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ABSTRACT

Collagen-derived cryptic peptides (cryptides) are biologically active peptides derived from the proteolytic digestion 
of collagen protein. These cryptides possess a multitude of activities, including antihypertensive, antiproliferative, 
and antibacterial. The latter, however, has not been extensively studied. The cryptides are mainly obtained from 
the protein hydrolysate, followed by characterizations to elucidate the function, limiting the number of cryptides 
investigated within a short period. The recent threat of antimicrobial resistance microorganisms (AMR) to global 
health requires the rapid development of new therapeutic drugs. The current study aims to predict antimicrobial 
peptides (AMP) from collagen-derived cryptides, followed by elucidating their potential to inhibit biofilm-related 
precursors in Klebsiella pneumoniae using in silico approach. Therefore, cryptides derived from collagen amino 
acid sequences of various types and species were subjected to online machine-learning platforms (i.e., CAMPr3, 
DBAASP, dPABBs, Hemopred, and ToxinPred). The peptide-protein interaction was elucidated using molecular 
docking, molecular dynamics, and MM-PBSA analysis against MrkH, a K. pneumoniae’s transcriptional regulator of 
type 3 fimbriae that promote biofilm formation. As a result, six potential antibiofilm inhibitory cryptides were screened 
and docked against MrkH. All six peptides bind stronger than the MrkH ligand (c-di-GMP; C2E).
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Collagen-Derived Cryptides: Machine-Learning Prediction and 
Molecular Dynamic Interaction Against Klebsiella pneumoniae 
Biofilm Synthesis Precursor

INTRODUCTION
Antimicrobial resistance (AMR) is widely recognized as a 
serious threat to global health. By 2050, AMR could cause 
the deaths of 10 million people (O’Neill, 2016). and increase 
the burden of drug-resistant diseases caused by various 
pathogens in several countries (Murray et al., 2022). The 
presence of AMR has compromised the effectiveness of 
existing treatments and is exacerbated by the misuse of 
antibiotics and the lack of new antibiotic developments 
(Mobarki et al., 2019). Therefore, tackling AMR requires new 
tools or compounds to accelerate research and development 
of new antimicrobial therapeutic classes and raise 
awareness of antibiotics in healthcare and agriculture. One 
of the compounds being explored is antimicrobial peptides 
(AMPs). AMPs are parts of the innate immune system with 
antimicrobial properties to kill pathogenic microorganisms. 
A derivative of AMP, known as cryptic antimicrobial peptide 
(antimicrobial cryptide), is a unique class of AMP derived 
from proteolytically hydrolyzed protein.

The cryptides in collagen hydrolysate have been shown 
to have angiogenic, mitogenic (Banerjee & Shanthi, 2016), 
and antibacterial properties ( Ennaas et al., 2016; Atef et al., 
2021). The administration of collagen peptides significantly 
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improved exercise-athletic injury pain (Dressler et 
al., 2018; Zdzieblik et al., 2021) and accelerated 
healing in patients with Achilles tendonitis (Praet et 
al., 2019). Baehaki et al., (2016) reported that fish 
skin cryptides produced with bacterial collagenase 
inhibited angiotensin I-converting enzymes and 
were anti-cancer. On the other hand, cryptides 
derived from collagen showed antimicrobial 
activity against Salmonella spp., Escherichia coli, 
and Staphylococcus aureus (Atef et al., 2021). 
However, the antimicrobial potential of collagen-
derived cryptides still needs to be extensively 
researched despite the protein diversity from 
different organisms.

More than hundreds of collagen proteins 
curated in the UniProtKB database are potential 
reservoirs for numerous biologically active 
cryptides. To date, cryptides have been identified 
and purified using mass spectrometry to elucidate 
their function (Baehaki et al., 2016; Ennaas et al., 
2016; Atef et al., 2021). However, this approach 
is expensive, time-consuming, and limited to the 
characterization of a small number of peptides. 
Therefore, rapid screening and prediction strategies 
using machine learning (ML) are the best options 
to narrow down AMP before downstream analysis.

Several online prediction tools based on ML 
have been developed to speed up the prediction 
of AMP, e.g., CAMPr3 (Waghu et al., 2016), 
AMPPred (Pan et al., 2012), AntiBP (Lata et al., 
2007), DRAMP (Shi et al., 2022). The quality of 
prediction of AMP is further improved by other ML 
tools that predict antibiofilm (dPABBs) (Sharma 
et al., 2016), hemolytic (Hemopred, DBAASP) 
(Pirtskhalava et al., 2021; Win et al., 2017), cell-
penetrating (CPPPred) (Holton et al., 2013), 
potential target microorganisms (DBAASP) and 
toxicity (ToxinPred) (Gupta et al., 2013). In light 
of these findings, the current study focuses on 
predicting antimicrobial cryptides from collagen 
proteins and potential peptide-protein interactions 
with MrkH, a transcriptional activator for K. 
pneumoniae type III fimbriae. 

The type III fimbriae, encoded by the mrk  
gene cluster, are an important precursor for the 
bacteria to initiate biofilm synthesis (Struve et al., 
2009). In addition to the capsule, biofilm-producing 
K. pneumoniae are known to be more resistant to 
antibiotics than strains that cannot form a biofilm 
(Zheng et al., 2018). Uniquely in K. pneumoniae, 
the expression of the gene cluster is regulated by 
the MrkH protein (Wilksch et al., 2011). The protein 
also autoregulates its expression when activated 
by a global regulator, cyclic- di-GMP (C2E) 
molecules (Schumacher & Zeng, 2016). Inhibition 
of the MrkH protein is thought to disrupt bacterial 
attachment and thus reduce biofilm synthesis 
(Roy et al., 2018). Therefore, we aim to screen 
collagen-derived cryptides with antimicrobial 

and antibiofilm potential against K. pneumoniae 
and determine the candidates’ potential as MrkH 
inhibitors by molecular docking and molecular 
dynamic analyses.

MATERIALS AND METHODS
Datasets
A total of 21 collagen protein sequences from 
various organisms were downloaded from 
UniProtKB. As for positive and negative peptide 
references, 2754 antimicrobial peptide (AMP) 
sequences were curated from the Antimicrobial 
Peptide Database (APD) and 5850 non-AMP 
peptide sequences were obtained from UniProtKB, 
respectively. Non-AMPs are peptides that are 
recorded without antimicrobial properties such 
as “antimicrobial”, “antibacterial”, “antifungal” and 
“antiviral”. The crystal structure of MrkH protein 
(PDB ID: 5KEC,1.95 Å) was retrieved from the 
Protein Data Bank (PDB) (Berman et al., 2000), 
while cyclic-di-GMP (C2E) from native protein 
structure (5KGO, 2.90 Å).

Cryptides generation and physicochemical 
elucidation
A total of 34116 collagen-derived cryptic 
peptides (cryptides) were generated in-silico by 
proteolytically digesting all 21 collagen proteins 
with enzymes and chemicals available in Peptide 
Cutter (https://web.expasy.org/peptide_cutter/) 
(Gasteiger et al., 2005). The physicochemical 
properties of all peptides (AMP, Non-AMP, and 
collagen-derived cryptides) were elucidated based 
on amino acid composition using R Studio’s 
Peptide package (Osorio et al., 2015). The 
physicochemical properties are net charge, Grand 
average of hydropathicity index (GRAVY), and 
Boman index.

Antimicrobial peptide (AMP) prediction and 
scoring
All peptides (AMP, Non-AMP, & collagen-derived 
cryptides) were analyzed by the CAMPr3 AMP 
prediction tool (http://www.camp3.bicnirrh.res.in/
prediction.php) using Support Vector Machine 
(SVM), Random Forest (RF), Artificial Neural 
Network (ANN) and Discriminant Analysis (DA) 
features (Waghu et al., 2016). Subsequently, the 
collagen-derived cryptic peptides were scored 
according to the number of features that predict 
the peptide as AMP (Score value: 0-4). The 
cryptides were compared with AMP and Non-AMP 
using box-plot analysis and their physicochemical 
properties. The peptide sequences are also 
uploaded into the CAMP Sign database to cross-
reference the sequences with known AMP families 
that have been experimentally verified to identify 
the possibility of known AMPs originating from the 
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collagen protein.

Collagen-derived cryptides biological activity 
prediction
The biological activity of collagen-derived 
cryptides against K. pneumoniae was predicted 
using DBAASP v3.0 (https://dbaasp.org/home) 
(Pirtskhalava et al., 2021), while antibiofilm peptide 
prediction was carried out by dPABBs (https://ab-
openlab.csir.res.in/abp/antibiofilm/). Hemolytic 
activity of collagen-derived cryptides was predicted 
using DBAASP v3.0 and HemoPred (http://codes.
bio/hemopred/) (Pirtskhalava et al., 2021), while 
toxicity was predicted by ToxinPred (https://webs.
iiitd.edu.in/raghava/toxinpred/) (Gupta et al., 
2013). Selected collagen-derived cryptides were 
then subjected to structure prediction and docking 
analysis against MrkH protein.

Statistical analysis
A non-parametric statistical analysis using 
Kolmogorov-Smirnov (KS) test was conducted 
to determine the significant differences between 
AMP and NAMP. On the other hand, a non-
parametric one-way analysis of variance (ANOVA) 
was performed to compare the significance of the 
cryptides group in AMP scores with AMP followed 
by the Kruskal-Wallis test for multiple comparison 
analysis. The significant difference between data 
was presented as a p-value (<0.05). 

Peptide structure prediction and validation
PEP-FOLD3 was used to predict the three-
dimensional structure of a collection of peptides 
(http://bioserv.rpbs.univ-paris-diderot.fr/services/
PEP-FOLD3/) that take a de novo approach 
(Lamiable et al., 2016). Predicted peptide profiles 
were assembled using a coarse-grained force field 
and the structural alphabet (SA). SOPEP energy 
and TM score were used to sort the clusters, and 
the Ramachandran plot was used to verify the 
structure from the perspective of phi and pi angles.

Receptor and peptides preparation for 
molecular docking
YASARA Structure software (Land & Humble, 2018) 
was used to optimize the MrkH receptor protein. 
The default energy minimization parameter was 
used to minimize the energy of all 3D structures of 
molecules and selected peptide molecules before 
docking. The protein chain was edited for missing 
hydrogen atoms, bond orders, and optimization of 
hydrogen bonds. The preparation process of the 
protein continued until it attained a minimized state 
with the help of the NOVA force field (Krieger et al., 
2002).

Molecular docking
HADDOCK2.4 webserver (Honorato et al., 2021; 
van Zundert et al., 2016) was used for molecular 
docking of the candidate, considering the confined 
co-crystalline binding site as a chemical search 
space. The HADDOCK method created the score 
function for peptides docked inside the active site 
that was used in this study for molecular docking. 
The binding pocket was generated using C2E 
ligand active site residues 67, 69, 73, 74, 107, 108, 
109, 110, 113, 140, 141, 142, 146, 147, 184, 185, 
187, 203, 205, 206, 207 to select interaction area of 
monomers. HADDOCK configuration parameters 
are set to defaults. The screened compounds’ 
PRODIGY binding energy (kcal/mol) (Vangone et 
al., 2019) was used as a rank score.

Molecular dynamics
Molecular dynamics simulations (MD) were 
performed using the YASARA Structure (version 
21.12.19) protocol (Krieger & Vriend, 2015) to gain 
a better understanding of the stability of protein-
ligand complexes.  All simulations were carried 
out on a custom-built workstation running Linux 
Ubuntu 20.04.5 (Focal Fossa) with AMD Ryzen 
Threadripper 3960X 24-core processor (4.5 
GHz), 64 Gb of random access memory (RAM), 
and an NVIDIA GeForce RTX 3080 graphics 
processing unit (GPU) (10 Gb). The AMBER14 
force field (Maier et al., 2015) was used for the 
MD simulations. Initial energy minimization was 
performed using the steepest descent algorithm. 
The MD simulations were performed for amino acid 
residues with the standard physiological pH (7.4). 
Water molecules were successfully introduced into 
the system at constant temperature and pressure 
conditions. A counter ion (Na+ or Cl-) with a 
concentration of 0.9% was added to maintain 
the neutral state of the systems. The Berendsen 
barostat technique (Berendsen et al., 1984) was 
used to maintain the pressure value at 1 atm. 
The long-range Coulomb forces were calculated 
using the particle-mesh Ewald (PME) method 
(Krieger et al., 2006; Krieger & Vriend, 2015). The 
cut-off radius was set to 8 Å for the non-bonded 
interactions. The temperature was kept at 298 K 
using the Langevin thermostat method (Izaguirre 
et al., 2001). The periodic boundary conditions 
were also considered. In each case, the cubic 
simulation cell was chosen 20 Å larger than the 
protein-ligand complexes studied. A normal 
simulation speed was maintained with a time step 
of 1.25 fs. At an integration step of 2 fs, all bonds, 
including hydrogen bonds, were constrained using 
the algorithm SHAKE (Elber et al., 2011). In the 
final step, the production steps were run over 
a simulation time of 100 ns. Snapshots of the 
simulation trajectory were taken every 100 ps. The 
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simulation steps were executed using a preloaded 
macro (md_run.mcr) from the YASARA package. 
Root mean square deviation (RMSD), the radius 
of gyration (Rg), root-mean-square fluctuation 
(RMSF), and solvent accessible surface area 
(SASA) were used to analyze the best compounds 
at the end of the 100 ns simulations MD.

MM/PBSA  binding energy calculations
The studied peptides’ binding free energies 
against the MrkH protein were calculated using 
the mechanics Poisson-Boltzmann surface 
approach (MM/PBSA) by YASARA built-in macro 
md_analyzebindenergy.mcr. The theory of nuclear 
physics is used as the basis for the approach (Blatt 
& Weisskopf, 1979) Similar methods to MM/PBSA 
have been reported by (Swanson et al., 2004). By 
subtracting the energy of the system, the binding 
energy can be approximated from the energy 
at an infinite distance. The interaction is more 
favorable the higher the binding energy. Binding 
free energy was calculated with the solvation of 
peptide, complex, and free protein for the MrkH 
form complexes using AMBER 14 as a force field, 
where more positive energies indicate better 
binding. The binding free energy (kcal/mol) for the 
MM/PBSA was calculated according the following 
equation:

where i is the position number, “Epot” potential 
energy, and “Esolv” is the solvation energy, free 
protein (EpotRecept) and (EsolvRecept), free 
ligand (EpotLigand) and (EsolvLigand), while the 
potential energy for the complex is (EpotComplex) 
and the solvation energy for the complex 
(EsolvComplex).

RESULTS
Collagen-derived cryptides generation
A total of 21 collagen protein sequences from Homo 
sapiens (humans), Mus musculus (mice), and 
Gallus gallus (chicken) were selected for cryptides 
generation using the Peptide Cutter platform. The 
collagen proteins include fibrillar collagens, fibril-
associated collagens with interrupted triple helices 
(FACIT), fibril-associated collagen, multiplexing, 
and network-forming collagen. In this study, a 
total of 34 116 cryptides were generated from 
the proteins. Out of 21 proteins, three collagens 
from Gallus gallus (CO6A3, COCA1, COEA1) 
generated 5875 cryptides, nine collagens from 
Homo sapiens (CO5A1, CO6A3, CO6A5, CO6A6, 
CO7A1, COCA1, COEA1, COIA1, COOA1) 
generated 14 026 cryptides and another nine from 

Mus musculus (CO5A1, CO6A4, CO6A5, CO6A6, 
CO7A1, COCA1, COEA1, COIA1, COOA1) 
generated 14 215 cryptides. 

Neutrophil elastase, thermolysin, and low-
specificity chymotrypsin generated 3256, 3163, and 
2849 cryptides. Neutrophil elastase is an enzyme 
produced by neutrophils that play a vital role in 
the body’s defense system, and chymotrypsin 
is a digestive enzyme produced by the digestive 
system. The former degrade microorganisms or 
any foreign substances engulfed by neutrophils 
and act in concert with reactive oxygen species 
(Korkmaz et al., 2010). On the other hand, 
thermolysin is an enzyme secreted by the Bacillus 
thermoproteolyticus to degrade proteins and 
peptides as nutrients for bacterial growth (Adekoya 
& Sylte, 2009).

AMP prediction and scoring
Prediction of collagen-derived cryptides by 
CAMPr3 using SVM, RF, ANN, and DA resulted 
in more than 14000 cryptides (41%) predicted 
as AMP by at least one classifier. In Table 1, 
predicted cryptides with antimicrobial properties 
were distributed according to the classifier using 
AMP scoring values of 0-4. Overall, the number 
of cryptides decreased as the AMP scoring value 
increased, suggesting that cryptides with a score 
of three and four are highly potential AMP. Out of 
41% of potential AMP, only 4.35% of the cryptides 
scored three and four, represented by 950 and 535 
cryptides. Among the collagen types, Collagen 
Type VI (Co6) contributes the most cryptides 
with an AMP score of three and four between the 
three species. Co6 is the collagen that forms the 
tissue and connective tissue, often associated with 
the basal membrane. The potential antimicrobial 
activity of Co6 was previously demonstrated 
against Groups A, C, and G Streptococci (Abdillahi 
et al., 2012), Moraxella catarrhalis (Abdillahi et al., 
2015), Pseudomonas aeruginosa, E. coli, and S. 
aureus (Abdillahi et al., 2018). 

Among Co6-derived cryptides, nine were 
similar to three AMP families curated in the CAMP 
Sign database (Table 2). The AMP families are 
Uperin, Bacteriocin, Latarcin, and Ascaphin. 
Uperin, which is active against Gram-negative 
bacteria, was isolated from frogs’ dorsal gland 
or skin from the family Uperoleia (Bradford et 
al., 1996), while Ascaphin from the Ascaphus 
family (Conlon et al., 2004). On the other hand, 
Bacteriocin is a family of AMPs produced by 
probiotic bacteria and capable of inhibiting the 
growth of pathogens and other strains (Dobson 
et al., 2012). Another four cryptides derived from 
human Co6 are grouped into the Latarcin family. 
Latarcin is a peptide isolated from the venom of a 
group of spiders that exhibit antimicrobial activity 
by penetrating the microbial cells (Budagavi & 
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Table 1. AMP scoring distribution of collagen-derived cryptides according to species and collagen types.

Species
Type

Number of cryptides per amp scoring

0 1 2 3 4  Total

Gallus gallus co6a3 1259 676 168 86 43 2232
coca1 1515 554 167 63 29 2328
coea1 813 355 101 27 19 1315

3587 1585 436 176 91 5875
Homo sapiens co5a1 573 449 97 32 10 1161

co6a3 1265 699 182 76 64 2286
co6a5 1152 528 180 61 50 1971
co6a6 1001 497 178 51 31 1758
co7a1 1029 705 118 26 17 1895
coca1 977 335 100 38 27 1477
coea1 836 308 76 26 11 1257
coia1 597 304 109 32 13 1055
cooa1 611 378 106 42 29 1166

8041 4203 1146 384 252 14026
Mus musculus co5a1 597 426 100 31 11 1165

co6a4 982 450 120 69 34 1655
co6a5 1200 537 165 55 39 1996
co6a6 951 476 182 66 29 1704
co7a1 1036 701 121 30 14 1902
coca1 1529 536 181 46 32 2324
coea1 809 321 90 32 8 1260
coia1 662 319 74 22 11 1088
cooa1 603 380 85 39 14 1121

8369 4146 1118 390 192 14215
Total 19997 9934 2700 950 535 34116

Table 2. Cryptides similarity within CAMP sign AMP family
No. Cryptide Family
1 co6a3_chick_19 Uperin
2 co6a3_human_940 Bacteriocin
3 co6a3_human_1545 Bacteriocin
4 co6a5_human_1375 Latarcin
5 co6a5_human_1596 Latarcin
6 co6a5_human_1884 Latarcin
7 co6a5_human_1970 Latarcin
8 co6a5_mouse_98 Ascaphin
9 co6a5_mouse_1529 Ascaphin

Chugh, 2018). Meanwhile, most peptides with AMP 
scores of three and four had no similarity to AMP 
from the database, indicating that the probability 
of finding a novel AMP candidate from this study 
is high.

Collagen-derived antimicrobial cryptides 
characterization
Prediction using separate machine-learning 
classifiers provides a limited consensus of the 
peptide potential as AMP. Thus, a scoring function 
was employed by summation of the classifier 
resulting in AMP to improve the prediction 
consensus for each cryptides. The net charge, 

GRAVY, and Boman Index distribution of collagen-
derived cryptides were compared to AMP and 
non-AMP (NAMP) from databases (Figure 1). As 
a reference, the differences in net charge, GRAVY, 
and Boman index between AMP and NAMP are 
significantly different (p<0.0001) (Table 3). As for 
the Kolmogorov-Smirnov test, the D values for 
the net charge, GRAVY, and Boman Index were 
0.4366, 0.2777, and 0.2887, respectively. D value 
represents the maximum distance between the 
two samples’ cumulative distribution function 
(CDF). As the D value is close to 0, the similarity 
of the data distribution between the two samples 
increases. Thus, following previous studies, net 
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Fig. 1. Box-plot distribution for AMP, NAMP, and collagen-derived cryptides with scores for a) Net charge, b) GRAVY 
and c) Boman Index.
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charge demonstrated the most crucial features 
of AMP compared to GRAVY and Boman index ( 
Torrent et al., 2011; Chung et al., 2020). Therefore, 
cryptides with all three values within 50% of AMP 
(quartile 1 and quartile 3 value) are considered 
potential AMP. 

In Figure 1a, 50% of AMP within the first and 
third quartile has a net charge value between 1 
and 5, respectively. The median for AMP and 
NAMP was 3 and 0, respectively. As depicted in 
Figure 1a, most cryptides with a score of three and 
four fall within 50% of AMP net charge, where both 
groups also have a median closest to the AMP. 
However, a one-way ANOVA test reveals that only 
the latter are not significantly different (P value> 
0.9999), suggesting that cryptides scored four as 
highly potential AMP. Many AMPs discovered are 
cationic, with a net charge in the range of 2 to 9 
(Porto et al., 2012), while less than 5% of AMPs 
have an anionic net charge (Chung et al., 2020). 
Net charge plays a crucial role in determining the 
antimicrobial properties of AMP and the differences 
in membrane structure between prokaryotic cells 
and eukaryotic cells make the cationic properties 
of an AMP an advantage in terms of antimicrobial 
efficacy (Yeaman & Yount, 2003). Eukaryotic cell 
membranes are neutral, while prokaryotic cell 
membranes are negatively charged. This allows 
the cationic AMP to bind to the negatively charged 
bacterial cell wall through electrostatic interactions 
without affecting the host cell. However, previous 
studies have also reported that the higher the net 
charge value of AMP the higher the probability 
of hemolytic activity of the peptide on human red 
blood cells. An increase in net charge is likely to 
cause a tendency to produce pores on eukaryotic 
cell membranes (Jiang et al., 2008)

Unlike net charge, the GRAVY and Boman 
Index were inconclusive as depicted in Figure 1b. 
Although AMP scoring of cryptides that scored four 
had the median closest to AMP for both GRAVY 
and Boman Index, the p-value is <0.0003 and 
<0.0001, respectively. GRAVY is one of the main 
characteristics of AMP interaction with the microbial 
membrane (Mao et al., 2013). In the current study, 

50% of AMP GRAVY value is between -0.4 and 
0.7, while the cryptides scored four had -0.4 and 
0.3. The value is slightly below the optimal range (0 
to 16.6) suggested by Chen et al., (2007). Optimal 
GRAVY values improve the AMP penetration of 
the prokaryotic cell membranes (Bahar & Ren, 
2013). On the other hand, the Boman Index value 
for the AMP median was lower (0.6) compared 
to NAMP (1.6), which contradicts the previous 
report (Qutb et al., 2020). In Figure 1c, 50% of 
AMP recorded a value between -0.3 and 1.8, while 
NAMP was between 0.8 and 2.4. The collagen-
derived cryptides distribution was between 0.5 and 
1.9, which significantly differed when compared 
to AMP and NAMP (p<0.0001). The Boman 
index measures the ability of peptides to perform 
biological interactions through the affinity of 
peptides to proteins. Higher Boman index values 
are preferable for AMPs because they have higher 
binding potential to cell membrane proteins (He 
et al., 2018). Nevertheless, all three parameters 
are used to narrow down potential antimicrobial 
cryptides by referencing the first and third-quartile 
values of net charge, GRAVY, and Boman Index. 
Based on the box-plot results, 256 collagen-
derived cryptides were narrowed down according 
to AMP scoring 3 and 4, followed by having net 
charge (1 to 5), GRAVY (-0.4 to 0.7), and Boman 
Index (-0.3 to 1.8) value.

All 256 collagen-derived cryptides were then 
predicted for hemolytic activity (HemoPred and 
DBAASP v3), antibiofilm property (dPABBs), 
toxicity (ToxinPred), and potential inhibitory 
activity against K. pneumoniae (DBAASP v3). Out 
of 256 candidates, 24 collagen-derived cryptides 
were selected for their predicted activity against 
K. pneumoniae and antibiofilm activity without 
hemolytic and toxin properties (Table 4).

3-dimensional (3-D) structure prediction and 
optimization of collagen-derived cryptides
The 3-D structures of all 24 collagen-derived 
cryptides were predicted with PEPFOLD3. The 
cryptides are mostly α-helix (18 cryptides), β-sheet 

Table 3. Comparison of AMP and non-AMP parameters

Parameter
Net charge GRAVY Boman Index

AMP Non-AMP AMP Non-AMP AMP Non-AMP
Minimum -7 -12 -3.5 -3.8 -3.8 -3.9

The first quartile 
(Q1) 1 -1 -0.4 -0.8 -0.3 0.8

Median 3 0 0.2 -0.4 0.6 1.6
Third Quartile (Q3) 5 2 0.7 0.2 1.8 2.4

Maximum 20 24 2.9 3.2 8.7 11.0
P-value < 0.0001 < 0.0001 < 0.0001

Kolmogorov-
Smirnov D value 0.4366 0.2777 0.2887
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(5 cryptides), and one extended structure (Table 
4). Furthermore, all 24 cryptides 3D structures 
were validated by having more than 90% 
Ramachandran score. The secondary structure 
of an antimicrobial peptide is closely related to 
its function, e.g., binding to bacterial cell wall 
membranes (Mahlapuu et al., 2016) and binding 
to intracellular receptors (Houri & Mechler, 2020).

Molecular docking analysis
The peptide-MrkH interaction of all 24 collagen-
derived cryptides was compared with the MrkH 
ligand (c-di-GMP) using the HADDOCK2.4 web 

server. The results of all 24 candidates were 
promising, as the binding interaction with the MrkH 
cavity was stronger than C2E. As a reference, the 
binding affinity of C2E to the MrkH cavity is -6.9 
kcal/mol, while the cryptides have a stronger affinity 
(Table 5). As summarised in Table 5, Peptides 6, 8, 
15, 18, 19, and 24 achieved a binding affinity in the 
range of -9.3 to -11.3 (kcal/mol). 

The peptide with the highest docking score 
was Peptide 18 with a binding energy of -11.3 
kcal/mol, forming several hydrogen bonds with 
HIS120 and one hydrogen bond with the following 
residues: ARG117, ASN35, and GLN203. The 

Table 4. Physicochemical properties of collagen-derived cryptides with potential antimicrobial and antibiofilm 
activity against K. pneumoniae

ID Source Structure Sequence Peptide 
length 

Net 
charge

Boman 
Index GRAVY

Peptide 1 Human 
Co5a1 β-sheet, turn GKWHRIALSVHKKNVTLILD 20 3 1.2 -0.1

Peptide 2 Human 
Co5a1 β-sheet, turn DGKWHRIALSVHKKNVTLIL 20 3 1.2 -0.1

Peptide 3 Mouse 
co5a1 β-sheet, turn GKWHRIALSVYKKNVTLILD 20 3 1.0 0.0

Peptide 4 Chicken 
co6a3 α-helix, turn EVAQKGVKVFAVGVRNI 17 2 0.7 0.5

Peptide 5 Human 
co6a3 α-helix, turn DVSLALTQRGVKVFAVGVRNI 21 2 0.9 0.7

Peptide 6 Human 
co6a3 α-helix, turn EIRYGVVALKQASVFSFGLGAQAASRA 27 2 0.6 0.5

Peptide 8 Human 
co6a3 α-helix IRYGVVALKQASVFSFGLGAQAASRAE 27 2 0.6 0.5

Peptide 9 Mouse 
co6a4 α-helix, turn EKGSRPHRGVQQIAVVII 18 2 1.7 -0.1

Peptide 10 Mouse 
co6a4 α-helix, turn ENVLLTAVLPRRSRVLYAIVAS 22 2 1.0 0.7

Peptide 11 Mouse 
co6a5 α-helix, turn EFVKTVALRAKCQGYVVFVISLGSTQR 27 3 0.9 0.5

Peptide 12 Human 
co6a6 α-helix EARGSRLNKGVPQVLIVIT 19 2 1.3 0.2

Peptide 13 Human 
co6a6 α-helix, turn KGVKGAKGLASFSTCELIQYVR 22 3 0.9 0.1

Peptide 14 Mouse 
co6a6 turn (extend) GSKVPCHLVVLTNGMSR 17 2 0.8 0.3

Peptide 15 Mouse 
co6a6 α-helix, turn EARGSRLHKGVPQVLIVIT 19 2 1.2 0.2

Peptide 16 Human 
co7a1 α-helix, turn DTAAQRLKGQGVKLFAVGIKNA 22 3 1.1 -0.1

Peptide 17 Human 
co7a1 α-helix, turn TAAQRLKGQGVKLFAVGIKNAD 22 3 1.1 -0.1

Peptide 18 Mouse 
co7a1 β-sheet, turn DRVFLPRLTRPGVPKVCILIT 21 3 1.1 0.5

Peptide 19 Mouse 
co7a1 β-sheet, turn RVFLPRLTRPGVPKVCILITD 21 3 1.1 0.5

Peptide 20 Chicken 
coca1 α-helix, turn DAKELKLIASQPSLKHVFNVANF 23 1 1.0 0.0

Peptide 21 Chicken 
coca1 α-helix, turn ELKLIASQPSLKHVFNVANF 20 1 0.5 0.3

Peptide 22 Human 
coca1 α-helix, turn DGYEILGKLLKGERKSAAFQIQSF 24 1 1.5 -0.3

Peptide 23 Human 
coca1 α-helix, turn GYEILGKLLKGERKSAAFQIQSFD 24 1 1.5 -0.3

Peptide 24 Chicken 
coea1 α-helix, turn EAGMRKGIPKVLVVIT 16 2 0.2 0.6

Peptide 25 Chicken 
coea1 α-helix, turn RKGIPKVL 8 3 1.4 -0.2
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Table 5. Peptides with binding affinity score predicted by PRODIGY
Structure ΔG (kcal mol-1)

C2E −6.9
Peptide 6 −10.9
Peptide 8 −11

Peptide 15 −10.7
Peptide 18 −11.3
Peptide 19 −10.4
Peptide 24 −9 .3

For more clarity, 2D representations of the formed bonds in the six protein-peptides complexes are illustrated in Figure 2.  All six peptides were 
placed deep in the active site of the MrkH protein as shown in Figure 3. 

Fig. 2. Two-dimensional binding interactions of selected peptides and native ligand (generated by Discovery studio 
2D visualize) with active site residues of 5KEC.
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Fig. 3. The binding poses of selected peptides in the active site cavity of MrkH.
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second top-ranked peptide is Peptide 8 with a 
binding energy of -11.0 kcal/mol, forming several 
hydrogen bonds with ARG108, ARG117, THR190 
and one hydrogen bond with ARG109, ASP192, 
PHE114, and GLN203. Peptide 6 formed slightly 
more hydrogen bonds compared to Peptide 18 and 
Peptide 8, but with different interacting residues, 
namely ARG117, ARG113, ARG115, HIS118, 
ASP140, and GLN203. In the case of Peptide 
15, thirteen hydrogen bonds were observed, one 
for THR10, ARG65, ASN78, ARG108, AR117, 
ARG217, GLU220, and two in GLY6, LYS63, and 
ASP143. With a difference of 0.3 kcal/mol from 
Peptide 15, Peptide 19 formed eight hydrogen 
bonds with ARG113, ARG117, ARG109, GLU201, 
TYR201, and LEU226. Peptide 24 achieved 
a docking score of -8.0 kcal/mol with fourteen 
hydrogen bonds with SER37, ARG113, ARG115, 
ARG117, ASN35, ARG108, ASP111, PHE114, 
ILE189, and GLN203. In addition, different types 
of interactions were observed, such as pi-ion, 
pi-alkyl, pi-sigma, and pi-pi stacked. Docking 
of the native ligand C2E onto the prepared and 
optimized MrkH receptor model produced results 
consistent with the known interactions contributing 
to the stability of the complex in vitro (Schumacher 
& Zeng, 2016). In particular, the docked ligand 
was able to simulate interactions with the following 
residues: ARG108, ARG109, and ARG113.

Different types of interactions between peptide 
atoms and protein residues identify the extent 
of inhibition of the target protein (Martins et al., 
2021). Hydrogen bonding (HB) is considered 
an important of these interactions as it provides 
noticeable protein-ligand stability (Hubbard & 
Kamran Haider, 2010). Moreover, other types of 
interactions, such as pi-alkyl, pi-cation, and pi-
sigma, were also observed. 

Molecular dynamics (MD) simulations
The purpose of applying molecular dynamics 
(MD) simulations is attributed to its main role in 
investigating conformational stability and obtaining 
reliable results about the studied peptides’ 
behavior inside the active site of MrkH protein. 
The best peptides were selected according to 
the obtained results from the molecular docking 
study and inspection of molecular properties. Six 
peptide-receptor complexes were studied using 
MM/PBSA binding energy calculations over 100 
ns MD simulations to predict the peptide’s binding 
behavior to the receptor. The calculated MM/PBSA 
binding energies of the six simulation complexes 
100 ns were summarised in Table 6.

Although MM/PBSA still demonstrated that the 
peptide’s binding affinity is better than the control 
ligand, the peptide ranking is different compared 
to the docking analysis. Previously, the docking 
results suggested that Peptide 18 has the best 

binding affinity followed by Peptide 8, 6, 15, 19, 
and 24. However, in MM/PBSA analysis, Peptide 
18 (-5.4 ± 1.5 kcal/mol) was the third best in overall 
ranking following Peptide 15 (17.7 ± 1.8 kcal/mol) 
and 8 (8.7 ± 1.7 kcal/mol). The changes in ranking 
between docking and MM/PBSA analysis are due 
to the trajectory analysis and the behavior of the 
peptides inside the binding cavity throughout the 
simulation. Therefore, Peptide 18 showed a higher 
instability of binding to the active site compared to 
Peptides 15 and 8.

Root Mean Square Deviation (RMSD), Root 
Mean Square Fluctuation (RMSF), Radius of 
Gyration (Rg), and Solvent-Accessible Surface 
Area (SASA) analyses were performed over 
100 ns MD simulations to obtain a quantitative 
assessment of the overall stability of Peptide 6, 
8, 18, 19, 24 and C2E in complex with the mrkH 
protein. The root means square deviation (RMSD) 
for the six complexes studied was calculated to 
evaluate the conformational change and stability 
of the systems during the 100 ns MD simulation 
periods. Higher values of RMSD indicate relative 
instability, while lower RMSD values are more 
favorable. The RMSD plot for the six simulation 
systems can be seen in Figure 4.

As shown in Figure 4, Peptide 6 exhibited 
the highest stability with an RMSD value of 3.8 Å 
while Peptide 19 exhibited the lowest stability, i.e., 
a higher RMSD value (7.8 Å). The former peptide 
demonstrated better stability compared to the 
control ligand (4.4 Å), Peptide 15 (5.5 Å), 8 (5.8 Å), 
and 18 (5.8 Å). In terms of the binding affinity of 
the peptide to the active site, Peptide 6 performed 
better than the control ligand but not Peptide 
15, 8, and 18 which have more positive values 
in MM/PBSA analysis. The lower RMSD values 
confer the stability of the complex throughout the 
simulation while the more positive value of MM/
PBSA indicates a stable binding of the peptides to 
the MrkH. 

Root-Mean-Square-Fluctuation (RMSF) was 
used to determine the flexibility and fluctuation of 
each MrkH residue and how much each residue 
moved throughout the simulation period. Each 
residue’s flexibility was examined to understand 
better how peptide-binding affects protein flexibility 
during the MD simulation run. Lower values of 
RMSF mean better compactness, stiffness, and 
stability of the receptor. The RMSF values for the 
six complexes studied are shown in Figure 4a. 
Looking at the data in Figure 4b, it is noticeable 
that the RMSF results are compatible with the 
RMSD data. Peptides 19 and 15 showed relatively 
high RMSF values, indicating a high fluctuation of 
amino acid residues during complex formation with 
these inhibitors. It is worth noting that both peptide 
8 and peptide 24 had closed RMSF values, i.e., 
a similar effect on amino acid residue fluctuation.
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Table 6. Calculated the average MM/PBSA binding energies over 100 ns (1000 Snapshots) for the best peptides

Structure ID MM/PBSA 
(kcal/mol)

Control −46.1 ± 1.5
Peptide 6 −17.7 ± 1.8
Peptide 8     8.7 ± 1.7

Peptide 15   17.7 ± 1.8
Peptide 18   −5.4 ± 1.5
Peptide 19 −37.5 ± 2.1
Peptide 24 −16.0 ± 0.3

Fig. 4. Structural and conformational analysis for the best six peptides towards MrkH over 100 ns MD simulation. 
a) Root-mean-square deviation (RMSD). b) Radius of gyration (Rg). c) Solvent-accessible surface area (SASA). c) 
Root-mean-square fluctuation (RMSF).
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The radius of Gyration (Rg) analysis was 
performed over 100 ns MD simulations to interpret 
the compactness of the protein structure in the 
system. Low Rg values indicate conformational 
stability and the degree to which the protein 
structure is densely packed. The Rg data are 
shown in Figure 4d. The behavior of peptide 6 
concerning Rg was constant as in the data from 
SASA. From the beginning of 55 ns to the end of 
the MD simulation, peptide 18 showed very similar 
values to peptide 6. Moreover, apo-protein, C2E, 
and peptide 6 also showed remarkable overlap in 
Rg values from 20 ns to 100 ns.

Solvent-accessible surface area (SASA) is 
used to indicate the surface area of the receptor 
that is accessible to a solvent. Figure 4e shows 
the data from SASA for the six peptides, C2E, 
and the apoprotein. The estimated results show 
that peptide 6 has the lowest values of SASA 
compared to the others. On the other hand, peptide 
19 showed a sharp increase in SASA values from 
50 ns to the end of the MD simulation period. Both 
peptides 15 and 18 showed overlapping SASA 
values throughout the MD simulation period.

The majority of molecular interactions 
discovered during the MD simulations are 
consistent with the docking result. The plots in 
Figure 4 are very important because they show 
that both the peptides and the native ligand 
interact with the amino acids throughout the 
simulation and do not detach from their interaction 
site. However, the fluctuations in the RMSD and 
RMSF values of the peptides show that these 
peptides may be reorienting themselves during 
the simulation. Considering the MD simulation 
and the binding affinity of the peptides against the 
receptor, peptides 6 and 15 are suggested to be 
highly potential MrkH inhibitors compared to the 
rest of the peptides.  

CONCLUSION
This study has shown that antimicrobial peptides 
derived from collagen were successfully predicted 
and analyzed using several ML platforms and in 
silico drug discovery tools. Further simulation of six 
potential antimicrobial cryptides using molecular 
dynamics approaches also demonstrated the 
cryptides-protein complex stability, validated by 
MM-PBSA analysis. All six cryptides are promising 
biological candidates to inhibit K. pneumoniae 
growth and biofilm synthesis. However, the 
cryptides have to be validated by experimental 
studies before they can be developed as potential 
therapeutic agents.
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