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ABSTRACT

Vision-based inspection of printed circuit board (PCB) soldering defects was studied for preparing feature data and classifying 
the overall PCB soldering defects on a PCB prototype into different classes. The image data of overall PCB soldering defects 
on a PCB prototype was developed using an image sensor camera. Image data augmentation was conducted to enhance the 
dataset volume. Image pre-processing included image resizing, image colour conversion, and image denoising. Watershed-
based image segmentation was performed in the image post-processing to segmented images; then, feature extraction was 
conducted using curvelet transform to prepare image feature data. The feature data as the statistical data include kurtosis, 
contrast, energy, homogeneity, and variance. These data were analysed, and the percentage difference of mean values of 
statistical data between image classes was calculated. Kurtosis had the highest percentage difference among the statistical 
data. In the comparison of the mean values, kurtosis obtained 4.97% difference for the class of good and medium condition; 
17.02% difference for the good and bad condition; and 12.08% difference for the bad and medium condition. Through 
this analysis, kurtosis is considered more reliable data for the machine-learning based classification in this project. The 
extracted data can be applied in future studies to classify overall solder joint defects on a PCB prototype by artificial neural 
network in machine learning classification.
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INTRODUCTION

Electronic devices are a fundamental need for citizens in 
this technological era as they can improve human lifestyles. 
The demand needs for the size of devices, cost-effectivity, 
higher density package, and higher performance (K. Pan 
et al. 2019; Song et al. 2019). Recently, technology use 
in printed circuit board (PCB) development has been 
investigated to determine the factors influencing passive 
component performance (K. Pan et al. 2019). 

There are two classes of electronic component 
technology, which are Through Hole Technology (THT) 
components and Surface-Mount Devices (SMD). Different 
soldering procedures for surface-mounted components are 
gradually superseding soldering technology for through-
hole components. However, the use of components with 
lead wire and soldering and soldering THT is still a better 
solution due to higher interconnection reliability (S. Maciej 
et al. 2021; Fonseka & Jayasinghe 2019).

Due to the simplicity of automating the SMD assembly 
process, electronic devices are being redesigned (or new 
ones are being designed) to minimise the product cost          
(S. Maciej et al. 2021).

Smaller packaging, smaller circuit boards, and smaller 
components are used in SMT to improve electronic packages 
(J. Smith et al. 2020). The miniaturisation of installation 
components is more challenging because smaller packages 
with higher lead counts necessitate more precise component 
placement (K. Pan et al. 2019). As such, eliminating defects 
using soldering technology has become a goal to reduce 
PCB defects (Haifeng Wang et al. 2019).

PCB board defect problem can be addressed by applying 
an automatic vision-based inspection system by obtaining 
the PCB images using machine vision apparatus such as a 
camera. The inspection and classification of the PCB defect 
can be categorised into two—image pre-processing stage 
and feature extraction technique. Image denoising is an 
essential process in the image pre-processing stage as it can 
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reconstruct a noisy image to a denoised image (Tian 2013). 
Every image consists of some noise contamination, and 
image denoising techniques can produce a denoised image, 
which ideally has no noise. Blurry effects can be obtained 
in the denoised image by applying most of the existing 
denoising methods (Malar et al. 2013). Noise elimination is 
required as the noise will impact the essential information 
of an image, which is important data in feature extraction 
of the image (Hamarneh et al. 2009). The noise is stationary 
and uncorrelated among pixels; sometimes, the variance of 
the noise is known. This research explored the manipulation 
of noise images and denoised images (Knaus et al. 2014).

According to Hamarneh et al. (2009), image denoising 
can be conducted by applying curvelet transform since it 
is a multiscale analysis and geometrical idea, which can 
accomplish the optimal rate of convergence by simple 
thresholding. Width, length, and anisotropy are the main 
variables of the curvelet. The length and width of curvelets 
inside the direction characteristics are related to the 
parabolic scaling law. The first generation of the curvelet 
transform can be used for picture fusion and image contrast 
enhancement, while the second generation of curvelets can 
be used for image denoising (B. Rajalingan et al. 2019). Fast 
discrete curvelet transform can be constructed by applying 
anisotropic law, wrapping, parabolic scaling, and tight 
framing. The application of fast discrete curvelet transform 
via wrapping is recommended as it is faster, simpler, and less 
redundant (Song et al. 2019). The utilisation of spatial grid 
allows the process of curvelet transform that is conducted 
in each scale and angles as curvelets in the frequency 
domain. Sub-band decomposition, smooth partitioning, and 
renormalisation, ridgelet analysis, and image reconstruction 
are the essential steps to conduct curvelet-based image 
denoising (Anandan et al. 2018) 

Image segmentation is an essential step in image post-
processing as image segmentation within similar classes 
consisting of related features can be accomplished by the 
image segmentation technique. Techniques for segmentation 
have been widely employed in various industries, including 
image processing. Image segmentation is the first necessary 
and critical step for later processes such as feature 
recognition; it is often used to determine the borders of 
objects in an image (S. Lou et al. 2021). 

The utilisation of image gradient to carry out image 
segmentation can be accomplished by watershed-based 
segmentation. Images can be visualised into three 
dimensions by watershed transform, which include two 
spatial coordinates versus grey level. Watershed-based 
segmentation is a tropological interpretation segmentation 
method and can form closed boundaries for each segment 
area to ensure the segments are meaningful in the further 
process (Bloice et al. 2019). The watershed transform is a 
robust method based on mathematical morphology among 
several picture segmentation techniques (S. Lou et al. 2021).

Feature extraction is conducted to extract feature data of 
images after image segmentation. Important features in an 
image can be obtained, and feature data can be generated in 
a lower dimensionality space by utilising feature extraction 
techniques. There are three kinds of common visual features 
in image processing: colour, texture, and shape. Several 
feature extraction techniques exist, such as Gabor features 
and gradient features (Bloice et al. 2017). 

The multiscale directional characteristics that allocate 
optimal nonadaptive sparse corresponding to objects with 
edges allow the curvelet transform to be applied as a feature 
extraction method (Guesmi et al. 2012). After carrying out 
feature extraction, the curve and line information from each 
expression frame can be illustrated as applying curvelet-
based transformation. Curvelet transform can also be 
applied in tasks comprising illustrated edge information (M. 
Alruwaili et al 2019).

This project proposes a vision-based inspection of PCB 
soldering defects instead of applying a contact-based method 
or supervised by a specialist. The objectives of this project 
are to develop a database of PCB soldering defects using 
an image sensor, apply watershed transform as an image 
segmentation method, and curvelet transform to conduct 
image denoising and feature extraction. 

METHODOLOGY AND EXPERIMENTAL SETUP

The methodology applied in this project is shown in 
Figure 1, which includes image acquisition, image data 
augmentation, image pre-processing, and post-processing 
techniques. 
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FIGURE 1. Methodology of the project

IMAGE ACQUISITION

The PCB prototype of the project was prepared with a 
sample of solder joint defects, as shown in Figure 2. The 
defects included solder bridging, insufficiently applied 
solder, excessively applied solder, and missing solder. 
The quantity of the inspected solder joint defects of the 
PCB prototype determined the respective category of the 
overall solder joint defect condition; the categories are 
good, medium, and bad condition. If the solder joints were 
satisfying or less than three solder joints consisting of 

FIGURE 2. Sample PCB prototype with various solder joint defects.

excessively applied solder, the PCB prototype was rated as 
a good condition since the circuit connection would not be 
affected by excessively applied solder. However, it would 
have been a waste of applied solder. The defects in solder 
joints presented in Figure 2 are between four and nine on 
the PCB prototype; as such, it would be rated as a medium 
condition since the prototype is not functioning. And a bad 
condition of the PCB prototype can be identified if more than 
ten solder joints have defects. Examples of each condition 
of overall solder joint defects are shown in Table 1.
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TABLE 1. Overall solder joint condition of PCB prototype for each category.

Good condition Medium Condition Bad Condition

•	 Clean and shiny
•	 Smooth and bright
•	 Volcano shaped

•	 Medium clean and shiny
•	 Some dull solder
•	 Some volcano shapes

•	 Dry joint
•	 Dull solder
•	 Lopsided

IMAGE DATA AUGMENTATION

Image data augmentation is a required step in image 
processing as a new dataset can be generated by expanding 
the existing dataset within the image augmentation technique 
(Amoda et al. 2013). It is often used in deep learning image 
processing to increase data and avoid overfitting. The main 
purpose of image augmentation is to obtain more and a 
variety of datasets. The new dataset needs to contain the 
essential information of the existing datasets and detect new 
incoming images under various conditions (Gan & Zailah 
2019). The generated new datasets can enhance the model 
accuracy of the machine learning context, and the trained 

FIGURE 3. Samples of augmented images dataset.

models will be more robust to unseen data (Amoda et al. 
2013). Ten original images from each class were collected 
in this project, and image data augmentation was utilised to 
obtain a new variety of images dataset. Random rotation, 
reflection, and random translation with set limitations 
were applied as image data augmentation of the project. 
New image data were saved in a folder created after the 
augmentation options. Fifty images were prepared in each 
dataset class, which included 10 original images and 40 
augmented images. A total of 150 pieces of images dataset 
were obtained in three-class variations as the image dataset 
of this project. The augmented image samples are shown in 
Figure 3.
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IMAGE PRE-PROCESSING

The prepared images dataset needed to undergo image 
pre-processing before image post-processing. Image pre-
processing was started by image resizing as the images 
needed to be resized to 500*500 pixels. Resizing into smaller 
pixels is not encouraged to ensure the necessary information 
from images can be analysed easily. Then, image denoising 
was carried out to minimise noise contamination in the 
images. Image denoising was started by adding noise to 
the grayscale images to form noisy images. Noisy variance 
can define as a noisy image, and the noise variance in this 
project was set as a sigma value equal to ten. The sigma 
value is needed to manipulate variables by multiplying the 
normally distributed random numbers. The noisy image 
can only be formed as the obtained value is added to the 
original image. After obtaining noisy images, normalisation 
of curvelet is needed to compute, and curvelet transform 
needs to be applied on the noisy image for having curvelet 
decomposition to obtain sub-band images and acquire 
curvelet coefficients. A digital curvelet transform can 
be identified, as shown in Eq. (1). The input of Cartesian 
arrays with t1>0 and t2<n is represented as f[t1,t2] in the 
equation, curvelet coefficients are represented as And the 
Reisz is represented as  in the equation (Song et al. 2019). 
Next, the sub-bands images must undergo hard thresholding 
in the loop of the curvelet coefficient, which acts as detailed 
information. The curvelet coefficients then need to perform 
the inverse curvelet transform after hard thresholding for 

reconstructing the image into the required denoised image 
(Anandan et al. 2018).
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A standard watershed segmentation algorithm applies 
topographical distance in the discrete case for digital images 
and can be described using Eq. (2), Eq. (3), and Eq. (4). In 
Eq. (2), the lower slope is represented as LS(p), with the 
maximum slope that connects pixel p in the input image f 
with its neighbours of lower altitude. The set of neighbours 
is represented as N(p), and the Euclidean distance between 
p and q is represented as d(p,q). The right-hand side in Eq. 
(2) is required to be zero as p = q. Thus, the slope value can 
be lower as p represents a local minimum [16].
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denoising was carried out to minimise noise 
contamination in the images. Image denoising was 
started by adding noise to the grayscale images to 
form noisy images. Noisy variance can define as a 
noisy image, and the noise variance in this project 
was set as a sigma value equal to ten. The sigma 
value is needed to manipulate variables by 
multiplying the normally distributed random 
numbers. The noisy image can only be formed as the 
obtained value is added to the original image. After 
obtaining noisy images, normalisation of curvelet is 
needed to compute, and curvelet transform needs to 
be applied on the noisy image for having curvelet 
decomposition to obtain sub-band images and 
acquire curvelet coefficients. A digital curvelet 
transform can be identified, as shown in Eq. (1). The 
input of Cartesian arrays with t1>0 and t2<n is 
represented as f[t1,t2] in the equation, curvelet 
coefficients are represented as 𝐶𝐶"(𝑗𝑗, 𝑙𝑙, 𝑘𝑘)And the 
Reisz is represented as 𝜑𝜑				+,,,-"  in the equation (Song 
et al. 2019). Next, the sub-bands images must 
undergo hard thresholding in the loop of the curvelet 
coefficient, which acts as detailed information. The 
curvelet coefficients then need to perform the 

inverse curvelet transform after hard thresholding 
for reconstructing the image into the required 
denoised image (Anandan et al. 2018). 
 
𝐶𝐶"(𝑗𝑗, 𝑙𝑙, 𝑘𝑘) =
	∑ 𝑓𝑓[𝑡𝑡1, 𝑡𝑡2]𝜑𝜑					6,-,,"777777777
89:;,:<=> [𝑡𝑡1, 𝑡𝑡2]       (1) 

 
Image Segmentation 

 
Watershed-based image segmentation 

technique was applied in the image post-processing 
of this project as it is stable and able to detect 
continuous boundaries in the image segments. 
Figure 4 shows the watershed-based segmentation 
process starting from conducting morphological 
transformation on the denoised image by subtracting 
background form, removing smaller features than 
the structuring element, and adjusting image 
intensity. The level of grey thresholding of the 
image was acquired to conduct image binarisation. 
After the image was binarised, distance transform 
was computed to acquire the distance from every 
pixel to the nearest nonzero-valued pixel as a 
negative value for transforming the object marker as 
a background marker into catchment basins. The 
extended maxima pixels and background pixels can 
be forced to be the only local minima in the image 
within the conducted image modification. 
Watershed transform was computed as segmentation 
method, and label function was applied to convert 
the segments of solder joints image into the specified 
colourmap. Feature extraction was conducted to 
obtain more precise feature data.  
 

 

FIGURE 4. Block diagram watershed-based segmentation. 
 
A standard watershed segmentation 

algorithm applies topographical distance in the 
discrete case for digital images and can be described 
using Eq. (2), Eq. (3), and Eq. (4). In Eq. (2), the 
lower slope is represented as LS(p), with the 
maximum slope that connects pixel p in the input 
image f with its neighbours of lower altitude. The set 
of neighbours is represented as N(p), and the 
Euclidean distance between p and q is represented as 
d(p,q). The right-hand side in Eq. (2) is required to 
be zero as p = q. Thus, the slope value can be lower 
as p represents a local minimum [16]. 

  

𝐿𝐿𝐿𝐿(𝑝𝑝) = 	
max

𝑞𝑞 ∈ 𝑁𝑁(𝑝𝑝) ∪ 𝑝𝑝(
I(J)KI(L)
M(J,L)

)           (2) 

 
Meanwhile, Eq. (3) represents the cost to 

move from pixel p to q. In the case of presenting a 
path 𝜋𝜋 = (𝑝𝑝8,… , 𝑝𝑝-) from p_0 = p_l to p_l = q, Eq. 
(4) represents the topographical distance along π 

between the two pixels, p and q. The minimum 
topographic distance of all paths relating to p and q 
is represented as 𝑇𝑇IQ(𝑝𝑝, 𝑞𝑞) in Eq. (4). By relating to 
the equation explanation, catchment basin 
CB(𝑚𝑚S)	of a local minimum m_i is explained as a 
set of pixels containing smaller topographic 
distances to the m_i local minimum than any other 
local minimum. The set of pixels that do not belong 
to any catchment basin are the watershed pixels 
(Garg et al. 2012). 
 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝, 𝑞𝑞) =

	W
𝐿𝐿𝐿𝐿	(𝑝𝑝). 𝑑𝑑(𝑝𝑝, 𝑞𝑞)																															𝑖𝑖𝑖𝑖	𝑓𝑓(𝑝𝑝) > 𝑓𝑓(𝑞𝑞),
𝐿𝐿𝐿𝐿	(𝑝𝑝). 𝑑𝑑(𝑝𝑝, 𝑞𝑞)																														𝑖𝑖𝑖𝑖	𝑓𝑓(𝑝𝑝) < 𝑓𝑓(𝑞𝑞),
;
<
[𝐿𝐿𝐿𝐿(𝑝𝑝) + 𝐿𝐿𝐿𝐿(𝑞𝑞).𝑑𝑑(𝑝𝑝, 𝑞𝑞)]									𝑖𝑖𝑖𝑖	𝑓𝑓(𝑝𝑝) = 𝑓𝑓(𝑞𝑞),			

				(3) 

 
𝑇𝑇IQ(𝑝𝑝, 𝑞𝑞) = 	∑ 𝑑𝑑(𝑝𝑝S, 𝑝𝑝S^;)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑝𝑝S, 𝑝𝑝S^;)-K;

S_8  (4) 
 

FEATURE EXTRACTION

The segmented image needed to undergo curvelet-based 
feature extraction to collect the image’s feature data. 
Curvelet decomposition can extract the texture feature of 
an image and obtain statistical features such as energy and 
entropy (Anandan et al. 2018; Nandhini et al. 2016). Curvelet 
sub-band images can utilise these features to represent an 
image. Thus, curvelet transform was applied in this project 
to acquire the texture feature of the solder joint defects, and 
the process of curvelet-based feature extraction is shown 
in Figure 4. The feature extraction method was performed 
using a curvelet toolbox (Curvelab). The feature extraction 
started by applying forward curvelet transform defined 
in Eq. (1) on the segmented image for acquiring curvelet 
decomposition. This type of transformation is required to set 
for a real-valued curvelet to obtain the curvelet coefficient 
since a complex-valued curvelet can only provide an image 
of curvelet decomposition. The curvelet decomposition of 
this project was set to three scales; the first scale consists 
of approximation coefficients, the second and third scales 
consist of detailed coefficients of the image.

Extraction of a detailed coefficient in the second scale 
was carried out after accomplishing the stated setting since 
the detailed coefficients in the second scale are the needed 
coefficients in this project. The second scale of curvelet 
decomposition comprises 16 orientation images or so-called 
sub-bands images. Statistical data can be derived from these 
images, which represent the feature data of each orientation 
image. The chosen statistical data include homogeneity, 
variance, kurtosis, contrast, and energy (Cahaya et al. 2017). 
A grey-level co-occurrence matrix (GLCM) was applied for 

acquiring the mentioned statistical data. These data were 
saved in an Excel file for a further classification process.

RESULTS AND DISCUSSION

DATABASE

The images of solder joint conditions of the PCB prototype 
were captured using a smartphone camera (OppoA92). Ten 
images per each category of overall solder joint conditions 
were collected, categorised as good condition, medium 
condition, and bad condition; additional 40 augmented 
images were obtained from each defect category.

PRE-PROCESSED IMAGE

Image pre-processing started with image resizing and colour 
conversion. The resulting image after resizing and colour 
conversion is shown in Fig. 5. The image was resized to 
500*500 pixels and successfully converted into a grayscale 
image. The essential information of the image, the solder 
joints, can still be seen clearly, but reflection is present 
on the solder joints since the surface of specular solder 
joints was smooth. Reflection is considered a type of noisy 
contamination in image processing as it can affect the 
accuracy of feature data.

In order to minimise the reflection of solder joints in 
the image, curvelet-based image denoising was carried out. 
Figure 6 shows the image comparison between the original, 
noisy, and denoised images. As shown in the figure, the 
image was denoised successfully as the denoised image 
contains less noisy contamination (reflection on the solder 
joints) compared with the original image. The SNR (signal-
to-noise ratio) was measured on the noisy and denoised 
images compared to the original image. In image processing, 
SNR characterises the quality of an image. The SNR values 
are shown in Table 2. The noisy image has a lower SNR 
value than the denoised image, indicating that the image 
was successfully denoised by the proposed image denoising 
technique. 

(3)

(4)

FIGURE 5. Resulting image after conducting image resizing and colour conversion.
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(a) Morphological transform (b) After adjusting image intensity (c) Image binarisation

FIGURE 6. Comparison between the original, noisy, and denoised images.

TABLE 2. Comparison of SNR between the original, noisy, and denoised images.

Signal-to-noise ratio (SNR)

Original image vs noisy image 21.1821
Original image vs denoised image 26.3333

SEGMENTED IMAGE

Several steps needed to be carried out to complete the 
proposed watershed-based segmentation method, which 
includes morphological transformation, adjustment of 
image intensity, image binarisation, computation of distance 
transform, background marker, and watershed transform as 
segmentation method. Figure 7 shows the resulting image 
of a few processes, in which Figure 7(a) is the image after 
conducting morphological transform. The shape of the 
objects still can be seen, but the background is darker as the 

FIGURE 7. Resulting image after (a) morphological transform, (b) adjusting image intensity, and (c) image binarisation 

morphological transform subtracted the image background. 
Figure 7(b) represents the resulting image after adjusting 
the image intensity. The image intensity was adjusted 
successfully since the objects in the image are clearer and 
easier to analyse than those in the image after morphological 
transform. The image was further processed by image 
binarisation, and the resulting image is shown in Figure 
7(c). The image is binarised as the objects are black while 
the background is white. Black spots of various sizes are 
present around the solder joints due to the formation of oily 
dirt after soldering on the PCB prototype. 

Then, the image underwent distance transform and 
background marker. Watershed transform was applied for 
segmenting objects in the image. Figure 8(a) shows the 
resulting image after conducting watershed transform: the 
essential objects, namely all the solder joints, are segmented 
from the background successfully. Several segmented 
solder joints do not have a complete circular shape as the 
reflection of solder joints is not eliminated completely from 

the image but only minimised. Image fusion was conducted 
to obtain a coloured segmented image with the remaining 
texture of the original image, as shown in Figure 8(b). 
Further feature extraction can be used to obtain the essential 
feature data within this step. The proposed watershed-based 
segmentation technique was conducted successfully as the 
solder joints are segmented from the background.
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FIGURE 8. Result image of (a) watershed segmentation and (b) image fusion

FIGURE 9. Image of orientation 2 and orientation 5 on scale 2.

EXTRACTED FEATURES

Feature extraction in this project was conducted using 
curvelet transform to obtain the feature data of the image. 
After conducting curvelet decomposition, the detailed 
coefficients can be obtained in each orientation of the 
second scale in the decomposed image. Feature extraction 
is required to be carried out in the orientations for acquiring 

the statistical data. Two images of sample orientations 
are shown in Figure 9. The shape and edge of the objects 
are shown in each orientation to represent the detailed 
coefficients, which consists of different coarse scales. Based 
on Figure 9, the image of orientation 5 consists of a finer 
texture compared with orientation 2. Different coarse scales 
in different orientations can bring various values of feature 
data to form the statistical data.

The acquired statistical data from the detailed 
coefficients of the 16 orientations images were saved in an 
Excel file. The acquired sample data of each class of PCB 
prototype is graphically visualised in Figure 10, Figure 11, 
and Figure 12. These statistical data include contrast, energy, 
homogeneity, kurtosis, and variance for 16 orientation 
images of scale 2 in a decomposed image. The graph pattern 
analysis of the statistical data in the figures shows that the 
energy and homogeneity data are nearly constant in each 
orientation. Meanwhile, kurtosis presents different values in 
different image orientations and classes. As depicted in the 
graph pattern, kurtosis can easily differentiate the different 
image classes as the highest and lowest values are quite 
different. 

The obtained statistical data were subjected to further 
analysis to validate the data performance of this project. The 
average value of each statistical data for the orientations in 
each image dataset for the PCB prototype was calculated and 
listed in Table 3. The percentage differences of the statistical 
data between classes of images were then calculated from 
the mean values and presented in Table 4. Kurtosis obtained 
the highest percentage of difference compared to other 
statistical data of the image classes. Kurtosis achieved 
a 4.97% difference in the mean value for the comparison 
of good and medium condition, 17.02% difference for 
the comparison of good and bad condition, and 12.08% 
difference for the comparison of bad and medium conditions. 
Thus, the analysis indicates that kurtosis is a more reliable 
statistical data for image classification.
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FIGURE 10. Visualisation of sample data in the class of good condition

FIGURE 11. Visualisation of sample data in the class of medium condition

FIGURE 12. Visualisation of sample data in the class of bad condition
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TABLE 3. Mean values of statistical data among the class of images

Classes of overall PCB 
soldering defects on a PCB 

prototype

Mean value of statistical data among the class of images
Contrast Energy Homogeneity Variance Kurtosis

Good condition 6.4583 0.3556 0.7619 10.2006 32.3137
Medium condition 6.2340 0.3633 0.7661 9.5612 33.9610

Bad condition 5.8332 0.3759 0.7735 9.2635 38.3269

TABLE 4. Percentage difference of the mean value of statistical data between classes of image

Comparison of different 
classes of images

Percentage difference of statistical data between classes of image (%)
Contrast Energy Homogeneity Variance Kurtosis

Good condition & 
Medium condition

3.53 2.14 0.76 6.47 4.97

Good condition & 
Bad condition

10.17 5.55 1.15 9.63 17.02

Medium condition &  
Bad condition

6.64 3.41 0.96 3.16 12.08

CONCLUSION

The project was successfully completed as the statistical 
data have been duly collected and analysed. The percentage 
difference of the mean value of statistical data between 
image classes was calculated, whereby kurtosis obtained 
the highest percentage difference in the comparison among 
three classes of dataset compared with other statistical data. 
Kurtosis achieved a 4.97% difference of mean value in 
the comparison of good and medium conditions, 17.02% 
difference in the comparison of good and bad conditions, 
and 12.08% difference in the comparison of bad and medium 
conditions. Kurtosis is more reliable data for the classifier 
of machine learning. In addition, watershed-based image 
segmentation, curvelet-based image denoising, and feature 
extraction were also implemented in this project. Future 
work could include the utilisation of the prepared data to 
classify the images into different classes of overall solder 
joints defects. The application of machine vision equipment 
in this project can further improve the image quality as the 
lighting source and camera in the machine vision system can 
capture a clearer image with less noise. 
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