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SIMPLER ESTIMATORS FOR k-FLATED POISSON DISTRIBUTION 
(Penganggar-penganggar Mudah bagi Taburan Poisson k-Terinflasi) 

RAZIK RIDZUAN MOHD TAJUDDIN 

 

ABSTRACT 

The point of inflation or deflation for Poisson distribution cannot be defined objectively. 

Therefore, the maximum likelihood function may not be used efficiently to derive an estimator. 

In this paper, two simpler estimators for k-flated Poisson distribution, named as ratio of 

frequency (RFE) and probability estimators (PE) were developed and discussed. The estimators 

are based on the position of ‘flation’, 𝑘 = 0, 1, 2, 3. A comprehensive simulation study was 

conducted to investigate the unbiasedness and the consistency properties of the estimators. The 

simulation studies concluded that the estimators are asymptotically unbiased and consistent 

except for a special case of the RFE, known as the jump RFE, which is only asymptotically 

unbiased but not consistent. Model fittings on two real datasets showed that the PE is a better 

estimator than RFE. 

Keywords: probability estimator; ratio of frequency estimator 

 

ABSTRAK 

Titik inflasi atau deflasi bagi taburan Poisson tidak boleh dikenal pasti secara objektif. Oleh 

yang demikian, fungsi kebolehjadian maksimum mungkin tidak dapat digunakan secara efisien 

untuk menerbitkan rumus bagi penganggar. Dalam artikel ini, dua penganggar mudah bagi 

taburan Poisson k-terinflasi, yang dinamakan sebagai penganggar nisbah kekerapan (RFE) dan 

penganggar kebarangkalian (PE) telah dibangunkan dan dibincangkan. Penganggar-penganggar 

ini adalah berasaskan kedudukan ‘flasi’, 𝑘 = 0, 1, 2, 3. Satu kajian simulasi komprehensif 

dijalankan bagi mengkaji sifat-sifat ketidakpincangan dan konsisten penganggar-penganggar 

ini. Kajian simulasi merumuskan bahawa penganggar-penganggar ini bersifat tidak pincang 

secara asimptot dan konsisten kecuali RFE lompat, satu kes istimewa bagi RFE yang hanya 

bersifat tidak pincang secara asimptot tetapi tidak konsisten. Pemodelan kepada dua data 

sebenar menunjukkan PE sebagai penganggar lebih baik daripada RFE. 

Kata kunci: penganggar kebarangkalian; penganggar nisbah kebarangkalian 

 

1. Introduction 

The term ‘flated’ was first coined to explain either surplus mass (inflation) or shortage mass 

(deflation) at a certain point (Böhning & Ogden 2021). Let 𝑌 be a random variable that follows 

a k-flated Poisson distribution with ‘flating’ parameter 𝜔 and rate parameter 𝜆, denoted as 

𝑌~𝑘𝐼𝑃(𝜔, 𝜆). The probability mass function for 𝑌 is given as 
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The distribution can be either inflated or deflated at 𝑦 = 𝑘 depending on the value of 𝜔. 

Generally, when 𝜔 ∈ (−𝜆𝑘 exp(−𝜆) (𝑘! − 𝜆𝑘 exp(−𝜆))⁄ , 0), the distribution is said to be 

deflated at 𝑘 whereas 𝜔 ∈ (0,1), the distribution is said to be inflated at 𝑘. When 𝜔 = 0, the 
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distribution is neither inflated nor deflated at 𝑘 but reduce to the ordinary Poisson distribution. 

Table 1 below shows the cutoff range for 𝜔 for several values of 𝑘. 

Table 1: The deflation and inflation cutoffs for 𝑘 = 0, 1, 2, 3 

𝑘 Deflation cutoff Inflation cutoff 

0 (−
exp(−𝜆)

1 − exp(−𝜆)
, 0) (0,1) 

1 (−
𝜆 exp(−𝜆)

1 − 𝜆 exp(−𝜆)
, 0) (0,1) 

2 (−
𝜆2 exp(−𝜆)

2 − 𝜆2 exp(−𝜆)
, 0) (0,1) 

3 (−
𝜆3 exp(−𝜆)

6 − 𝜆3 exp(−𝜆)
, 0) (0,1) 

 

Theorem 1. Let 𝑌~𝑘𝐼𝑃(𝜔, 𝜆). The 𝑛𝑡ℎ moment about origin can be written as 𝐸(𝑌𝑛) = 𝑘𝑛𝜔 +
(1 − 𝜔)𝐸(𝑋𝑛) where 𝑋 follows Poisson distribution with parameter 𝜆. 

 

Proof. 

𝐸(𝑌𝑛) = ∑ 𝑦𝑛 𝑃𝑟(𝑌 = 𝑦|𝜔, 𝜆)

∞
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          = 𝑘𝑛𝜔 + (1 − 𝜔)𝐸(𝑋𝑛).  

 

Corollary 1 

The first and second moment about the origin are respectively written as: 

 

 𝐸(𝑌) = 𝑘𝜔 + (1 − 𝜔)𝐸(𝑋) = 𝑘𝜔 + (1 − 𝜔)𝜆, 
 
𝐸(𝑌2) = 𝑘2𝜔 + (1 − 𝜔)𝐸(𝑋2) = 𝑘2𝜔 + (1 − 𝜔)(𝜆 + 𝜆2).        (2) 

 

Theorem 2. Let 𝑌~𝑘𝐼𝑃(𝜔, 𝜆). The variance and the index of dispersion for 𝑌 are respectively 

given as: 

 

 𝑉𝑎𝑟(𝑌) = (1 − 𝜔)[𝜔(𝜆2 + 𝑘2) + 𝜆], 
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𝐷𝑖𝑠𝑝(𝑌) =
(1−𝜔)[𝜔(𝜆2+𝑘2)+𝜆]

𝜔(𝑘−𝜆)+𝜆
.         (3) 

 

Proof. The variance can be obtained by taking 𝑉𝑎𝑟(𝑌) = 𝐸(𝑌2) − [𝐸(𝑌)]2 and the dispersion 

index can be obtained by taking 𝐷𝑖𝑠𝑝(𝑌) = 𝑉𝑎𝑟(𝑌) 𝐸(𝑌)⁄ .  

 

Figure 1 shows the heatmap of the dispersion index for different values of 𝜔 and 𝜆 when 

𝑘 = 0, 1, 2, 3. From Figure 1, the 𝑘𝐼𝑃 distribution can be either underdispersed or overdispersed 

depending on the ‘flating’ positions, ‘flating’ parameter and rate parameter. 

 

 
Figure 1: Heatmap of the dispersion index for various values of 𝜔 and 𝜆 

2. Parameter Estimations 

Usually, we focus on the inflating points and ignore the deflating points. However, the ‘flating’ 

position cannot be decided objectively. Therefore, two simpler estimation techniques which 

directly use the sample data were discussed with respect to different ‘flating’ positions. In this 

study, we only consider ‘flating’ positions from 0 to 3 but the idea can be certainly extended to 

other ‘flating’ positions. The suggested methods can be solved easily as opposed to solving 

maximum likelihood equation to obtain the estimator for 𝜔 and 𝜆. Notice that, the likelihood 

function for a k-inflated Poisson distribution is written as: 
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From one look, we can realize how difficult the derivation for the estimator will be. To avoid 

the tedious process of obtaining the formulae for the estimated parameters, the following 

techniques are presented. 

2.1.  Ratio of frequency estimator (RFE) 

As the name suggests, the estimator for parameters is obtained by taking the ratio of two 

frequencies and equating them to observed frequencies of the data. Three types of RFE named 

backward RFE, forward RFE and jump RFE are discussed. 

2.1.1. Backward RFE 

The backward RFE compares the ratio of two frequencies, i.e., one at the flation point and 

another at the previous point. We can write the ratio, 𝑟1,𝑘 as 
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and compare them with the observed values 𝑛𝑘 𝑛𝑘−1⁄  where 𝑛𝑘 is the number of data when 

𝑌 = 𝑘. 

2.1.2. Forward RFE 

The forward RFE compares the ratio of two frequencies, i.e. one at the flation point and another 

at the next point. We can write the ratio, 𝑟2,𝑘 as 

 

( )

( )

( )

( ) ( )
2, 1

Pr | , 1 ! 1
,

Pr 1| , 1 exp
k k

Y k k k
r

Y k

  

     
+

= + +
= = +

= + − −
      (6) 

 
and compare them with the observed values 𝑛𝑘 𝑛𝑘+1⁄ . 

2.1.3. Jump RFE 

The jump RFE compares the ratio of two frequencies, i.e., one at the previous point of flation 

and another at the next point after flation. We can write the ratio, 𝑟3,𝑘 as 
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and compare them with the observed values 𝑛𝑘+1 𝑛𝑘−1⁄ . 

2.1.4. RFE for second parameter 

Since there are two parameters to be estimated, another equation is required so that the 

parameters values can be estimated. For that, the sample mean is equated with the theoretical 

mean. 

 

( )1 ,y k  = + −           (8) 
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where �̃� and �̃� are the estimated parameters for 𝜔 and 𝜆 respectively. 

2.1.5. RFE for different values of 𝑘 

Recall that the RFEs depend on the the position of flation, 𝑘. The RFEs are tabulated for the 

first four ‘flating’ points (𝑘 = 0, 1, 2, 3). The values of �̃� and �̃� can be obtained by solving the 

two equations in Table 1. 

Table 2: Several estimating equations for the two parameters for backward, previous and jump RFE at different 

‘flating’ positions. 

RFE 𝑘 Equation 1 Equation 2 

Backward 

0 Undefined �̅� = (1 − �̃�)�̃� 

1 
�̃�

(1 − �̃�) exp(−�̃�)
+ �̃� =

𝑛1

𝑛0
 �̅� = �̃� + (1 − �̃�)�̃� 

2 
�̃�

(1 − �̃�)�̃� exp(−�̃�)
+

�̃�

2
=

𝑛2

𝑛1
 �̅� = 2�̃� + (1 − �̃�)�̃� 

3 
2�̃�

(1 − �̃�)�̃�2 exp(−�̃�)
+

�̃�

3
=

𝑛3

𝑛2
 �̅� = 3�̃� + (1 − �̃�)�̃� 

    

Forward 

0 
�̃�

(1 − �̃�)�̃� exp(−�̃�)
+

1

�̃�
=

𝑛0

𝑛1
 �̅� = (1 − �̃�)�̃� 

1 
2�̃�

(1 − �̃�)�̃�2 exp(−�̃�)
+

2

�̃�
=

𝑛1

𝑛2
 �̅� = �̃� + (1 − �̃�)�̃� 

2 
6�̃�

(1 − �̃�)�̃�3 exp(−�̃�)
+

3

�̃�
=

𝑛2

𝑛3
 �̅� = 2�̃� + (1 − �̃�)�̃� 

3 
24�̃�

(1 − �̃�)�̃�4 exp(−�̃�)
+

4

�̃�
=

𝑛3

𝑛4
 �̅� = 3�̃� + (1 − �̃�)�̃� 

    

Jump 

0 Undefined �̅� = (1 − �̃�)�̃� 

1 �̃� = √
2𝑛2

𝑛0
 �̅� = �̃� + (1 − �̃�)�̃� 

2 �̃� = √
6𝑛3

𝑛1
 �̅� = 2�̃� + (1 − �̃�)�̃� 

3 �̃� = √
24𝑛4

𝑛2
 �̅� = 3�̃� + (1 − �̃�)�̃� 

 

2.2.  Probability estimator (PE) 

The PE for parameters 𝜔 and 𝜆 can be obtained by considering two equations. One equation 

equates the sample mean with theoretical mean. Another equation equates the sample 

probability with theoretical probability at ‘flating’ position. Table 2 lists down several examples 

of equations for PE. 
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Table 3: Several estimating equations for the two parameters for backward, previous and jump PE at different 

‘flating’ positions. 

𝑘 Equation 1 Equation 2 

0 
𝑛0

𝑛
= �̃� + (1 − �̃�) exp(−�̃�) �̅� = (1 − �̃�)�̃� 

1 
𝑛1

𝑛
= �̃� + (1 − �̃�)�̃� exp(−�̃�) �̅� = �̃� + (1 − �̃�)�̃� 

2 
𝑛2

𝑛
= �̃� + (1 − �̃�)�̃�2 exp(−�̃�) 2⁄  �̅� = 2�̃� + (1 − �̃�)�̃� 

3 
𝑛3

𝑛
= �̃� + (1 − �̃�)�̃�3 exp(−�̃�) 6⁄  �̅� = 3�̃� + (1 − �̃�)�̃� 

 

3. Simulation Study 

A comprehensive simulation study is conducted to assess the performance of the estimators 

when 𝑘 = 0, 1, 2, 3 in the aspect of unbiasedness and consistency by utilizing the following 

formulae: 

 

 𝑀𝐴𝐷 =
1

𝑀
∑ |𝜃 − �̃�|𝑀

𝑗=1 ,          (9) 

 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝜃 − �̃�)

2𝑀
𝑗=1 ,       (10) 

 

where MAD refers to the mean absolute deviation values, RMSE refers to the root mean squared 

error values and �̃� can be either �̃� or �̃�. For this simulation study, the number of iterations is 

set at 𝑀 = 1000 and sample sizes are 𝑛 = 200 (200) 1400. The parameters are estimated 

using R software (R Core Team 2022) and R package ‘nleqslv’ (Hasselman 2023) to solve the 

nonlinear functions for the estimation. The R Codes of finding the estimators using R Software 

and package ‘nleqslv’ are given in Appendix A. 

The results of the simulation studies are presented in Figure 2 – Figure 5. We fix 𝜔 = 0.1 

and 𝜆 = 3.0 and varies 𝑛 and 𝑘 in the simulation study. Since when 𝑘 = 0, backward RFE and 

the jump RFE are undefined, only the results based on forward RFE and PE are given in Figure 

2. 
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Figure 2: The MAD and RMSE values when 𝑘 = 0 as 𝑛 increases 

 

 
Figure 3: The MAD and RMSE values when 𝑘 = 1 as 𝑛 increases 
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Figure 4: The MAD and RMSE values when 𝑘 = 2 as 𝑛 increases 

  

 
Figure 5: The MAD and RMSE values when 𝑘 = 3 as 𝑛 increases 
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From Figure 2 to Figure 5, it can be observed that the MAD values based on the proposed 

estimators decreases as the sample size increases, indicating that the estimators are 

asymptotically unbiased. Similar observations regarding the RMSE values can be made except 

those from jump RFE. The RMSE values for the jump RFE seemed to be constant around 2.900 

for every iteration, simulation scenario and sample size. Therefore, the backward RFE, forward 

RFE and PE are consistent based on decreasing values of RMSE as the sample size increases. 

For 𝑘 ≥ 1, both forward RFE and PE are found to be equally efficient in terms of its MAD and 

RMSE values, as seen in Figure 3 to Figure 5. From the simulation results, the worst-to-best 

ranking for the proposed estimators based on their respective MAD and RMSE values for 

considered 𝑘 and 𝑛 is 𝐽𝑢𝑚𝑝 𝑅𝐹𝐸 < 𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑅𝐹𝐸 < 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑅𝐹𝐸 < 𝑃𝐸. 

4. Application 

Two datasets have been considered in this study: (a) number of death notice of women (80 years 

of age and over) in the London Times for three consecutive years (Schilling, 1947); (b) number 

Pap tests in the last 6 years (Lin & Tsai, 2013). Figure 6 shows the histogram of both datasets. 

For dataset (a), at first glance, it seems like the data is distributed with inflation at position 1 or 

2. However, the data may be distributed with deflation at position 0 or 3 as well. Since, we 

cannot objectively decide the ‘flating’ positions. Let’s consider the ‘flating’ positions, 𝑘 =
0, 1, 2, 3. For dataset (b), it seems like the data are inflated at 𝑘 = 6. So, for the model fittings, 

we consider 𝑘 = 6 only. 

 

 
Figure 6: The histogram of (a) death notice data and (b) Pap tests 
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4.1.  Model fittings for dataset (a) 

Table 4 shows the estimated parameters for 𝜔 and 𝜆 using RFE and PE methods for dataset (a). 

Referring to sgn(�̂�) in Table 4, when 𝑘 = 0, the forward RFE and RPE showed that the data 

are inflated at 0. When 𝑘 = 1, the forward RFE showed that the data are inflated at 1 but the 

remaining estimator showed that the data are deflated at 1. When 𝑘 = 2, the backward and 

forward RFE showed that the data are inflated at 2 whereas the remaining estimators supported 

that the data are deflated at 2. When 𝑘 = 3, estimators other than jump RFE concluded that the 

data are deflated at 3. 

Table 4: The estimated parameters values based on RFE and PE when 𝑘 = 0, 1, 2, 3 for dataset (a) 

Dataset (a) RFE 
PE 

𝑘 Backward Forward Jump 

0 - 
�̂� = 0.0368 

�̂� = 2.2393 
- 

�̂� = 0.0496 

�̂� = 2.2694 

1 
�̂� = −0.0581 

�̂� = 2.0934 

�̂� = 0.0176 

�̂� = 2.1777 

�̂� = −0.3954 

�̂� = 1.8291 

�̂� = −0.0100 

�̂� = 2.1455 

2 
�̂� = 0.2161 

�̂� = 2.2002 

�̂� = 0.0142 

�̂� = 2.1592 

�̂� = −3.0295 

�̂� = 2.0389 

�̂� = −0.0040 

�̂� = 2.1523 

3 
�̂� = −0.0106 

�̂� = 2.1658 

�̂� = −0.0188 

�̂� = 2.1725 

�̂� = 7.2300 

�̂� = 3.1353 

�̂� = −0.0332 

�̂� = 2.1840 

 

Table 5 summarizes the model fittings using the RFE and PE in the aspect of root mean-

squared error and mean absolute deviation values. The RMSE value using forward RFE is the 

lowest assuming that the data are flated at 0. However, the MAD value using PE is the lowest 

under the same assumption. Therefore, both forward RFE and PE estimator assuming the 

‘flating’ point is at 0, can be accepted. To get to the middle ground between smaller RMSE but 

larger MAD and larger RMSE but smaller MAD, we select the mean of the two values of the 

estimators such that the new estimated parameters become �̂�′ = 0.0432 and �̂�′ = 2.2544, 

which yield an RMSE of 11.1835 and an MAD of 8.2405. The resulting estimator gives the 

smallest RMSE amongst others but second best in MAD values. 

Table 5: The estimated parameters values RMSE (MAD) based on RFE and PE when 𝑘 = 0, 1, 2, 3 for dataset (a) 

𝑘 
RFE 

PE 
Backward Forward Jump 

0 - 
11.2101 

(8.6570) 
- 

11.5068 

(7.8135) 

1 
21.3602 

(15.8381) 

17.6232 

(12.9058) 

97.2134 

(58.4505) 

157.1124 

(109.6007) 

2 
68.8725 

(39.2456) 

18.6524 

(12.7330) 

850.2935 

(479.2769) 

15.8705 

(10.9880) 

3 
16.0501 

(11.7476) 

15.8315 

(11.4318) 

2140.8169 

(1242.7605) 

156.6232 

(109.6000) 

 

4.2. Model fittings for dataset (b) 

Table 6 shows the estimated parameters for 𝜔 and 𝜆 using RFE and PE methods for dataset (b) 

together with their MAD and RMSE values. Referring to sgn(�̂�) in Table 6, �̂� > 0 suggesting 

that the data are inflated at 𝑘 = 6. Based on the MAD and RMSE values, the model fittings 

based on PE provide the best fit amongst other contending estimators. Although the values of 

MAD and RMSE are large, we have to consider the unusual distributions of the number of Pap 
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tests shown in Figure 6 (b). The data refers to the number of Pap tests done in 6 years and the 

inflation shows at 𝑘 = 6. This might be the results of the same women getting one test each 

year and thus, contributing to the spike. If we collect a one-year data, there may be inflation at 

𝑘 = 1 due to these women or 𝑘 = 0 from women who have not taken the test for that particular 

year. One may also try model fitting for 𝑘 = 3 as well as 𝑘 = 12. 

Table 6: The estimated parameters values based on RFE and PE when 𝑘 = 6. 

Dataset (b) 
RFE 

PE 
Backward Forward Jump 

Estimated 

parameters 

�̂� = 0.3654 

�̂� = 3.1688 

�̂� = 0.4659 

�̂� = 2.6358 

�̂� = 0.5704 

�̂� = 1.8177 

�̂� = 0.3832 

�̂� = 3.0870 

𝑀𝐴𝐷 
(𝑅𝑀𝑆𝐸) 

181.9267 

(252.0197) 

188.3575 

(292.2992) 

346.4380 

(575.2208) 

162.5721 

(233.8153) 

 

5. Conclusions 

The ‘flating’ positions of the data cannot be identified usually and easily. It depends on the 

person who are reading the data or viewing the plots related to data. Any changes in the ‘flating’ 

position will result in different form of probability mass functions, which then further 

complicate the finding of the estimator based on the maximum likelihood function. This may 

make the maximum likelihood estimator less desirable due to its complexity in solving. 

To combat this issue, two estimation techniques known as the ratio of frequency estimator 

(RFE) and the probability estimator (PE) were introduced for the ‘flating’ parameter and rate 

parameter. The RFE is further modified based on the types of ratio, named as backward, forward 

and jump. These estimators do rely on the ‘flating’ positions, but they can be developed and 

derived easily. 

From the simulation studies, it is found that the PE is the best estimator, followed by forward 

RFE, backward RFE and jump RFE. The model fittings on the first dataset conclude that PE 

and forward RFE provide the best fit. However, the model fittings of the second dataset showed 

that PE is the only estimator that provides a good fit. 

Despite being easy to solve the equations, it all depends on the selection of the ‘flating’ 

positions. Objectively deciding the ‘flating’ positions is a difficult task and relies on the person 

handling the data. In the case of unclear ‘flating’ positions, it is recommended to consider 

several ‘flating’ positions and look at the model fittings, which was done in Section 4.1 when 

handling data with vague ‘flating’ positions. 
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Appendix A. 

install.packages("nleqslv") 

library(nleqslv) 

 

#Generate data 

myfun1 = function(n,omega,lambda,k){ 

  z = rpois(n,lambda) 

  pos = sample(n,floor(omega*n)) 

  z[pos] = k 
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  z 

} 

 

#Estimate jump RFE 

myfunjump = function(n, omega, lambda, k){ 

  z = myfun1(n, omega, lambda, k) 

  lhat = sqrt(k*(k+1)*length(z[z==k+1])/length(z[z==k-1])) 

  what = uniroot(function(x) k*x+(1-x)*lhat-mean(z), lower = -100, upper = 1)$root 

  c(what, lhat) 

} 

 

#Estimate forward RFE 

myfunforward = function(n, omega, lambda, k){ 

  z = myfun1(n, omega, lambda, k) 

  eqn = function(x){ 

    A = (x[1]*factorial(k+1))/((1-x[1])*x[2]^(k+1)*exp(-x[2]))+(k+1)/x[2]-

length(z[z==k])/length(z[z==k+1]) 

    B = k*x[1]+(1-x[1])*x[2]-mean(z) 

    return(c(A,B)) 

  } 

  nleqslv(c(omega,lambda),eqn)$x 

} 

 

#Estimate backward RFE 

myfunbackward = function(n,omega,lambda,k){ 

  z = myfun1(n, omega, lambda, k) 

  eqn = function(x){ 

    A = (x[1]*factorial(k-1))/((1-x[1])*x[2]^(k-1)*exp(-x[2]))+x[2]/k-

length(z[z==k])/length(z[z==k-1]) 

    B = k*x[1]+(1-x[1])*x[2]-mean(z) 

    return(c(A,B)) 

  } 

  nleqslv(c(omega,lambda),eqn)$x 

} 

 

#Estimate PE 

myfunPE = function(n,omega,lambda,k){ 

  z = myfun1(n, omega, lambda, k) 

  eqn = function(x){ 

    A = x[1]+(1-x[1])*(x[2]^k)*exp(-x[2])/factorial(k)-length(z[z==k])/n 

    B = k*x[1]+(1-x[1])*x[2]-mean(z) 

    return(c(A,B)) 

  } 

  nleqslv(c(omega,lambda),eqn)$x 

} 
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