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ABSTRACT

In this research, the three-dimensional elastic wave equations with variable coefficients (i.e. propagate through
inhomogeneous media) are solved with the application of the Fourier transform in the spatial coordinates. The wave
equation is coupled variable coefficients PDEs whose solutions may have significant in engineering applications. The
method utilizes the second order ODE as the baseline for obtaining the complete solution. The solution of second order
ODEs is expressed in one integration because the variable coefficients are broken down into several functions and resulted
in first order reduction. Moreover, the coupled equations are performed by the order reduction of the higher order ODEs
into the second order. The extended procedure for integral equation is implemented for the solutions from the transformed
wave equations to generate the explicit expression. It is shown that the proposed method of integral evaluation is resulted
in finding the roots of polynomials. Hence, it is concluded that the solvability of the elastic wave equations is ensured by
the proposed method.

Keywords: Wave equation; Inhomogeneous media; Reduction of order, Integral evaluation; Reduction of polynomial order

INTRODUCTION

The growing interests have been taking place in wave
modeling fields. The transmittance and reflectance of sound
wave with modulated speed is investigated by Mikhalevich
& Streltsov (2009). It is shown that the generated parameters
are determined significantly by wave intensities and phase
shift. The high-speed acoustic wave with dissipation in
saturated sediment is also considered (Naugolnykh &
Esipov 2005). The consideration leads to the nonlinear
evolution equation which the shock profile depends on the
relaxation effects. The modified Kudraysov method with
distinct integration schemes is utilized for ion sound wave
(Seadawy et al. 2018). It is concluded that the approach is
practically effective and can be exerted to several coupled
PDEs. The similar method of reduction of the wave equation
is found in Dzyuba & Romashko (2020). In this case, it is
found that the speed of sound will have significant effect
instead of pressure.

The geophysical geophysical problem of baroclinic
wave packets is studied by Xie & Meng (2018). The one-
and two-soliton solutions are obtained and the amplitude of
the solitons become higher with the increasing parameters.
An exact solution for the geophysical water wave is
investigated (Henry 2013). It is noted that the vorticity is
not affected for the constant underlying current. Meanwhile,
the losses of coal measurement related to elastic wave is

investigated. The low-frequency elastic wave with constant
loss coefficient is considered and numerically solved to give
the intrinsic absorption and scattering (Guo et al. 2020).
The large number of databanks are produced by the strong
motion instrument motion in earthquake and seismology
(Stamatovska 2012). They may become the validating
instrument for the theoretical and mathematical solutions of
elastic wave equation because better results will be obtained
if the instrument position network is permanent. The Sine-
Gordon expansion method is implemented for generating
the exact solutions of the coupled Drinfeld-Sokolov-Wilson
equation (Tarbozan et al. 2018). The method is also assisted
by the perturbation iteration algorithm and it is concluded
that the method is powerful and reliable. The study of
Boussinesq equation is also performed to produce solitary
wave solutions. It is concluded that the method is useful for
extracting the exact solutions for shallow water problem and
other nonlinear evolution equations (Hossain et al. 2018).
There are other related fields are studied which shows the
importance of the wave equations and their solutions (Jleli
et al. 2020; Wilk et al. 2017; Yu-Ting et al. 2013).

The considered problems depend on the medium and
type of applications. The present study deals with the initial
value problem of the three-dimensional elastic wave with
variable coefficients. The considered problem is a system
of linear PDE with possible spatially distributed forcing
functions in time and x, y, z directions, which can be applied
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to the geophysical problems and seismology (Kanth 2008;
Zhang et al. 1991; Pasternak & Dyskin 2008). Since the
development of geological exploration for oil and gas
including seismology need more description, indeed the
study of the three-dimensional case is a challenging task.
In fact, the knowledge of the time and spatial distributions
by both analytical and numerical method has attracted
researchers in many fields (Guidotti et al. 2006).

In this work, the governing equation is simplified by
application of Fourier transform in the spatial directions.
Starting from the x — displacement, the equation is solved
analytically and is substituted sequentially in y — and z —
displacements. Since the higher order ODE with variable

vﬁ—g[cf,(u +v +wz)] 2—[csz(ux+w
Wy, zg[cf, (ux TV, W, )J—Z%[cf (ux +v,

coefficients is produced, the method of order reduction is
developed in this research. After second order equation is
achieved, the method for solving second order ODE with
variable coefficients is investigated and proposed. The
evaluation of integral is also presented to compute the
obtained solutions.

PROBLEM FORMULATION

Consider the initial value problem of 3-dimensional wave
equation with variable coefficients as in the following
(Yang, 2014),

u(xay,Z,O) =& (xayaz)’ut (xay:Z:O) =& (xayaz)

V(X,y,2,0)2g3 (xsy,Z),Vt (xay,Z,0)=g4 (X,y,Z)

Ikl 3(“y+vx)]+§[cf(wx+uz)]+ﬁ (1a)
e e (o )| 2 e (o, o) ] 1 )
el )]s 2@ (orm)Jen o

(1d)

w(x, P, Z,O) =gs (x, y,z),wt (x,y, z,O) =g (x,y,z)

where f; (x, y, z, t) is the forcing function in each x, y and z
directions, p is solid density, u, v and w are the displacements

inx, y and z directions. ., - /M and c, - F are the P-wave
P P

and u shear wave velocities. The variant parameters 4 and

are elastic moduli of the solid which depend on the Young
modulus and Poisson ratio. In this case the functions f; and
g, are also smooth. In this case, equation (1) can be rewritten
as,

u, —cf,u +cu +cu +(c —cz)v +(c —cz)w +c L +cl Wl +ciu, ey, +( -2ct )y
(22)
"’Cstx + Cpry _2cstz +fi
_ 2 2 2 2 2 2 2
Vi =C5 Vi +c Vi +clv, +(c —c; )u +(c —c; )w +( -2c2 )ux+csxuy+csxvx+cpyvy+cszvz
(2b)
+c W +( 2csy)w + /5
2 2 2_ 2 2 2 2 2 2 2
W, =ciw, +cl Wy, +c w, +(c -c, )uxz+(cp —cs)vyz+(cpz—2csz)ux+csxuz+(cpz—2csz)vy +eg V.
(2¢0)

+Cstx + csywy +szWz + 13

Considering the equation in x — direction, the Fourier

3 -
transform, H(k[):(zn)’ij h(x)e ™ dx,  of the
coordinate is given by, '

spatial

(27[)_% U,

(6‘2 —C

=—cz*k2U—cz*k22U—cz*k32U
2=l JrhikoV = (e} = ) * kol — ke iU

—he2 * kU =k e? * kU —kie? * ki — ki *kyV (3a)
*kgl =k IV — ki * ko

12kl * kW +

+2k; c_Y

where the index i = j = 1, 2, 3 represents the spatial
coordinates, (X, y, z). The convolution of the first term in

rhs. of 3a), < *kU = [} (k~1)U
as,

L ¢ (k=) RU (1) dl, =

i

L(k1 1) & (k=1 )U(1)dl,

7)dl can be rearranged



which is only eligible when the range of /; :%l[ . Applying
the formulation to the rest of (3a) to produce,

3
7) 2 =" *U - ZZCS 3G
(27) 2U, =—kic)*U—k;c; *U —kic; *U
—klkz(c;—cf)*V—kll@(ci—cf)*W

—ki el *U = kykye] *U = ksl *U —kic; %V (3b)
—kikyc *V + 2k kycl ¥V — kel W
—kjycy ¥ W+ 2kkscl *W + R

Performing the other transformation,

3
I(m)=(27)2 J.rl(k,v)e”'m'k’dk,- will produce the following
equation, h

3
(27) 2U, =-a*U-a,*U —ay *U —(a, —as)*V
—a,*V +2a5*V —ag *W —a, *W +2a, *W + F|
or
-3 ~ ~ ~
(27[) Uu =—a]U—a2U—a3U—(a4 —aS)V
(a5 —a, )W ~aU -a;U ~a,U - ag¥ —a,¥
+2aV —agWV —a,W +2a,W +F,
or

(27)° U == U +b,V +b W +F, (4a)

The same procedure is applied to the y and z — directions
and produce,

(27) > Vi =20,V +2b5U + 26 + F (4b)

(272) > W, =26, W + 2bU + 2bV + Fy (40)

where,
a =klzc;,a2 =kjct,a; =kic?,a, =k1kzc;,
as = kjkyc? a = k1k3cf,,a7 = k2,
ag = kict,ay = kzzc;,a10 =k2k3c;,
ap :k2k3cf,a12 :kfcf,
and
b =2al+&;+a3+gz;+£z;,b2 =3&;—2&Z—a8,
by =3a; —a; - ag —ag, b, = ag +ay + a,
by = as ~ag.by = ay ~ayy.by = ay +a; +ap,

by =a; —ag,by = a;, —ay
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THE SOLUTION OF THE VARIABLE COEFFICIENTS
ELASTIC WAVE EQUATIONS

Consider the homogenous term of equation (4a), we have
to solve the second order ODE with variable coefficients as
a first step.

SOLUTION OF SECOND ORDER ODE WITH VARIABLE COEFFICIENTS
The ODE is defined by,

Yutay, +ay=0 (5a)

Note that the reader should not be confused with the
same symbols as they represent different functions. Let

b b
a =b +% and a, =b;+b %, to produce,
) 4

1
g(bﬂ,)t +21—4(b4y)t +byy=0 or

L b—zzt+b2[ij z +ﬁz,+b—32=o
b2 b4 b4 ¢ , b4 b4

where, z = b,y. Multiply by a function f, to produce

(5b)

£ b—zzt+b2(ij z +ﬁﬁzt+ﬁb—32:0
by | b, b ), , b, b,
Ly
b b, 7

Suppose that, g, —=p—= then f=Ce ” , the above
equation becomes, * by

b b—22t+b2[L] z +ﬁ(ﬂz)t=0 or

by | b, by ), , s

Blb b)) b1 by
bz{ﬂmA’+[b4[ﬂ],+ﬂ[b4l}l}fb4Af o

with, 4 = iz = fb,y. It is assumed that the following relation

is hold, %[lj +b2[1] =(, thus the above equation
B, Bl ),

A
becomes,

2
8] +[2] -2t (1)
b ), \b b, b b\ by ),

(6b)

1
+b, [—j =0

by 1t
Then, we have the following expression,

2

by _ b ) b b\ by ) b ), 60
b )b

b
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Recall that, a, =, +Zﬁ, substituting (6¢),
2
2
SENTANN ERYEN T
bl bl ¢ b] bl b4 t b4 t
Replacing b, with the functions taken from, @ =b; +b; f
A
2
Gy by | [ar bu o, (42 bu
b by ) \b by b b

b b, no by by ),

j%dt

(4d)

b .. .
Let, 2 —f =0, then p, = C,e , the remaining equation

18, 4

1 C
T
7{ (Crrcy) P {“l+(c3t+c4)e

y=(Cst+ C”{L@exp—‘[{al +

Thus, the homogeneous solution of (4a) is,

(/J\; = (X3t+X4){Lmexp—J;{(

Note that X' = X, (m,, m,, m,) as the integration constants w.r.t.
time and may generate the complex waves propagation. The
nonhomogeneous solution is determined by,

&\/:(27[)3]-;[Il’]\,:(sz+b3W+F])dt}dt+X3
p t U2 t
i

And the complete solution is,

U=0,0, -

35 1 —
(27) Uhsz Uh(b2V+b3W+Fl)dtJdt (8b)
t UZ t

+X3l7;

a, —L‘;—zdt

b, [ij =0 or —e =C or
by ), b

2
o) @
—= | —-|==1] =0 (72)
[bl Jt (bl )
The solution for b, is then,
It is also clear that, # = C, and b, = CSeI’al+GZ(C3[+C4)dt. The
ODE is thus become,
LAﬁ_{_ &_i_% C£+ﬁ Af or
b, bb, pby, b b, b,
by Co
4, +(a]——+—b4 A4 =0
t b4 b2 t
The solution for 4 and y are,
—||a+a di
LI: 1+ 2(C3t+C4)] t:|dtdl‘+C8} and
(7¢)
B IERCEMI P Gy
(Cyt+Cy)
X 27) [ by (xt+X,)d
X ) Jnsexya dtdt + Xy (82)
Xit+X,)

The next step is to substitute the results into (4b) as
follows,

(27) > Vu =20,V

+2(2;z)3 bsﬁ;_f ;U UN,,(sz+b3W+F1 )dt}dt (8c)
tU}% t

+2bs XU, +2bsW + F,

Differentiate twice and rearranging the coefficients
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(27)

(272’)73 %Vm + (27[)73 IN Vi=-— bi/ V- bi/ V+
2b , bU,  \bsU, ),

bs ) bsU), ),

+b6Uh Wu+ [—bGUhJ +U~,f[ bi,}
bs bs ), bsUy ),

Equation (9a) is fourth order ODE by twice differentiation
and written in implicit form as,

Vit + o Vi + 2% Vi + O Vi

(9b)

b0 ) [ b )]
a =(27r)3 [ 6 hJ +U2(—6Nj Wi
3 [ b )"\ bsU, A
3 3, —~ |73 bs ]
S t
~( F,
+(27) U2 2_
(27) h[zbSUhl

3 béf]vh

5

with,

th

+(27r)

REDUCTION OF ORDER

In this section the variable coefficient fourth order ODE is
reduced into the third order and then second order ODE.
Now consider the fourth order ODE,

Yoocex +a1y)ocx +a2yxx +a3yx +Cl4y=(0

Introducing the coefficient decomposition as,

a a
_ 5x _ 6x

a =b+—=%X, a,=by+h and
as 23

ay =by +b, Ix (10a)

a7

Note that symbols a, and b, are different from previous
section and the reader should not be confused. The fourth
order ODE becomes,

UzT,,(sz+b3W+F1)dz}
t

Uy
or

b ~( F ~
_LJ V+U,f( ZNJ +(27)’ U, F, (%)
bsU, 0, 2bsU, ]
~ || b
Wi+1(27) byU, +| U2 (—LJ /4
bsU, ‘]

1 by by

—(a +—a +—=(a

as( Syxxx)x a6( 6yxx)x Cl7( 7yx)x

+hyy, +asy =@
Multiplying by an arbitrary function y, to give,

b b

A(aSyxxx)x +m(a6yxx)x +}/1_2(a7yx)x

as ag ay (10b)
b3y + nagy = ne
Take the following relation,

I Z—“dx

7.y = na, then, yy =™ (10¢)
Equation (10c) is transformed as,

N nb nb

—l(a +——a +——=(a

as( Syxxx)x a ( 6nyC)x a; ( 7yx)x

Y4 gy
xb
th e Y| =ne
X
Let us assume that,
[ Seax [ “ax (10d)

e y=h,and y=phe "

Expanding equation (10b) as,
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_[ %4y
2 ase *bs h1m+3hlxx[—a—4]+3hlx [—a—“j +(a—4
as by by X by
[ gy 2
7b ) e L TS W 1 P | T
s by by o by

Performing the following relation,

3 e
as by o by o by by
—[ Zagy
+@ a; _a g Sy 0
a, by

X

s]la) As) T 4

as by o by X by by by oo by
2

sl Tl )

s by x by by o by o by

Suppose that b, is given, then % known, thus b, can be
determined form (11a) as, ’

a a

Sibfs +b =5 f + 25 f
A as
b, = P
P fo= 1o
a7

Substituting (11b) into the third relation of (10a) to give b,
as in the following,

H

2 3
+h N | N . +
by ). by ) \ bs bs

X

—[ %ax
+_71b2 j”b3 h,+h [—a—“J +bsh, =y,
a7 by
2| N
Jb (e e L
s by . b

or

ay ay

)

b

ay

| (]
T b

ay

A2)[¢)
)

a) (o

J4
2
44 44

((17 \ ag,. As, 4y,
(a3_b3)k_a J4—JzJ:J1 + 4 73
7 7 5 7 or
a a a
+b1( 7xf‘3+ 6x “Tx fzJ
a; ag a,
a, a,, s, ay
(a3 _b3)( xf4_fzj_f1x_xxf3
a, a; as ay

b

a a a
7x 6x “7x
ay as ay

Continuing into the second relation of (10a),

47 sy o || F1x o, Gox D1 4 - x5 Y1 o ox 47
(az—xﬁ— xf3‘“2fz‘f1}[ xf3+_x_xf2):(a3_b3)( xfzt‘fzj_fl_x__x_xﬁ(fr" x_xf4j
a; as a; ag ay a; a; as a as a,
or
4 4 Qox 4y 4 4
4 (a2f2+fl_a2 axfth(axfaJrax axf2j+(a3_b3)[axf4_fzj_f1 ax
Sx _ 7 7 6 % 7 7
N 2
s ox | Y1x ox A7y
— VeV e L fs
ag \ a; ag ay



Thus, the first relation will determine @, or a, as,

W{(azfz + fi—ay 2 faJ[jx S+ Zan g,

as 7 ae ay

109

2
a; ag, ay ay a, ag. | ay ag,. ay
l:al x f3+a1_x_xf2_(a3_b3)(_xf4_f2J+fl_x:|[_x£_xJ S — X _xjfz]%]:
a, ag ay a; a, ag \ ay ag ay

J+(a3—b3)(z77x

f4—fz]—f1 ﬂ}(hﬂfzj
a; ag ay

7

“ﬂ{ [ ]fzfafwaz[ ]fm a2 2 —a, “”ff—“iflff}
2 az a; a5 a ay

or |:(a3 _bs)Lc;lﬁ _fzJ_al %ﬁ -h %}[%fyﬁ _fzf3J+(a3 _b3)[c;7_xfzf4 _fzzJ
7 7 7 7 7

Therefore, the fourth order equation is reduced into,

Jixee T J1x T o)1 A0 )1 = NP (I1¢)

where, j, = h x.
Repeat the procedure for third order ODE as in the following,
Jixor T J1xe T A9 J1x T @10 J1 = NP

Suppose that the following relations are hold,

a a
+ 11x and ag = bS +b4 12x
ap ap

Thus, the following relation is obtained,

. b . . .
- (‘11 1/1xx )x +—+ (“12J1x )x +bs jic +ayo )i
ai app

Multiply by an arbitrary function y, to generate,

=nNe

by

Q(aujlxx)x + }Z (alzjlx )x +72b5 j1x

11 12
=7nNe

. (12b)
+72a101

Suppose that the following expression is satisfied,

G0 gy
72xb5 =¥ then’ 7, =€ x bs (12¢)

Equation (12b) is rewritten as,

7 . 72b, .
_z(all.]lxx )x +22 (alzjlx)x
ap ap

mdx

b
ths| e = i | =rane

Suppose that,

2
(17 2 a7 a7 a7

a, == f5 f3+—= f1fzf3_a2£_xJ Lofsfs—— 11>
a, a, a, a,

[ i
b .
€' ji=h,and j =he (13a)
Therefor ation (12b) can be expanded as
Iy +2hy, | -0
,J‘ Qo 4 bs
7/2 x hS

— 2
“n +h2 _m + m
by ) bs

[ 0 g,
+ 72by ae L s |:h2x +h (_CZ_OH
a2 5

+b5h2x

X

=N

Differentiate the above equation once again and relate,

2] a9
S s (7
a a .
$) ay|| - 0| L% | |, b
a b b
11 5 ) 5
_ or

a0
—| —dx
+ 72by [_ 4o J * bs
ap
ap bs
—x

"1#[ alO 010
4, bs bs
bs . bs b a12 bs
2
+b _611_0 + al_o =0
b )b

=0

(13b)
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Now assume that b, is given, thus (20 is determined, and

the relation, b, can be determined from (13Db) as,

a
i+ g
b4: 11
ap
—=fi—Js

ap

(13¢)

Substituting into the second equation of (12a) to give the

. . apg
expression of b, as a function of — =
11

(a() _bs)a12x f7 ( bS)f A1ox ]fs

a; ap

or
a a
11x *12x
+__f6

ap a2
(4 —bs) 120 £ =820 10— (a —by) £
Yix _ 9 ) (13d)
ap Yox
—fe
apn
et ] L
‘]211
[y [ %0y,
V:(271')3e J"b-? lj{e J.’ bs J‘l:
t

Ay

—| “tar J' ‘“dt
+e P L[e (IX4jzhdt)]dt+e

The final step is substituting equations (8c) into (4¢) as
in the following,

(27) W, = <26, + 26, XU, +2b,V +F
2(2x) bgUNhI;UITh(bZV+b3W+ﬂ)dt}dt
tU}% t

8Uh

+ [ bva (73
bUy ),

t

t J2n

a3d 13
2h_[_e } t[j th7271asej. dt)dt}dt}dt

‘3LU,,W,”,+(27z)‘3 L(Th L
+ [2—7(7,1] +UN,f(bbLJ W, + UN,f[ bzv] —(27r)3b3l7h W=
t t t 1y

—~ 1 ~ | = —~
+<27[)3b2Uh V+ (m}%} U}% +(27Z')3UhFi

Performing the resultlng expression into the first equation of
(12a) to generate @,

ag [aIZX] f6f7_a8 alZXf‘G

ap

2
+(a9_b5)[%J f72_(alﬁj fufy or

Aox f f‘é
- 5
a2

app ap

—(a9 _bs) iz JoJ7
app

oy _ agfs +fsSs —(ao =bs) fo /7 (130)
@y agfofy+ fsfr = (a0 =bs) f7

Therefore, equation (11c¢) is reduced into,
My + 3P + 141y, = 72010 (14a)

and solvable by transforming into the Riccati equation as in
the previous section. In this case, the solution of (9b) that
reduced into the same form of (5a) is,

d
[J- 1.2;17’27’10‘56"-'0[13 tdtJdt}dt+I X, jopdt + X5 OF
4 t

(14b)

10 210 gy

B A T

dt+ Xge

Rearranging the coefficients and differentiating the above
equation,

W +4(27)” [

1 ~ | b |~
— | U} | +-LU, W,

b 22UV, + b
by b

(14c)

t



Performing (14b) into (14c), differentiating and rearranging

the coefficients sequentially will produce the equation for
W as a tenth order ODE. Performing the reduction of the
order by the method illustrated in (10 — 13), the solution is
also obtained for W.

REMARKS ON INTEGRAL EVALUATION

The obtained solutions of U, V and W have to be transformed
back into the spatial domain by inverse Fourier transform. In
this section, the method for integral evaluation is proposed
for producing the explicit expression on al solutions.
Consider the integral G as follows,

G:j Ddx (15a)

The integral will be evaluated as,

J'Ddx:j' DVidej' InVdV or (15b)

D=V .InV
Assume that, V' = ¢", then

Unr

u

u
+—~+u, or

D
D =u ue" or =X =
D u

X
1 D, 1 1
— | == —t1+—
u, ) D u u
The solution is,

i:i( 2+Ddx+Cj
u D\JIxu

X

(15¢)
1

Let, u=-—, then
A4

(15d)

v =—ivx (J. Dv+Ddx+C)
D x

Let, W=_[ Dvdx , thus the above equation become,

2 —
Wy +Fww, =

D
Dx ww, —(J.dex+C)wM

(LDdx+C)wx

Rearrange the above equation as,

(16a)
+

DX
D

(wwx )x —%wwx = —(LDdx+ C)wxx

+%(LDdx+C)wx :(LDdx+C)A

1071

and each solution is,

ww, =D“x(_[dex+c)%dx+q}

Wy =—DU %dmczj and

A
w=—LDU.dex+C2]dx+C3 (16b)
Equalize the results as,
[LDUX%dﬂqjdﬂQ [D(L%dx+€2ﬂ -
D I (J' Ddx+C)£dx+C1_
X X D |
Expanding r.h.s., the following equation is produced,
“;D(L%dx+C2jdx+C3 =
- o, (160)
A A
(J.dex+C)(J.xgdx+Czj{(Lde+C2)+l}
Differentiate once,
A D A ’
4D (( A
D (J. Ddx + C) *D
(18d)

2
D U ﬁdx+czj
<D

+(J'dex+c)

which is the polynomial ODE with third order nonlinearity.

The First Integral for the Equation with Third Order
Nonlinearity
In this case, suppose that, 7 =I %dx+C2 and /=H+d,

then equation (16d) is transformed into,

P +(3d+1) 1% +(3d° +2d )1
,___D

T peac) (J' Ddx+C) (172)
(LD x+C) vdd g\ - d

X

The step now is to reconfigure the polynomial term in (17a)
as follows,

(dyy+dy)I* +dsI +(d,I +d,)d, or

P +d,I? +d] +dd,]+d,d,
I’ +dyI° +(dy +dydy )] +dyd,

which each coefficient is described by,
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d, = D d, = (3d+1)D ’ BB, —(d11+d2)ﬂ22ﬂ32 —d; BB =

(J.dex+C) (J.dex“LC) ~BoPy +(dil +dy)dy = 13 s

(3¢> +2d)D
dy+ddy =——, (I75)  and is separated as,
(j Ddx+C) )
\ xz B P, _(d11+d2)ﬂ2/33 _(d3 +73)/32ﬂ3 =0 and
d>+d°|D
dyd, :u_d PPy +v3PoBs —(diI +dy)d, =0 -
([parrc] s
x The solutions for £, and g, are,
Evaluating (17b), the expression for d, and d, are, 1
[ (dye)ac| e [ (dyrr)as AT Y

(3¢>+24)p 4 (@*+a*)D By=e Le~ (il +dy) P+ €y

dy = o
’ [ pax (Bd+1) (3a+41)] Dax and
. * . ! (17¢)
Dd. —| 7ax 3
J (@) J pas J ﬁ3=eL”’ U eLy‘dx(d1[+d2)d4de+C2}
4 X
(3d+1) D(3d+1) x P
. (18b)

The step is now to solve the Riccati equation (17a), let, / =

B, B,, the equation can be rearranged as, The relation for /=4, f, is thus,

1=ﬂ2ﬂ3—eﬁdz “ [ (o) (d1+d,) ,33dx+c1} U i d11+d2)d4ﬂldx+cz}
2

. . above relation is performed as,
Without loss of generality, suppose that, g, =¢6L7 “* the P

dsdx dydx 2| dydx d
J (dll+arz)¢ﬂ2ﬂ3“xeL (arlzr+dz)<pﬂ2ﬁ3arx+q}=eL go(dll+d2){jx(dll+d2)?4dx+C2} (180)

o dar dy - i The roots are then,
Suppose that, "y =4, integrate the above equation to

get, ¢ j ddsd,

y ) [=en (19b)
[J' J.os d11+d2)¢1dx+cl} -

d,

The solution for v is then reduced into the solution of the
polynomial equation. Take the root as,

J 2
U (d11+d2)—4dx+C2}
x P A [ dsax
H:J' L+ Cy=I+d=e""" +d or
Note that the integration constants are the same, in this case, *D

J_ | FMHM)D a.  (a+a?)D }t
dadx +—= x
2 (d112 +d21) =(d\d,I +d,d,) or J~ idx+C2 Y | [par G4 (3aan)] Das »
d.dx and
(d1y2+d2y):e'[‘ ’ (d1y+d2) or
2 +{ﬁ—ej*‘d3dx]]—e£‘d3dxﬁ=0 V =exp D
d, d, [ (3a?+2d)p 4 (&’+d’)D "
(19a) Do [ pax (3d+1) (3a+1)[ Dax "

(19d)
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From the relation in (15) and (16), the integral is then, D D
I Ddx = eDB+d _ o DB+d
x DB+d
IDdszandV:Van—V (20a)
¥ * Rearranging the above expression,
[ {(whzd)D a.  (a*+a?)D }d D
. e (3d+1 | DB+d.[ Ddx = _1o0r
Let, B=¢ I*Dd (1) (3d+l)f‘Dd , then ¢ x x DB+d

(3¢>+2d)p> 4 p (dP+d’)D’
o ~D,D+D, |B~d, ~D,d{(D*~2D’B~2Dd +D’B’ +2DdB +d” ) =
[ pax (d+1) (3a+1)[ Dax

(D.D-D,DB~D,d)(D*B* +3dD’B’ +3d°DB+d’)~(D,B~d,)(D*B* +4dD*B’ + 64’ D’ B’ + 4d°DB +d*
(3¢>+2d)p 4 (a*+a*)D
+ X

> [ pax (3d+1) (3d +1)[ Ddx

B(D4B4 +4dD*B? + 64*D*B* + 4d°DB + d“)

(20b)
which is fifth order polynomial equation in B. The following where, B = /4. Rearranged equation (21a) as given by,
section is the proposed method to reduce the order of

3 2 2 2
polynomial equation higher than four. (blE +bE” +bsE+by )E +bsE

(21b)
_ 3 2 _
REDUCTION OF FIFTH ORDER POLYNOMIAL (b‘E +hE”+bE+b, )b6 ¢
Expanding the all the coefficients as,
BE® +byE* +(by —bbg ) E® +(by +bs —bybg ) E*

Consider equation (9c¢) as follows,

Multiply by the function, b and rearrange,

s . - - Relate the coefficients as in the following,
A E+d,fE" +d;B°E +d,fE

21
tdBE+d S =0 (21a)

b =d,
bz = dzﬂ
by —bbs = d3ﬂ2

by +bs _dzﬁdi(l% _d3ﬂ2)= d4ﬁ3
1
_dl?([% ~dyf° )2 =dsp* +d, B dil(b3 —d3ﬁ2)

_{d4ﬂ3 +d2,3di(b3 _d3ﬁ2)_b5}di(b3 _d3,32): dﬁﬂs +o
1 1

1 1

1 {dmﬂ + dzﬁ;l(b3 —d3ﬁ2)—bs}d

o (bi=dsp?) == —

(b3 _d3ﬁ2>+ dsﬂs

(21c)
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The fifth equation of (21c¢) gives the roots as,

1
dil(brdﬁz):%,ﬁz d3i(d32—4d5)5 =4 f (14

Moving to the last equation, the functions b, and f are
disappear from the operation. In this case we will consider
the test function, b, + '° = d_ f°, and will perform as,

1
B +d,fp d_(b3 _d3ﬂ2)
1
| 2 (22a)
+d2ﬂE(b3—d3ﬂ ) +b5=0

Substituting for b,, the expression for 3 is,

B +(dufy +do 13 )y +bs =0

N | —

B = —%(d4fo +d2f02)i%[(d4fo +d2f02 )2 _4b5}
(22b)

Substitute back to, b, + f'° = d, 5° as follows,

bs = %(d4f0 + d2f02 )2

| (dufo+do ) +do(dufy+dofi) 2

4 (dafo +do g +d)

(22¢)

whichis then, solves b, 8, ¢ thus generates all the coefficients
of b.. The polynomial is then rewritten as,

e el £

which is reduced as,

1
d,B* +d,B> + %dl dy(d3 -4ds)? | +d; | B

1
1 —
+d4+5d2 d3i(d32—4d5)2

|
(=

Note that the reduction procedure will solve (19d),
perform the log operation and differentiate once, the higher
polynomial equation for G=| Ddx is produced. Applying
the reduction procedure once more thus the result of integral
evaluation is explicitly obtained.

CONCLUSION

The solvability of the elastic wave equation in homogeneous
media is analyzed in this research. The spatial coordinates
of the coupled wave equations are eliminated by Fourier

transformation in the whole and then half domains. The
order reductions for ODEs and polynomial equation are
proposed to produce the complete solutions in time and
spatial domain. The reduction is performed by separating
the ODEs coefficients iteratively until the second order is
obtained which produces complex wave propagation. It is
found that the evaluation of integral is possible by solving
the third order Riccati equation and reducing the higher
order polynomials.
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