
system have gradually moved towards the deep learning-
based paradigm. From the laborious and time-consuming 
process of manually spotting and recognition approach 
to the utilization of standard machine learning approach, 
deep learning has been implemented in the most important 
parts of the automated ME recognition system, which are 
spotting and recognition tasks. This is undoubtedly a great 
advancement in the ME analysis study. Deep learning 
has been well established in many other fields (Abdani & 
Zulkifley 2019), whereby its strength in terms of accuracy, 
efficiency, and timesaving have been proven in various ME 
recognition systems. For example, the previously reviewed 
Off-ApexNet which utilizes CNN with optical flow input has 
returned better apex frame spotting. Besides, the research 
direction of ME spotting and recognition should aim towards 
more practical applications, which consequently are in line 
with the aims of real-time ME recognition systems. The 

application of deep learning methodology in ME analysis 
has reduced the tedious and time-consuming efforts needed 
in manual detection and analysis. 

However, the development of automatic ME recognition 
systems should not be limited to basic deep learning 
techniques. Although much research on automated ME 
recognition systems has been done but still a lot of state-of-
art methods have only been evaluated on limited ME samples, 
and thus not optimal for real-life applications. Another 
important issue is that the development of ME spotting is far 
less researched compared to ME recognition. Li et al. (2018) 
have argued that the lack of precise ME spotting methods 
has significantly reduced the ME recognition system 
accuracy. ME spotting is not a new topic, but over the years, 
there is still no prominent breakthrough due to the lack of 
spontaneous ME databases, even the available databases are 
not challenging enough in mimicking real-life applications. 
Sizable ME samples are needed to explore more possibilities 
in ME analysis design so that accuracy can be improved. 
One possible research direction is the application of data 
augmentation to synthetically create additional data, which 
may help to overcome the problem of ME samples shortage.

CONCLUSION

In brief, this article collates and discusses the past and pres-
ent development of automated ME analysis systems. In the 
early studies, the development is more skewed towards the 
standard machine learning approach, while the present ones 
are more skewed towards the deep learning approach. It is 
also worth to note that the improvement in ME spotting ac-
curacy will directly improve the recognition performance of 
the ME analysis systems. Lastly, the limitations of current 
ME recognition systems and few future recommendations 
are also mentioned concisely.
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