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ABSTRACT

Pavement modulus is believed as one of the important features to characterize the pavement condition, specifically the 
pavement stiffness. The value of pavement modulus may be calculated using the existing Witczak mathematical dynamic 
pavement modulus prediction formulae. However, the equation developed by Witczak is heavily impacted by temperature 
while underestimating the impact of other mixing factors thus, only offering an adequate approximation for the circumstances 
for which they were designed. In this study, the Spectral Analysis of Surface Wave (SASW) test data was used to develop 
an Artificial Neural Network (ANN) that accurately backcalculates pavement profiles in real-time. The pavement modulus 
calculated from the equation was validated by using ANN developed in Matlab software to avoid any mistakes during 
calculation based on the equation. Three parameters, shear wave velocity, depth and thickness from SASW test data were 
used as inputs and elastic modulus calculated using Witczak pavement modulus equation was used as an output to train the 
models developed in ANN. Five segments of pavement are presented in this paper where almost compromise that the greater 
the depth, the lesser the shear wave velocity as well as pavement modulus. Nine neural network models were developed 
in this study. The network architecture of 4-80-4 is the most optimized network with the highest correlation coefficient of 
0.9992, 0.9994, 1.0, 0.9996 for validation, testing, training and all respectively. The created ANN models’ final outputs were 
reasonable and relatively similar to the real output. 
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INTRODUCTION 

According to Gucunski et al. (2000), transportation 
authorities in the United States have switched their 
attention from the building of new roads and bridges to the 
maintenance and restoration of existing ones during the last 
two decades. A database of information collected, stored, 
and available for use regarding the systems governed is at 
the basis of every management system. Data regarding the 
present state of pavements is an important element of the 
database. These might contain information on the pavement 
profile, pavement condition, maintenance and costs. 

Geotechnical areas (layering, top of bedrock, depth 
to water table) and geotechnical materials (stiffness in 
shear and compression) were characterized using seismic 
measurements (Stokoe II et al. 2004).  Seismic methods can 
assess thickness as well as strength of the pavement where 
the strength is estimated from modulus determined by the 
seismic methods (Cho et al. 2007). 

The seismic surface wave method can determine the 
stiffness and structure anomalies in current road pavement 

at the same time (Rosyidi, 2015). As a result, this approach 
has the potential to be improved and developed as a new 
material assessment device for pavement structures. The 
non-intrusive nature of the surface-wave technique, along 
with the ability to detect softer layers beneath stiffer 
materials and test vast areas quickly and cost-efficiently, has 
sparked a lot of interest (Stokoe II et al. 2004, Ekstrom, 2011 
and Chakraborty et al. 2016).

SPECTRAL ANALYSIS OF SURFACE WAVES (SASW)

Gucunski et al (2000) agreed that the nondestructive Spectral 
Analysis of Surface Waves (SASW) technique has been 
used to estimate the elastic modulus profile of pavement 
layers. The approach is based on the dispersive properties of 
seismic surface waves in a layered system (waves of various 
frequencies or wavelengths move through the pavement 
layers at varying velocities) (Shirazi et al. 2009). The field-
testing entails striking the pavement’s surface to generate 
and identify surface waves. An experimental dispersion 
curve (change in wave phase velocity with frequency or 
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wavelength) is created by processing the recorded data 
(Shirazi et al. 2006).

The SASW technique is a method for determining the 
dynamic characteristics of shallow soil layers and layer 
thicknesses of layered systems, such as soils and pavements, 
with the added benefit of being completely conducted from 
the surface (Alimoradi et al. 2011; Ekstrom 2011; Stokoe II 
et al. 2004 and Chakraborty et al. 2016). 

Figure 1 depicts a diagram of the current testing 
arrangement. An impact source generates surface waves, 
which are recognized by a pair of receivers and recorded on 
a compatible recording device (Gucunski and Woods 1992). 
The WaveForm Analyzer is a recommended instrument 
for instantaneous inspection of the recorded data because 
it contains built-in spectrum functions. In need to cover 
a required range of Rayleigh wavelengths, the test is 
performed for multiple receivers spacing (Stokoe II et al. 
2004 and Rosyidi 2015).

 Likewise, using the existing mathematical dynamic 
modulus pavement modulus prediction formulae or 
empirical correlation coefficients, the value of pavement 
modulus may be calculated. In substitution of laboratory 
testing, many mathematical pavement modulus prediction 
equations have been devised for characterizing the pavement 
modulus of asphalt concrete. The Witczak dynamic modulus 
pavement modulus prediction model, which was developed 
using multivariate regression analysis of laboratory test 
data, is the most commonly used (Hamim et al. 2020). 

Several investigations, however, show that Witczak 
pavement modulus prediction models have a significant 
dispersion, especially at low and/or high pavement modulus 
extremes which has been claimed that these models are 
heavily impacted by temperature while underestimating the 
impact of other mixing factors (Hamim et al. 2020). As a 
result, pavement modulus prediction models can only offer 
an adequate approximation for the circumstances for which 
they were designed.

Hamim et al. (2020) mentioned that researchers at Iowa 
State University have conducted many studies over the last 
decade to create an innovative approach for forecasting 
pavement modulus using artificial neural networks (ANN). 
The input parameters given by Witczak et al. while 
constructing the 1999 and 2006 models were used to design 
the ANN models.

ARTIFICIAL NEURAL NETWORK (ANN)

Artificial neural networks (ANN) have shown to be excellent 
tools for describing nondestructive testing (NDT) methods 
for pavements back-calculation techniques (Gucunski et al. 
2000).

ANN is a computer model that is based on the human 
brain’s operations, which is the most sophisticated biological 
neural network (Alimoradi et al. 2011). In recognition, 
control, and learning, the human brain outperforms 
traditional computers in terms of effectiveness, adaptability, 
and tolerance (Hamim et al. 2020).

In general, a neural network is made up of an 
interconnected set of artificial neurons (basic processors 
connected to a large number of other neurons) (S. 
Mahdevari & S. Rahman 2012). These processing units take 
data, perform some simple processing on it, and then pass 
it on to other neurons which then flow of data generates a 
computational model for processing data (Alimoradi et al. 
2011).

Shirazi et al (2009) and Alimoradi et al. (2011) agreed 
that multilayered networks with linked layers are one of 
the most frequent forms of neural networks. The number of 
input parameters (called input nodes), outputs (called output 
nodes), and hidden nodes grouped in one or more layers 
that function as computing units of the model make up the 
architecture of the model. The fundamental architectural 
network for ANN is depicted in Figure 2.

The input layer is used to feed data into the ANN 
network. The response to the input is displayed in the output 
layer. The intermediate or hidden layer is where complex 
patterns are calculated. All layers have stored neurons, 
with the number of neurons determined by the user. The 
number of hidden neurons is determined using the trial-and-
error approach. In most situations, the smallest number of 
neurons necessary to get acceptable results should be used 
(Hamim et al. 2020).

S. Mahdevari and S. Rahman (2012) said that, in 
recognition of artificial neural networks’ computational 
power in rule generation and function approximation, as 
well as their robustness in the area of data classification, 
a back-propagation artificial neural network had been 
developed and trained for validating the pavement modulus 
considered in this study.

The multilayer feed-forward network (MLFN), which 
is taught using the backpropagation learning technique, is 
the most well-known ANN. This ANN is popular because 
of its ease of use, simplicity, and demonstrated usefulness 
in forecasting or predicting research. The Levenberg-
Marquardt (LM) approach is more resilient than traditional 
gradient descent strategies for training MLFNs. The LM 
method was chosen to do back-propagation training in this 
work because it converges faster than traditional gradient 
descent algorithms, requires no momentum factor or 
learning rate, and, in most cases, converges when other 
back-propagation techniques fail (Hamim et al. 2020).
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FIGURE 2. A network containing layers of input, hidden and output. (S. Mahdevari & S. Rahman, 2012).

FIGURE 1. Schematic of SASW Test Procedures (N. Gucunski et al. 2000)

Backpropagation is utilized to construct the ANN     
models in this study. Backpropagation is a two-mode 
technique that works in both mapping and learning modes. 
As mentioned by Gucunski et al. (2000) the information 
is passed forward from the input to the hidden layer and 
subsequently to the output in the mapping mode. The learning 
mode includes both forward and backward processing of 
data. The connections between the three layers are computed 
based on the mapping mode, and the estimated output is 
utilized to compute an error. An evaluation function is used 
to check the error. If the developer’s conditions are not met, 
the error is propagated backwards from the output to the 
hidden layer and finally to the input. This adjusts the values 
of the connections between each of the layers and the whole 
process repeats. Learning is the term used to describe this 
process of repetition. The goal of learning is to reduce the 
difference between the expected and known outputs (the 
output used in developing the model).

Gucunski et al. (2000) also stated that the quality and 
quantity of data utilized are the most important aspects in 
developing any mathematical model as well as creating an 
ANN model. According to other researchers’ experience, up 

to 70% of the time might be spent “massaging” the data. 
Data pre-processing, often known as “data mining,” is a 
skill that varies according to developer expertise (J. Liu, 
2014). Finding a representative sample of variables with 
a strong link between the input and output variables is the 
basic guideline for data mining. Descriptive statistics, data 
standardization, and data transformations are some of the 
techniques used to prepare the data. Different combinations 
of these technologies can be employed depending on the size 
of the data collection and the number of variables available.

Based on Shirazi et al (2009), a database of 
exemplars is the bare minimum for developing ANN 
models (combinations of available input parameters and 
corresponding outputs to be estimated). There are several 
commercial software programs that use such a database to 
“train” an ANN model to estimate the intended outputs from 
the supplied inputs. The ANN model is seen as a replacement 
for extremely complicated numerical models or as a stand-
in for situations in which the connection between input 
and output is unclear. In general. training an ANN model 
is a simple and quick process. Establishing a good and 
high-quality ANN model, on the other hand, necessitates 



908

a thorough examination of various training techniques. 
Commercial software packages include a significant variety 
of ANN complicated “training” structures and techniques 
that are rarely studied by individuals who use them.

In this study, a detailed review of several training 
techniques was carried out. The pavement modulus was 
calculated using ANN models of various neural network 
types and architectures based on various inputs.

The most essential components in developing correct 
ANN models are selecting proper network design and 
learning algorithms. The necessary network model for this 
research application was developed using the ANN toolbox 
from MATLAB.

 MATLAB has an ANN toolbox, which provides 
programmers with an environment in which to construct 
desired models. The toolbox’s intricacy and versatility make 
it suitable for an expert, as the user has complete control over 
the model’s parameters and the training session’s algorithms 
(Shirazi et al. 2009). The program includes common 
training techniques like backpropagation, radial basis, self-
organizing, and recurrent networks. The toolkit provides a 
graphical user interface that helps with model development 
to some extent (Shirazi et al. 2006). Developed models may 
be exported to MATLAB’s working area for easy integration 
with other programs.

The main objective of this study is to validate the 
pavement modulus (the parameters are taken from SASW 
results) which was calculated manually using equation 
where may cause a calculation error.

As a result, this study presents an automated method for 
pavement modulus calculation testing based on an artificial 
neural network (ANN) using MATLAB. Using newly 
produced numerical data, the highest correlation coefficient 
with the lowest hidden nodes were chosen and verified for 
confidence. The generated ANN models’ final outputs were 
reasonable and relatively near to the real output.

METHODOLOGY

A SASW field test was initially performed to gather the 
requisite data. The collected data from the taiway KLIA, 
Sepang were then evaluated and analyzed using WinSASW 
software. Figure 3 shows the configuration setup at the site 
location. Two accelerometers are used as receivers and 
located 0.3m apart from each other were placed on-site 
location. The sources were given at a distance of 0.3m, 

0.6m, and 1.2m from the first receiver. Based on the signal 
generated, the measured time histories were recorded.

Figure 4 depicted the flow chart of the methodology. 
WinSASW for the SASW method is some of the software tools 
available for respective analysis procedures. WinSASW is 
based on the dynamic stiffness matrix approach of forward 
analysis. Optimization techniques like ANN (N. Gucunski 
et al. 2000), is also being used for automation of analysis 
procedure.

 Field testing, generation of the experimental dispersion 
curve, and calculation of the pavement stiffness profile 
from the experimental dispersion curve are the three steps 
of the SASW tests. The SASW field-testing comprises of 
striking the surface of a pavement to generate and detect 
surface waves. The Seismic Pavement Analyzer (SPA) is a 
device that was created to automate this testing. To create 
an experimental dispersion curve, the collected signals are 
processed. This graph depicts the relationship between wave 
velocity (phase velocity) and frequency (or wavelength). 
The shear wave velocity, thickness, densities, and Poisson’s 
ratio of each pavement layer are all factors that influence 
the dispersion curve. The shear wave velocities and layer 
thicknesses have the greatest impact on the dispersion 
curves of these parameters.

The final and most difficult, the stage is known as 
the inversion process (a.k.a. back-calculation). From the 
experimental dispersion curve, the inversion technique 
gives an iterative procedure for calculating the shear wave 
velocity profile. The technique begins by assuming an initial 
pavement profile (first trial) and utilizing a forward model to 
construct a theoretical dispersion curve (Shirazi et al. 2009). 

The difference between the experimental and theoretical 
dispersion curves is then repeatedly and automatically 
reduced to a specified small value. The inversion procedure 
may not converge or may take too long to converge if the 
initial experiment is not fairly close (N. Gucunski et al. 
2000). 

Once a layer’s shear wave velocity Vs has been 
determined, the layer’s modulus E may be calculated using 
equation 1, Witczak pavement modulus equation (Shirazi et 
al. 2009).
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DEVELOPMENT OF ANN MODEL
ANN models are used to reduce the inaccuracies in the 
anticipated correlation coefficient. The data set 
available is the initial stage in the data mining process 
(N. Gucunski et al. 2000). There were 28 set examples 
of shear wave velocity profiles in the synthetic data set 
used in this investigation. Shear wave velocity, depth, 
and thickness were the three variables in the input 
variable set. The elastic modulus was the only variable 
in the output. Because field tests can reliably determine 
depth and thickness, they were utilized to normalize the 
shear wave velocity and perhaps enhance their 
relationship to the input variables, resulting in more 
accurate ANN models (D. Shukla and C. Solanski 
2020). 

The ANN models in this study were created 
using the MATLAB R2015b computer software. A 
total of 475 datasets were randomly divided into three 
groups: 70% for training, 15% for validation, and 15% 

for testing. For the MLFN model, the ‘nftool' command 
may be used to access the Neural Network Toolbox. 
The number of neurons in the one hidden layer was 
found by trial-and-error methods of 10, 20, 30, 40, 50, 
60, 70, 80, and 90 hidden nodes. 

The neural network was trained and tested using 
475 data points. 70 % of the total data were chosen at 
random for network training, while the remaining 30% 
of the data was utilized to test and validate the network 
(Alimoradi et al. 2011). As shown in Table 1, each data 
point is a vector comprising three input values: shear 
wave velocity, depth, and thickness. The pavement 
modulus value obtained from equation 1 is the intended 
network output. The network's input layer takes data 
from three nodes, and the network's final layer creates 
an output. For training, the Levenberg Marquardt (LM) 
algorithm is employed. 

Where ρ and v = density and Poisson’s ratio of that 
layer. 

(1)
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FIGURE 3. (a) Hardware configuration for field measurement and (b) SASW measurement configuration (N. Ismail et al. 2020)

FIGURE 4. Flow chart of the Methodology 

DEVELOPMENT OF ANN MODEL

ANN models are used to reduce the inaccuracies in the 
anticipated correlation coefficient. The data set available is 
the initial stage in the data mining process (N. Gucunski et 
al. 2000). There were 28 set examples of shear wave velocity 
profiles in the synthetic data set used in this investigation. 
Shear wave velocity, depth, and thickness were the three 
variables in the input variable set. The elastic modulus 
was the only variable in the output. Because field tests can 
reliably determine depth and thickness, they were utilized 
to normalize the shear wave velocity and perhaps enhance 
their relationship to the input variables, resulting in more 
accurate ANN models (D. Shukla and C. Solanski 2020).

The ANN models in this study were created using the 
MATLAB R2015b computer software. A total of 475 datasets 
were randomly divided into three groups: 70% for training, 

15% for validation, and 15% for testing. For the MLFN 
model, the ‘nftool’ command may be used to access the 
Neural Network Toolbox. The number of neurons in the one 
hidden layer was found by trial-and-error methods of 10, 20, 
30, 40, 50, 60, 70, 80, and 90 hidden nodes.

The neural network was trained and tested using 475 
data points. 70 % of the total data were chosen at random 
for network training, while the remaining 30% of the data 
was utilized to test and validate the network (Alimoradi et 
al. 2011). As shown in Table 1, each data point is a vector 
comprising three input values: shear wave velocity, depth, 
and thickness. The pavement modulus value obtained from 
equation 1 is the intended network output. The network’s 
input layer takes data from three nodes, and the network’s 
final layer creates an output. For training, the Levenberg 
Marquardt (LM) algorithm is employed. 
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TABLE 1. Example of 1 set of data obtained from SASW

INPUT OUTPUT

VELOCITY DEPTH THICKNESS MODULUS

1519.52633 0 0 13299611141
1519.52633 0.025 0.025 13299611141
1577.04318 0.075 0.05 14325495504
1897.17524 0.1 0.05 20731817614
1863.52462 0.15 0.1 20002890294
1511.50431 0.2 0.1 13159556808
1128.05199 0.25 0.15 7329607443
961.86128 0.3 0.15 5329020223
1022.0105 0.4 0.25 6016351462
1067.89313 0.5 0.25 6568679446
1059.96974 0.6 0.35 6471566494
1059.96974 0.7 0.35 6471566494
1059.96974 0.9 0.55 6471566494
1059.96974 1.1 0.55 6471566494
1059.96974 1.3 0.75 6471566494
1059.96974 1.5 0.75 6471566494

RESULTS AND DISCUSSION

EXPERIMENTAL DISPERSION CURVE

An experimental dispersion curve is determined using the 
phase of the transfer functions between the receiver signals 
(M. Schevenels et al. 2008 and Chakraborty et al. 2016). 
All such dispersion curves for different test offsets and 
orientations are statistically combined and a representative 
EDC for the test site is finally generated (A. Goel and A. 
Das, 2008). Dispersion curves for several receiver spacing 
and two directions are statistically combined to define 
an average dispersion curve, as described by Nazarian 
inGucunski and Woods (1992).

INVERSION ANALYSIS

The dynamic shear modulus of the soil is determined by 
solving an inverse problem (Chakraborty et al. 2016). Stress-
wave propagation theory is used in an inversion process. 
The propagation theory simulates a theoretical dispersion 
curve and compares it to an experimental dispersion curve. 
As a result, the experimental dispersion curve is compared 
to the theoretical dispersion curve. The pavement profile is 
modified and a new theoretical dispersion curve is produced 
if the two dispersion curves do not match. The related profile 
has then deemed the representative pavement profile after 
an interactive iteration technique, i.e., maximum likelihood 
method, is performed until the two curves match (A. Goel 
and A. Das, 2008 and Rosyidi, 2015)

PAVEMENT MODULUS

The material stiffness of pavement, i.e., stiffness modulus, E 
can be obtained from the following relationship between the 
shear wave velocity (VS), the gravitational acceleration (g), 
the density (ρ) and the Poisson ratio (ν) (A. Goel and A. Das, 
2008 and Rosyidi, 2015) as stated in equation 1.

Thus, a range of R-wave frequency components 
propagating in a multi-layered media can provide 
information on its stiffness profile if the corresponding 
phase velocities are measured; which is the objective of all 
surface-wave tests (A. Goel and A. Das, 2008).

The experimental dispersion curve is shown in Figure 
(a) while the shear wave profile from the result of the 
inversion process in the SASW method on the existing 
pavement is shown in Figure (b) from Figure 5 to Figure 9. 
Using equation 1, its equivalent dynamic elastic modulus 
profile is given in Figure (c) for each segment. Five segments 
are presented in this paper from 28 segments that have been 
done in this research to represent the SASW test data. 

FIGURE 5. Segment 1 of (a) Dispersion Curve, (b) Shear Wave Velocity Profile, and (c) Modulus Profile
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FIGURE 6. Segment 2 of (a) Dispersion Curve, (b) Shear Wave Velocity Profile, and (c) Modulus Pr

FIGURE 8. Segment 4 of (a) Dispersion Curve, (b) Shear Wave Velocity Profile, and (c) 
Modulus Profile

FIGURE 9. Segment 5 of (a) Dispersion Curve, (b) Shear Wave Velocity Profile, 
and (c) Modulus Profile

FIGURE 7. Segment 3 of (a) Dispersion Curve, (b) Shear Wave Velocity Profile, and (c) Modulus Profile

Rosyidi (2015) mentioned that higher elastic modulus 
values are observed in the subbase layer, which has more 
uniform soil densities that can be contributed by compaction. 
The lower elastic modulus can be found in the subgrade 
layers, which have numerous structural flaws.

If there is any deterioration at the pavement, the shear 
wave velocity profile and modulus profile of the pavement 
will deviate. As per Figure 5 shown at 0.1m to 0.2 m and 
Figure 9 at 0.25m to 0.3m, the shear wave velocity and the 
modulus is higher which mean the layer in between is stiffer. 
As for Figure 5, the layer in between depth 0.0m to 0.1m is 
less stiff than 0.1m to 0.2m where from the beginning, the 
stiffness of pavement is lower than 0.1m to 0.2m and keep 
decreasing as the depth increases. Meanwhile, in Figure 
9, the shear wave velocity and the modulus of pavement 
is decreasing from 0.0m until 0.25m to 0.3m and keep 
decreasing after that.  It may be due to greater compaction at 
that depth compare to the layer before for both cases or pipe 
leaking which cause the layer less stiff at 0.15m to 0.25m 
in Figure 9.

The training procedure is usually iterative. Following 
the learning phase, the model is validated, and the training 

is repeated until the output for a new model is adequate, 
based on the findings received. The first iteration, however, 
was sufficient to yield excellent results due to the output 
normalization and good correlation coefficient values. 
Based on the validation set, the neural network model with 
the best level of accuracy was chosen (N. Gucunski et al. 
2000).

The determinant indices are the correlation coefficient 
(R) between the anticipated and desired values, as well as the 
number of hidden nodes utilized, when appropriate. Shirazi 
et al (2006) stated that the best model was the one with the 
greatest correlation coefficient and the fewest hidden nodes 
and the time it would take to build the network was not 
taken into account.

The MFB models implemented 10 to 90 (with sequences 
of 10) hidden nodes. The results of training, validation, 
testing and all performance are presented in Table 2. In 
this table, R is the correlation coefficient between the self-
calculated and the automated ANN pavement modulus 
values. As shown in Table 2, during testing, a correlation 
coefficient of greater than 0.95 was fully obtained. This 
shows that the modulus values in the test data were 
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practically well-correlated with the network predictions as 
prescribed by S. Mahdevari and S. Rahman (2012). The 
problem with using the equation to calculate the pavement 
modulus, some parameters may mistakenly use, thus wrong 
calculation is done. When the correlation coefficient is 1, 
implying a good network performance. This can be seen 
for network architecture of 4-90-4 or the nearest is 4-80-4. 
The proposed neural network could modify the prediction of 
pavement modulus. 

H. Al-Adhami and Gucunski (2021) described in their 
paper, the effectiveness of the ANN models to forecast 
the pavement modulus varied depending on the network 
design. According to the results of the comparison, 
the recently created ANN models based on the SASW 
database,  provide  sufficient accuracy and can reliably 
forecast pavement modulus for practical applications.

Most artificial neural networks were capable of 
producing relatively robust results, based on the validation 
of those models in Table 2. The ANN models, in particular, 
are extremely well approximated. 

Nine artificial neural network models were created.  
The findings of the models are shown in Table 2 as results. 
Table 2 compares each model’s output to the requested 
data. It also describes the hidden layer’s design and gives a 
value for the model’s performance based on the correlation 
coefficient function. The following is a summary of the 
model’s findings:
1.	 Almost network architecture shows a correlation 

coefficient of more than 0.95 except for 4-10-4, 4-20-4 
and 4-30-4. This shows that the model is both reliable 
and strongly correlated. 

2.	 As for training, the network architecture of 4-90-4 has 
the highest R of 1.0 followed by 4-80-4.

3.	 Meanwhile for the validation, testing and all R. network 
architecture has the highest values for 0.9992, 0.994, 
and 0.9996 respectively. Thus, the best model developed 
for this study is the network architecture of 4-80-4.

4.	 While the lowest correlation coefficient for training, 
validation, testing and all are 0.9722 (4-30-4), 
0.9493 (4-20-4), 0.9322 (4-30-4) and 0.9642 (4-20-
4) respectively. Thus, the worst network architecture 
developed for this study is 4-20-4.

TABLE 2. Performance of ANN models in determining the 
pavement modulus.

Network 
Architecture

R
Training Validation Testing All

4-100-4 0.97677 0.9494 0.95544 0.97228
4-20-4 0.97444 0.9493 0.98276 0.96424
4-30-4 0.97219 0.97738 0.93229 0.96502
4-40-4 0.99758 0.9972 0.99299 0.99576
4-50-4 0.98692 0.98351 0.98903 0.98689
4-60-4 0.99593 0.99632 0.99636 0.99576
4-70-4 0.99365 0.99253 0.9951 0.99286
4-80-4 0.9999 0.99915 0.99937 0.99963
4-90-4 1 0.99621 0.99882 0.99804

CONCLUSION

The main objective of this study is to validate the Witczak 
pavement modulus calculated by equation 1 using ANN 
is achieved. The data taken at taxiway KLIA, Sepang by 
using SASW were used in this study. An ANN based on the 
backcalculation of a pavement modulus profile was created 
to enhance the speed and automate the modulus calculation. 

It may be determined from the recorded seismic 
signals,  that the weak recorded seismic wave signal is an 
impact of ambient noise, which might be caused by ground 
or road noise, as well as man-made vibration. This indicates 
that the system’s input signals or actions at different times 
were not similar which is why many errors can be occurred 
if the modulus were calculated manually by using the 
equation.

The following is a summary of the study’s major 
findings: 
1.	 Based on the examination of ANN model performance 

using numerical data, the final findings for the ANN 
models created using the SASW database provides 
adequate accuracy. As a result, the proposed automated 
method for modulus computation can compute the 
pavement modulus with acceptable precision for 
practical applications without utilizing the equation.

2.	 It was proved that the pavement modulus is affected 
by each pavement layer characteristics (shear wave 
velocity, thickness, and depth).

ANN was successfully applied to overcome the 
mistakes that could be done when self-calculated the 
pavement modulus using the equation. The network uses 
depth, thickness and shear wave velocity as input variables 
to understand the relationship between them and calculated 
pavement modulus as an output. Results show good 
correlation coefficients between calculated and predicted 
values of pavement modulus for both performances of 
network architecture 4-80-4 and 4-90-4. The ANN results 
gained in this study can be used in the future to increase the 
accuracy of ANN models. 

ACKNOWLEDGEMENT

The authors would like to thank IIUM for financing the 
project under IIUM Research Acculturation Grant Scheme, 
IRAGS18-022-0023.

DECLARATION OF COMPETING INTEREST

None

REFERENCES

Al-Adhami, H., & Gucunski, N. 2021. Artificial neural network–
based inversion for Leaky Rayleigh wave dispersion curve 
from non-contact SASW testing of multi-layer pavements. 
Transportation Infrastructure Geotechnology, 8(1): 1–11. 
https://doi.org/10.1007/s40515-020-00117-8



913

Alimoradi, A., Shahsavani, H., & Rohani, A. 2011. Shear 
wave velocity determination using intelligent seismic 
inversion. 6th International Conference on Seismology and 
Earthquake Engineering. https://www.researchgate.net/
publication/258871994%0AShear

Alimoradi, A., Shahsavani, H., & Rouhani, A. K. 2011. Prediction 
of shear wave velocity in underground layers using sasw and 
artificial neural networks. Engineering 3: 266–275. https://doi.
org/10.4236/eng.2011.33031

Chakraborty, S., Bheemasetti, T. V., & Puppala, A. J. (2016). Effect 
of constant energy source on coherence function in spectral 
analysis of surface waves (SASW) testing. Lecture Notes in 
Civil Engineering 16: 59–65. https://doi.org/10.1007/978-981-
13-0899-4_8

Ekström, G. 2011. A global model of Love and Rayleigh surface 
wave dispersion and anisotropy, 25-250s. Geophysical Journal 
International 187(3): 1668–1686. https://doi.org/10.1111/
j.1365-246X.2011.05225.x

Goel, A. & Das, A. 2008. A brief review on different surface wave 
methods and their applicability for non-destructive evaluation 
of pavements. Nondestructive Testing and Evaluation, October, 
337–350.

Gucunski, N., & Woods, R. D. 1992. Numerical simulation of the 
SASW test. Soil Dynamics and Earthquake Engineering 11(4): 
213–227. https://doi.org/10.1016/0267-7261(92)90036-D

Gucunski, N., Abdallah, I. N., & Nazarian, S. 2000. ANN 
Backcalculation of Pavement Profile from the SASW 
Test. Pavement Subgrade, Unbound Materials, and 
Nondestructive Testing, 31–50. https://doi.org/https://doi.
org/10.1061/40509(286)3

Hamim, A., Izzi, N., Ali, H., Azliana, N., Jamaludin, A., Abdul, 
N., El-shafie, A., & Ceylan, H. 2020. Integrated finite element 
and artificial neural network methods for constructing asphalt 
concrete dynamic modulus master curve using deflection 
time-history data. Construction and Building Materials 257: 
119549. https://doi.org/10.1016/j.conbuildmat.2020.119549

Ismail, N. N., Yusoff, N. U. R. I., Nur, W. A. N., & Wan, A. 2020. 
Higher modes and superposed mode behavior for flexible 
pavement layer system higher modes and superposed mode 
behavior for flexible pavement layer system. IOP Conference 
Series: Materials Science and Engineering. https://doi.
org/10.1088/1757-899X/811/1/012047

Liu, J. (2014). Feature Selection. University of Rochester.
Mahdevari, S., Rahman, S., & Monjezi, M. 2012. International 

Journal of Rock Mechanics & Mining Sciences Application 
of artificial intelligence algorithms in predicting tunnel 
convergence to avoid TBM jamming phenomenon. 
International Journal of Rock Mechanics and Mining Sciences 
55: 33–44. https://doi.org/10.1016/j.ijrmms.2012.06.005

Rosyidi, S. A. P. 2015. Simultaneous in-situ stiffness and anomalies 
measurement on pavement subgrade using tomography surface 
waves technique. Procedia Engineering 125: 534–540. https://
doi.org/10.1016/j.proeng.2015.11.057

Schevenels, M., Lombaert, G., Degrande, G. & François, S. 
2008. A probabilistic assessment of resolution in the SASW 
test and its impact on the prediction of ground vibrations. 
Geophysical Journal International 172(1): 262–275. https://
doi.org/10.1111/j.1365-246X.2007.03626.x

Shirazi, H., Abdallah, I., & Nazarian, S. 2009. Developing 
artificial neural network models to automate spectral analysis 
of surface wave method in pavements. Journal of Materials 
in Civil Engineering 21(12): 722–729. https://doi.org/10.1061/
(asce)0899-1561(2009)21:12(722)

Shirazi, H., Nazarian, S., & Abdallah, I. 2006. Implementation 
of artificial neural networks to automate SASW 
inversion. GeoCongress 2006: Geotechnical Engineering 
in the Information Technology Age. https://doi.
org/10.1061/40803(187)95 

Shukla, D., & Solanki, C. H. 2020. Estimated empirical correlation 
coefficients between shear wave velocity and SPT-N value for 
indore city using NLR and ANN. Indian Geotechnical Journal 
50(5): 784–800. https://doi.org/10.1007/s40098-020-00417-3

Stokoe, K. H., Joh, S. H., & Woods, R. D. 2004. Some contributions 
of in situ geophysical measurements to solving geotechnical 
engineering problems. In Proceedings (pp. 97-132).

Tijera, A., Asanza, E., Ruiz, R., & Ruiz, J. M. 2019. Geophysical 
and geotechnical characterization of soft marine soils in port 
infrastructures Caractérisation géophysique et géotechnique 
des sols marins tendres. ECSMGE-2019. https://doi.
org/10.32075/17ECSMGE-2019-05


