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 ABSTRACT  

 

One of today's fastest-growing technologies is the Internet of Things (IoT). It is a technology 

that lets billions of smart devices or objects known as "Things" collect different kinds of data 

about themselves and their surroundings utilizing different sensors. For example, it could be 

used to keep an eye on and regulate industrial services, or it could be used to improve corporate 

operations. But the IoT currently faces more security threats than ever before. This review paper 

discusses the many sorts of cybersecurity attacks that may be used against IoT devices. Also, 

K-Nearest Neighbour (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random 

Forest (RF), Naive Bayes (NB), and Artificial Neural Network (ANN) are examples of 

Machine Learning (ML) approaches that can be employed in IDS. The goal of this study is to 

show the results of analyzing various classification algorithms in terms of confusion matrix, 

accuracy, precision, specificity, sensitivity, and f-score to Develop an Intrusion Detection 

System (IDS) model. 

 

Keywords: Dataset; Internet of Things (IoT); Intrusion Detection System (IDS); IoT attacks; 

Machine Learning (ML) 

 

INTRODUCTION 

 

Electrical equipment is linked to a server and data is transferred without the intervention of 

people in the IoT (Chaabouni et al. 2019; Hassija et al. 2019; Khan & Salah 2018; Lu & Da 

Xu 2018; Singh et al. 2020; Stoyanova et al. 2020). Users can remotely manage machines from 

anywhere, making them vulnerable to lots of threats. So, the security of the IoT system is very 

concerned about the increasing number of smart devices today because the devices contain 

private and important user information (Hassija et al. 2019; Khan & Salah 2018; Singh et al. 

2020). In his study presentation in 1999, Kevin Ashton first utilized the term IoT. IoT has been 

employed in various connectivity protocols to connect the person and the virtual world through 

various smart devices and services (Adat & Gupta 2018; Fawzi et al. 2019). Smart home and 

portable products, for instance, provide information about the buyer's position, health details, 

contact details, etc., that must be secure and confidential (Al-Sultan et al. 2019). Because most 
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IoT devices are resource-constrained (i.e., batteries, bandwidth, storage, and calculation), 

extraordinarily configurable and sophisticated protection strategies based on algorithms are not 

available (Ammar et al. 2018; Chernyshev et al. 2017; Vashi et al. 2017). Protecting IoT 

devices from hostile hackers presents some difficulties: 

1. IoT devices must be able to work with a wide range of systems and protocols. They 

also need to meet a wide range of needs and expectations. A security administrator 

will have a lot of difficulty protecting all of these from an attacker (Restuccia et al. 

2018). 

2. One IoT device's security solution may not be suitable for another device. As a result, 

a single security solution will not be able to protect all IoT devices. Different 

companies create, manufacture, and deploy IoT devices. Thus, it is not obvious 

who will be accountable for the security of IoT devices. 

3. IoT devices are small and light, with limited memory and processing capability. 

The majority of security actions taken by manufacturers of IoT devices are built on 

computationally costly algorithms and protocols with significant overhead. As a result, it will 

be challenging to implement these ideas on IoT devices (Restuccia et al. 2018). All this data will 

be transferred wirelessly, which opens the IoT up to a variety of security risks such as 

jamming, message injecting, spoofing, denial of service, and eavesdropping (Chen et al. 2018). 

ML approaches are used in intrusion prevention and detection systems to detect malicious 

traffic. As a kind of AI, it employs algorithms to extract data's meaning and then makes 

predictions about the future using that meaning (Furbush 2018). Healthcare, finance, and retail 

are just a few of the industries where ML can be used. Customer spending habits are predicted, 

medical concerns are predicted, and bank fraud is detected using AI algorithms (Jmj 2018). 

Due to the significant yearly growth in cyberattacks, ML techniques are being combined to 

assist fight the growing dangers of cyberattacks. One of the numerous uses of machine learning 

in the area of cybersecurity is network threat analysis that may be described as assessing 

network threats (Dosal 2018). Incoming and outgoing traffic can be monitored using ML to 

identify possibly suspicious activity (Groopman & Insights 2019). In this context, intrusion 

detection is a well-researched topic. IDS utilize ML to enhance their capacity to operate 

autonomously and raise the alert on a suspected attack (Almseidin et al. 2017). 

Anthi et al. (2019) proposed an innovative and intelligent three-layer IDS architecture. An 

investigation by Nugroho et al. (2020) indicated that employing DL algorithms and Artificial 

Neural Networks (RNN, DNN, and ANN) for intrusion classification yielded the highest 

percentage of success in 2015-2020. Based on the results of the experimental research by Islam 

et al. (2021), it can be stated that Bi-LSTM beats all other DL approaches in this study of 

numerous datasets. Seyfollahi and Ghaffari (2021) provided a comprehensive overview of IoT 

intrusion research. A systematic literature review of IoMT security and privacy challenges, as 

well as how ML technologies are employed to solve them, was published by Hameed et al. 

(2021). Adnan et al. (2021) gave a review of the literature on the issue of IDSs and their 

problems. Si-Ahmed et al. (2022) did a detailed survey on how to protect the IoMT using an 

IDS-based ML system. Eriza and Survadi (2021) listed some IDS directions for IoT attacks. 

As can be seen, in recent years, there have been a lot of reviews and surveys in this field, which 

indicates the importance of this topic. In contrast, the majority of reviews and survey papers 

just compare various works and don't go into detail about the numerous kinds of IoT attacks 

that may be launched. This review paper was produced to be put next to other papers because 

of the importance of this. We believe our priority is to find out which of the many ML methods 

will have the most impact in preventing hacks against the IoT networks. As a result, what 
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makes this review stand out from others is the effort made to gather all the information required 

to comprehend the ideas on a fundamental level. Studying this paper will help the reader better 

understand IoT networks, attack types, machine learning basics, and some popular datasets 

offered for IDSs and IoT IDSs. The following are the paper's main contributions: 

1. The definition, layers, and challenges of IoT are examined. 

2. As part of the IoT, recent and possible attacks are being looked into. 

3. A variety of ML approaches are discussed. 

4. Some popular datasets in IDSs and IoT IDSs are examined. 

5. The classification performance of several ML approaches is summarized. 

The following is a summary of the contents of the paper: The IoT will be introduced in Section 

2. Section 3 will discuss various IoT security attacks, and Section 4 will discuss IoT intrusion 

detection methods and ML algorithms. Section 5 provides an overview of some of the most 

recent IoT intrusion detection datasets. Section 6, on the other hand, contrasts, and analyses 

performance ratings of similar works. Section 7 has conclusion and future insight. 

 

IOT DEFINITION 

 

The IoT refers to the trillions of physical objects connected to the internet and worldwide 

storage and data exchange. Anything from pill to aircraft can now be transformed into a part 

of IoT by the evolution of expensive computer chips and a broad-based wireless network 

(Ameen & Ali 2018; Hassan et al. 2021; Malallah et al. 2021; Zebari et al. 2019). By 

connecting and joining sensors to all these different things, AI is used to otherwise dumb things 

so they can share real-time data without requiring a human. IoT makes our society more 

intelligent and adaptive and fuses the digital and physical worlds (Alaba et al. 2017; Arko et 

al. 2019; Khalid & Ameen 2021; Nižetić et al. 2020). 

 

IOT LAYERS 

 

Perception layer 

The perception layer consists of sensors and actuators (Khattak et al. 2019). Sensors sense 

their surroundings, whereas actuators operate as controllers, taking action depending on the 

data they collect. Node capturing attacks that an attacker grabs or replaces a sensor with a 

malicious node, are possible. The attacker can inject false or malicious code into these nodes 

via an over-the-air firmware or software upgrade, resulting in false data injection or malicious 

code injection attacks (OS & Bhanu 2018). 

 

Network layer 

The sensing layer delivers data to the network layer, which the computational unit processes 

further. Multi-device attacks make this layer highly susceptible (Mrabet et al. 2020). Because 

data is so important, and data breaches are simpler to commit during the data transmission 

stage, IoT devices are vulnerable to Data Transit attacks. 

 

Application layer 

Smart applications including healthcare, smart homes, smart cities, and others are found in the 

application layer. Because this layer interacts with end-users directly, data theft and privacy 

are key problems (Tewari & Gupta 2020). This layer, like the others, is vulnerable to a 

malicious code injection attack. Service interruption attacks are similar to denial of service 

attacks in that they disrupt service. During an attack, certain users are granted the unique 
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privilege of giving legal users access, but if this access is hacked, the entire system can be 

attacked. As a result, access control attacks at the application layer are a serious concern 

(Ahlawat et al. 2020). Figure 1 shows the Three-layer IoT architecture. 

 

 
FIGURE 1. Three-layer IoT architecture 

 

IoT security challenges 

In the 21st century, IoT device security has been a burning problem. On one side, IoT connects 

the whole universe and takes it close. On the other, it opens various windows for attacks of 

various kinds (Tahsien et al. 2020; Yang et al. 2017; Zeebaree et al. 2020). 

IoT apps are applied across an open network for various purposes, making their devices more 

user-friendly (Ali & Ameen 2018). On the one hand, IoT places human life at greater risk due 

to various risks and attacks; on the other hand, IoT makes it simpler and more compliant in 

technical terms (Fawzi et al. 2018; Makhdoom et al., 2018). IoT device security is becoming a 

burning concern because IoT devices are accessed from anywhere without user consent (Aziz & 

Ameen 2021; Fawzi et al. 2018). A wide kind of security system must be deployed to secure 

IoT products. However, IoT device's physical structure limits their computer functionality, 

limiting the implementation of a complex security protocol (Abomhara & Køien 2015; 

Benkhelifa et al. 2018). 

It is necessary to consider the features that characterize protection when defining a stable IoT. 

Security specifications are grouped into three major sections in a standard IoT program: 

confidentiality, integrity, and authentication (Oracevic et al. 2017). 

1. In keeping information hidden from third people, confidentiality means discretion. 

Sensitive sensors demand privacy, for example, with crucial military information. 

The WSN system is one of the most often requested features. If a WSN's reports are 

manipulated, forces may be misled, which might benefit the adversary. In vital social 

and industrial applications, confidentiality is equally critical (Oracevic et al. 2017). 

2. To maintain the integrity of IoT data, the communication receiver must confirm that 

messages received during transmission or delivery have not been altered. The 

integrity of the data confirms that the sent data is not altered or distorted. It is 

particularly significant because even when intruders cannot obtain data, the network 

may not perform effectively if compromising nodes damage the sent data. Indeed, 

data is modified without an intruder if the communication connection is not 

dependable. Integrity control guarantees that accidental and deliberate changes in the 

message are detected (Oracevic et al. 2017). 

3. The authentication process determines if a communication comes from where it is 

claimed or what it is proclaimed to be. The sensor nodes shall determine the 

identification and authenticity of the peer node they are conveying. Authenticity 

ensures an authentic message. MAC is brief information used for message 

authentication and provides the message's integrity and validity (Fawzi et al. 2016; 

Oracevic et al. 2017). 

Application layer 

Network layer 

Perception layer 
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IOT ATTACKS 

 

IoT devices come with a high level of danger. Attackers routinely take advantage of the ease 

and low cost of IoT device cyber-attacks to get valuable data. As a result of most IoT security 

flaws, services might be disrupted, and sensitive data exposed. These security risks may 

potentially be physical security threats, posing a risk to human life. 

It's possible that cybercriminals may utilise security holes in IoT devices to acquire access 

to our personal information. The many types of cybersecurity attacks that may be employed 

against IoT systems will be discussed in this section. 

 

Physical attacks 

The IoT exposes a greater physical access and possible attacks due to its distributed and 

dispersed nature. A node or sensor's data might be altered by an attacker, putting the whole 

sensor network at risk. Attackers must physically access an IoT device before they can launch 

an attack on its hardware components (Rizvi et al. 2018). These attacks may compromise the 

IoT hardware's operation. 

 

Node tampering 

Sensor nodes may be damaged via node tampering, which is a physical attack on an IoT device 

that compromises its security. Access to and modification of sensitive data like shared 

cryptographic keys will be made possible via the physical modification of the node as a whole 

or a portion of it. (Andrea et al. 2015). 

 

Side-channel analysis 

A hacker might employ side-channel analysis to get the AES secret keys used in connected 

streetlights as part of a physical attack on the IoT. The noninvasive attack of acquiring sensitive 

data, including secret keys, by looking at the electromagnetic radiation or power signature 

generated by an IC is known as side-channel analysis (Meneghello et al. 2019). Connected 

streetlights update their firmware using AES encryption. It also protects the security of these 

modifications by limiting their accessibility to those who have the AES secret keys. In the 

event an attacker gains access to these secret keys, the streetlight network will be under their 

control. These attacks can only be carried out if the attacker is close enough to the device. 

The security of medical devices, portable devices, and bank cards can be at risk from these 

attacks. 

 

Radiofrequency jamming 

IoT devices' wireless connections may be disrupted or prevented with the use of a radio 

frequency jammer. It has the ability to break network connections in IoT devices, limiting their 

capacity to interact with the internet (Butun et al. 2019). 

 

NETWORK ATTACKS 

 

The bulk of these attacks take place on IoT networks. In order to conduct these attacks, the 

attacker doesn't need to be near the network. 

 

Traffic Analysis Attack 

It is referred to as a "traffic analysis attack" on a network when an attacker intercepts and 

examines communications in order to obtain information from communication patterns 

(Butun et al. 2019). Personal information and other data may be sniffed by an attacker due 

to IoT devices' wireless properties. Before attempting this kind of attack, an attacker will 
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attempt to gather network information. He can accomplish this by employing sniffing 

software such as packet sniffers, port scanners, and so on. 

An attacker may get useful information from IoT network packets via timing and frequency 

analysis. An IoT device that uses SSH for authentication can be the target of a timing attack 

by an attacker. Because SSH transmits every keystroke message during the interactive 

session, he'll use the time information to make passwords weaker. 

Selective Forwarding 

Network nodes that transmit traffic along the right route might be targeted by this attack, which 

occurs when a network node drops part of the data passing through it. Selective forwarding 

attacks come in a variety of forms. As an example, a malicious node may drop packets from 

a specific node or a set of nodes. A DoS attack may be carried out on one node or a group of 

nodes due to this vulnerability (Leloglu 2016). A "neglect and greed" attack is another type 

of selective forwarding attack. In this case, the infected node misses a number of messages 

at random (Leloglu 2016). 

Sybil Attack 

It is possible for an attacker to appear in several places at once by using the Sybil Node, which 

is a rogue node that imitates other nodes (Husamuddin & Qayyum 2017). A hacker's Sybil 

attack may result in neighboring WSN nodes accepting false information. A Sybil node, for 

example, may vote many times in a WSN voting system, leading to a fake decision 

(Husamuddin & Qayyum 2017). 

 

Sinkhole Attack 

Sinkhole attacks on IoT devices may be used to take control of a network node by stealing 

all traffic from surrounding nodes (Abdul-Ghani et al. 2018). In addition to causing network 

congestion, this attack might also lead to higher node energy consumption. The IoT may also 

be vulnerable to DoS attacks if all packets are rejected instead of being sent to the target. 

 

Botnet Attack 

It is a group of malware-infected devices connected to the internet and monitored by hackers. 

DDoS, credential leaks, illegal access, and data theft attacks are just a few of the botnet tactics 

that cybercriminals employ (Wright & Cache 2015). 

IoT botnets are being built to launch botnet attacks because of the abundance of unprotected 

IoT devices. A botnet attack involves an attacker planting malware in IoT devices to accept 

instructions from command and control servers and then carrying out harmful actions. 

 

Hello-Flood Attack 

There may be an abnormally large volume of worthless or unexpected messages in an attack 

known as the Hello Flood. An attacker may produce a huge volume of network traffic by 

repeatedly broadcasting a meaningless message from a rogue node (Hassan 2019). 

 

Man in the Middle Attack 

Intercepting or altering network traffic may be accomplished by a MITM attack, in which an 

attacker sits between two users (Abdul-Ghani et al., 2018). In order to do malicious acts like 

obtaining credentials or manipulating data, the attacker may pose as a genuine user. 

Because of their inadequate security and lack of mitigation measures, many IoT devices are 

vulnerable to MITM attacks. Attackers may conduct these attacks through IoT by sending 

incorrect instructions to devices and acquiring control. 
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Application Attacks 

Using application attacks, an attacker may get access to the private data of users and utilize 

it for their own purposes. Code injection and buffer overflow are two common application 

vulnerabilities that attackers use to gain unauthorized access to IoT applications. Attackers 

may compromise IoT application security by misconfiguring the code or using an unsecured 

API. Malware such as ransomware, rootkits, trojans, worms, viruses, and other forms of 

malware may potentially target IoT device applications for illegal access. 
 

Code Injection 

This attack takes advantage of software flaws to infiltrate the system with malicious malware. 

It is possible to use code injection attacks to steal important information from users, acquire 

complete control of the device, or disseminate malware (Chen et al. 2018). Code injection 

attacks are most often seen in HTML script injection and Shell injection. In the event that an 

attacker is successful in conducting a code injection attack, IoT devices will be rendered 

unresponsive, putting the privacy of their users at risk. It may also force any IoT gadget to 

shut down completely. 
 

Buffer Overflow 

A software or process in this attack writes additional data to a specified memory block or 

buffers. Buffer overflow attacks overflow buffer boundaries, allowing malicious code to be 

inserted. To store code and data segments, memory layouts or buffers are utilized in a variety 

of applications. These buffers contain boundaries that allow code and data to be collected. 

The buffer may overflow if an attacker delivers a lengthy data sequence to a specific section 

of the buffer. In such a case, it will alter the data in order to run malicious code, such as 

entering a code section and disturbing the program's control flow (Ling et al. 2017). Buffer 

overflow attacks include double-free, format string attacks, integer errors and stack/heap-

based buffer overflows. One of the most common IoT application attacks is the buffer 

overflow (Chen et al. 2018). It could let an attacker become an administrator on an IoT device 

and run any code he wants on it. For example, hackers found a buffer overflow vulnerability 

in the ZyXel NBG6716 wifi router, which enabled them to take control of local networks 

(Ling et al. 2017). 
 

SQL Injection 

Whenever a malicious SQL query is sent to an unsecured SQL database field, a SQL injection 

occurs (Rizvi et al. 2018). SQL injection is a significant application threat that may impact 

a wide range of systems, including IoT. An attacker may get privilege escalations via SQL 

injection, providing him more control over the IoT system. 
 

Session Hijacking 

An attacker may use this technique to get access to the users' sensitive personal information. 

An attacker may mimic a legitimate user by using authentication and session management 

security flaws in a session hijacking attack (Leloglu 2016). 
 

Authentication and Authorization Attacks 

Authentication and authorization methods on many IoT devices are vulnerable, enabling 

attackers to remotely control and acquire administrative access to the device (Hassan 2019). 

Poor authentication and authorization systems often let people log in using weak passwords. 

Using a brute force attack, an attacker may rapidly get these passwords. Furthermore, if an 

attacker grants illegal administrative access to a file or directory, he may use this vulnerability 

to construct other attacks and gain administrator power. As soon as an attacker gets into a smart 
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home building's authentication and authorization systems, he may be able to do things like 

open the door. 
 

Zigbee Attacks 

A wireless network standard called Zigbee is used a lot in the IoT because it's cheap and doesn't 

use a lot of power (Meneghello et al. 2019). IoT devices, from home security routers to systems 

that keep track of patients in hospitals, often have it built in. Zigbee is often considered a 

natural choice for enabling IoT because of its low cost, low power, and simple technology 

(Abdul-Ghani et al. 2018). However, it is subject to a wide range of security concerns. 
 

Eavesdropping Attack 

An eavesdropping attack against Zigbee networks is possible since many of them do not utilize 

encryption. Even though Zigbee employs encryption, attackers may detect the existence of a 

Zigbee network using unencrypted Zigbee frame metadata such as node addresses, PAN IDs, 

and Mac addresses (Abdul-Ghani et al. 2018). An eavesdropping attack may be carried out 

using the KillerBee framework's zbdump utility (Wright & Cache 2015). The username and 

password of a user may be obtained via an eavesdropping attack. 
 

Replay Attack 

In a replay attack, an attacker will resend the frames exactly as they were sent by the original 

user (Abdul-Ghani et al. 2018). The content of replayed data, as well as the protocol used to 

send it, have a significant impact on the outcome of a replay attack. An attacker might, for 

example, collect data from a smart bulb's traffic. He can control the smart bulb's on/off the 

event by replaying these packets. Many ZigBee stacks are susceptible to replay attacks 

because they do not encrypt communication. An attacker might utilise the KillerBee zbreplay 

tool to execute replay attacks on Zigbee-enabled IoT devices (Wright & Cache 2015). 
 

Packet Forging Attacks 

Hackers inject packets into the Zigbee network to intercept or interrupt packets, which is 

known as packet forgery (Abdul-Ghani et al. 2018). These forge packets may seem to be 

normal. As a result, detecting malicious behavior as a result of packet forging attacks would 

be challenging. 
 

Z-Wave Attacks 

IoT devices utilize the Z-Wave protocol, which is a widely utilized wireless home automation 

protocol. Z-Wave wireless chipsets are embedded in millions of IoT devices, including 

heating systems, home alarms, lights, and door locks. It allows smart IoT devices to 

communicate, exchange data and instructions (Wright & Cache 2015). Several security 

exploits are possible against Z-Wave. 
 

Z-Wave Downgrade Attack 

The S2 Z-wave security pairing protection method is supported by Z-wave. An attacker, on 

the other hand, may degrade the higher S2 security level to the lower S0 security standard. 

Because of this, an attacker may be able to acquire an encryption key, making the device 

vulnerable to attack (Wright & Cache 2015). 

 

As a result of this vulnerability, two connected smart devices may feel that one of them does 

not meet the higher S2 security standard. As a result, both may be forced to use the old S0 

security standard. It is possible for a hacker to target IoT devices using the default encryption 

key for previous versions of S0 security, which is "0000000000000000" (Wright & Cache 

2015). 
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Z-Wave Injection Attack 

Integrity protection and basic encryption are missing from many Z-wave devices. An attacker 

may use this flaw to replay captured traffic or inject arbitrary packet content to manipulate 

Z- Wave nodes. (Wright & Cache 2015). 

 

Z-Wave MITM Attack 

It is possible for an attacker to get access to Z-Wave communications via an MITM attack. 

Numerous Z-Wave devices make no attempt to authenticate the controller's identity. Because 

any Z-Wave controller that supports the CLASS SECURITY command class may be used 

to intercept the integration process with a target device, an attacker can do so (Wright & 

Cache 2015). Victims might be persuaded to join a malicious network by using this. Table 1 

shows the different kinds of cyber security attacks performed against IoT devices. 

 

TABLE 1. Various cyber-attacks against IoT devices (Islam & Aktheruzzaman 2020) 
 

Classification Security Attacks Security Impacts 

Physical 

Attacks 

Node tempering, Side-channel 

Analysis, Radiofrequency jamming 

An IoT device might be physically 

damaged as well as its data corrupted 

by hackers utilizing these techniques. 

Network 

Attacks 

Traffic analysis, Selective 

forwarding, Sybil, Sinkhole, Botnet, 

Hello-flood, MITM 

By using these vulnerabilities, hackers 

will be able to gain remote control of 

IoT devices and send them incorrect 

instructions. 

Application 

Attacks 

Code injection, Buffer overflow, SQL 

injection, Session Hijacking, 

Authentication and Authorization 

As long as hackers can get into the IoT 

application layer, they will be able to 

get their hands on sensitive data. 

Zigbee 

Attacks 

Eavesdropping, Replay, Packet 

forging 

In the process of these attacks, 

attackers will be able to gather 

sensitive data as well as Zigbee traffic. 

Z-Wave 

Attacks 

Downgrade, Injection, MITM Through these attacks, attackers will be 

able to compromise the security of Z-

Wave devices. 

 

INTRUSION DETECTION SYSTEM 

 

Monitoring of a network for potentially harmful traffic is made possible with the help of an 

IDS. Two different kinds of IDS may be used to implement an IDS. Signature-based detection 

is one of them, while anomaly-based detection is another. To detect whether incoming traffic 

is malicious, signature-based IDSs compare it to a database of previously identified attack 

signatures. It implies that an attack may be identified simply by looking up the signature in 

the database. Network traffic is analyzed by an anomaly-based IDS in order to look for 

unusual behavior within the normal flow of data. 

Signature-based IDS has a major flaw in that it is always susceptible to new attacks or a hacker 

changing the attack to avoid being identified by the signature database. IDS based on 

anomalies may be trained to detect either normal or attack data, making them a better fit for 

ML. The integration of ML and IDS, however, does not come without its drawbacks. 

Sommer and Paxson (2010) found a number of issues in their research. One significant issue 

is that models may generate false positives, making the IDS useless since typical data causes 

it to alarm the system. Despite the study's age, it remains a critical concern when ML and 
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IDS are combined. So, it's critical to find models that generate the fewest false positives 

(Bhavani & Mangla 2022; Churcher et al. 2021; Otoum & Nayak 2021). 

 

Intrusion detection using ML 

It is necessary to keep in mind that ML is a branch of AI where a dataset is fed into an algorithm 

or, here, a model, which is used to find patterns and generate predictions based on the present 

data (Aminanto & Aminanto 2022). Only a little amount of study has been done on IDS 

utilizing ML on IoT networks. As a result, research recently utilized the DARPA ML datasets 

to evaluate models such as MLP, RF, NB, and SVM (Foley et al. 2020). RF was shown to 

be one of the best models for accuracy, receiver operating characteristic curve, mean absolute 

percentage error, and root means squared error. It's important to note, however, this research 

has two significant flaws: This study used datasets from DARPA that were almost two decades 

old when it was published. The datasets did not include any multi-class testing, which is another 

issue. 

The Bot-IoT dataset was also utilized by Alsamiri and Alsubhi (2019), which included NB, 

MLP, adaptive boosting, RF, ID3, quadratic discriminant analysis, and KNN models. The 

study produced excellent accuracy, precision, sensitivity, time, and F1 score findings. This 

study made use of a current dataset and a range of ML algorithms. However, no multi-class 

testing was conducted in this research for any of the models. 

The authors of Hasan et al. (2019) utilized various ML techniques for multi-class classifying. 

This study used a dataset produced by the researchers but not accessible to the general public 

to evaluate techniques such as ANN, RF, and DT. The research found that RF was a suitable 

classifier for multi-class classifying. This study discovered that high-quality results may be 

obtained using multi-class classifications. Additional algorithm testing may assist to improve 

the study findings. 

Anthi et al. (2019) proposed an innovative and intelligent three-layer IDS architecture that 

can identify and differentiate between IoT devices in a network, detect malicious or benign 

network activity, and determine which attack was delivered on which connected device 

automatically. An investigation by Nugroho et al. (2020) indicated that employing DL 

algorithms and RNN, DNN, and ANN for intrusion classification yielded the highest 

percentage of success in 2015- 2020. 

Based on the results of the experimental research by Islam et al. (2021), it can be stated that 

Bi-LSTM beats all other DL approaches in this study of numerous datasets. However, because 

of the huge data and other unforeseen circumstances, Bi-LSTM may not perform as expected. 

Seyfollahi and Ghaffari (2021) provided a comprehensive overview of IoT intrusion 

research. They looked at IoT IDSs and techniques that might be used in IoT IDSs from 2009 

to 2021. These publications were classified using a categorization based on the following 

characteristics: authentication technique, IDS displacement, protection risk, identification 

method, and IDS architectonics. A look at the designs of IoT IDSs has led researchers to 

believe that they are still in the beginning stages. 

A systematic literature review of IoMT security and privacy challenges, as well as how ML 

technologies are employed to solve them, was published by Hameed et al. (2021). By 

reviewing the research's content, such as methodologies, good features, limits, tools, and 

datasets, the outcomes of this study demonstrated that ML approaches are useful in tackling 

IoMT security challenges with promising results. 
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Adnan et al. (2021) gave a review of the literature on the issue of IDSs and their problems. 

The paper focused on the use of ML for IoT IDS. They looked at three major ML issues 

when dealing with IoT IDSs: evolving and concept drift, high dimensionality, and 

computational complexity. 

Si-Ahmed et al. (2022) did a comprehensive survey on how to protect the IoMT using an IDS- 

based ML system. They introduced the general IoMT architecture. Then they listed the needs 

as well as potential risks to IoMT security. They then looked into ML-based approaches for 

IoMT protection and divided them into three categories: data collection, transmission, and 

storage, as well as the benefits, drawbacks, and datasets utilized. Finally, they discuss the 

many challenges and drawbacks of employing ML in these various areas. That study is meant 

to show that ML can protect complex systems like IoMT, as well as show that it can meet 

IoMT's unique rules. 

Eriza and Survadi (2021) listed the following IDS directions for IoT attacks: A: To decrease 

the complexity, the relevance degree of each feature in the dataset may be evaluated. B: Any 

feature extraction approach may assist in obtaining a more accurate representation of the 

features. C: Particularly for IoT applications, lightweight is always desired. 

A dearth of datasets and real hardware means that little research has been done on intrusion 

detection in IoT networks. All datasets use simulated IoT devices operating on standard PCs. 

Research on multi-class classification is similarly lacking, perhaps because a particular 

multi- class dataset doesn't exist. Data from all available datasets must be combined with 

proper labeling for each class before multi-class testing can be performed. ML tasks may be 

performed by a variety of models, each with its own set of mathematical equations that drive 

the data analysis (Kalnoor & Gowri 2022; Kumar et al. 2022; Kumar & Akthar 2022). We'll 

go through KNN, SVM, DT, RF, NB, and ANN, among other ML algorithms, in the following 

subsections. 
 

K-Nearest Neighbor 

As one of the most basic ML models, KNN seems to be a supervised learning model (Ali et 

al. 2019). KNN is lazy since it does not need any training, but it does use the training data 

when generating predictions to classify the data (Ali et al. 2019). KNN utilizes the Value of 

k, which can be updated to any number, and is used to find the data points that are the closest 

to each other. It is predicated on the notion that data points with similar characteristics would 

group (Harrison 2019). KNN is a good model for detecting intrusions, as shown by many 

studies. KNN's ability to discriminate between attack and non-attack data was examined by 

Liao and Vemuri (2002). This study found that KNN was an efficient attack data detection 

model with a low rate of false-positive rate. Furthermore, KNN's effectiveness was recently 

examined in Nikhitha and Jabbar (2019) and came to the same conclusion. The research found 

that KNN outperformed SVM and DT as an effective model. 
 

Support Vector Machine 

Using a hyperplane, the supervised learning approach SVM separates training data from 

future prediction classification. Hyperplanes are used to divide a dataset into two classes. Data 

points are classified according to these decision boundaries. SVM has been shown to be an 

effective model for detecting intrusions. In Yao et al. (2006) study, an improved SVM model 

was built for intrusion detection. The study was successful in developing the model, but it 

only proved to be a small improvement above conventional SVM, showing that the model 

can properly classify attack data without any enhancements or boosting. Other recent research 

evaluated the abilities of SVM and ANN to classify attack data (Cahyo et al. 2016). SVM 
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divides data using a hyperplane, which may be defined as follows: 

 

𝑎𝑥 + 𝑏 = 0 (1) 

 

where 𝑎 is the vector of the same dimensions as the input feature vector 𝑥 and 𝑏 is the bias. 

In this case, 𝑎𝑥 can be written as 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 where 𝑛 is the number of 

dimensions of the feature vector 𝑥. The following expression is used when making 

predictions: 

 

𝑦 = 𝑠𝑖𝑔𝑛(𝑎𝑥 − 𝑏) (2) 

 

where 𝑠𝑖𝑔𝑛 is a function that returns either +1 or −1 depending on whether the input is a 

positive number or a negative number. This value is used to define the prediction of what Class 

the feature vector belongs to. 𝑥𝑖 is the feature vector and 𝑖 and 𝑦𝑖 is the label that can either 

be +1 or −1 and can be written as the follows: 

 

𝑎𝑥𝑖  −  𝑏 ≥  +1 𝑖𝑓 𝑦𝑖  = +1 (3) 

 

𝑎𝑥𝑖  −  𝑏 ≤  −1 𝑖𝑓 𝑦𝑖  =  −1 (4) 

 

There are mathematical functions used in SVMs, and these mathematical functions are 

referred to as kernels. The kernel gives data as input and converts it into the format needed 

for processing. RBF, Gaussian kernel, sigmoid, polynomial, nonlinear, Linear, and other 

kernels may be used. 

Decision Tree 

DTs have supervised learning algorithms that aid in the creation of a visual model 

representation. When creating a DT, you'll use a hierarchical model that looks like a network 

diagram with numerous interconnected nodes. As you can see from the tree structure, these 

nodes represent the attributes of the dataset that were tested. There is a link between these 

branches and another node or classification (Sharma & Kumar, 2016). The prediction data is 

processed via the nodes until it can be classified, and the training data is utilized to build the 

tree. Based on the study, DT is a good model for intrusion detection. DT was compared to 

many other models, like NB and KNN, in Stampar and Fertalj (2015) study. DT and NB were 

shown to be superior to ANNs, which dominated the IDS research. An IDS for connected 

cars in smart cities was developed by Aloqaily et al. (2019) research. The DT model was 

found to be the most accurate and had the lowest false-positive rate in this study. As 

previously stated, DT uses the training data to construct a hierarchical model that generates 

nodes that act as predictions tests. Selecting the root node as well as the other nodes that 

comprise the DT are necessary steps in creating the DT. So, with entropy being utilized in 

this case, there are a variety of options. Entropy measures the probability that a data point 

chosen at random will be incorrectly classified, and it is defined as follows: 

 

𝐸 =  ∑ −𝑃𝑖  𝑙𝑜𝑔2(𝑃𝑖 )

𝐶

𝑖=1

 

(5) 

 

where 𝑃𝑖 is the probability of the data being classified to a given Class of 𝑖 and 𝐶 is the class's 

number. For the root node, the property with the lowest entropy is used. 
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Random Forest 

In comparison to the DT model, the supervised learning method RF seems to be more efficient. 

Two fundamental ideas are responsible for the model's randomness. For model training, data 

is randomly distributed throughout the trees, thus some trees use the same data many times. 

The first concept says this. Model variance should be reduced to reduce the difference between 

predicted and actual results (Koehrsen 2018). When dividing nodes in trees, the second 

concept involves just utilizing a limited subset of the features (Dubey 2018). Overfitting 

happens when a model overfits itself by using training data to enhance its predictions. When 

making predictions using RF, the total data Class is calculated by averaging the predictions 

of the tree (Ali et al. 2019). Because several trees with a variety of training data and various 

feature selections are utilized for predictions rather than depending on one tree to classify, 

RF seems to enhance the DT. When generating predictions, it provides for a more balanced 

data analysis. The RF model works well for detecting intrusions. To this aim, Farnaaz and 

Jabbar (2016) compared RF's intrusion detection performance to that of other frameworks. 

They found that the RF model surpassed all others in terms of accuracy, precision, sensitivity, 

and F1 score. 
 

Naive Bayes 

NB is a probabilistic algorithm that calculates the probability of each feature vector and its 

outcome. When calculating the event probability occurring based on previous occurrences, 

the posterior probability method is employed. The following is a definition: 

 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

(6) 

 

where 𝑃(𝐴|𝐵) is the posterior probability, 𝑃(𝐴) is known as the prior probability, 𝑃(𝐵) is 

the marginal likelihood (evidence), and 𝑃(𝐵|𝐴) is referred to as the probability. The 

following formula may be applied to datasets: 

 

𝑃(𝑦|𝑥) =  
𝑃(𝑥|𝑦)𝑃(𝑦)

𝑃(𝑥)
 

(7) 

 

where 𝑦 is the variable of Class and 𝑥 is the feature vector of size 𝑛 shown as the following: 

 

𝑥 =  (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) (8) 

 

ANN 

An ANN, an ML model based on the way the human brain functions and is informed by the 

human brain, can be employed to conduct supervised learning. Neurons or nodes are used to 

represent the layers of an ANN (Saritas & Yasar 2019). In an ANN, there are three layers: the 

input, the hidden, and the output layer. The input layer transfers any new information it 

receives to the hidden layer for further processing as soon as it is available. The results are 

sent to the output layer via the hidden layer. The output layer is responsible for displaying 

the ANN's results once they have been calculated (Karn 2016). During supervised learning, 

the network receives the required inputs and outputs to train. Weights are given to the 

connections between the network's nodes. Errors in the networks are propagated back to the 

nodes and new weights are applied as a result. This procedure is continued until the error is 

reduced to a minimum, at which point the test data may be sent into the network (Maind & 

Wankar 2014). The following is a description of how to train an ANN: 
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The initial stage in training the ANN is to multiply the input values 𝑥𝑖 by the weights 𝑤𝑖 and 

then sum the values as follows: 

 

𝑥𝑖 . 𝑤𝑖   =  (𝑥1. 𝑤1)  +  (𝑥2. 𝑤2)  + ⋯ +  (𝑥𝑛. 𝑤𝑛) (9) 

 

The second step includes adding the summed values to the bias (𝑏) of the hidden layer node 

as shown as the following: 

 

𝑧 =  𝑥𝑖 . 𝑤𝑖  +  𝑏 (10) 

 

The third step is to pass the 𝑧 value through an activation function such as ReLU and Softmax. 

ReLU (𝑅(𝑧)) can be determined as follows: 

 

𝑦 =  𝑅(𝑧)  =  𝑚𝑎𝑥(0, 𝑧) (11) 

 

where 𝑧 is the input to a neuron. When 𝑧 < 0, the function will output 0, and, when 𝑧 ≥ 0, the 

output is simply the input. Softmax can be determined as follows: 

 

𝑦 =  𝑠(𝑧)𝑖 =  
𝑒𝑍𝑖

∑ 𝑒𝑍𝑗𝑛
𝑗=1

 
(12) 

 

where 𝑒 is the natural logarithm base, 𝑧 is a vector of the inputs, and 𝑖 and 𝑗 sequentially 

indexes the input and output units. 

 

The loss must be calculated during the ANN's training in order for the network to be able to 

assess its performance and make relevant changes. The next step is to compute the loss and 

then adjust the weights and biases in order to reduce the loss to the bare minimum. Gradients 

may be used to see how the cost function (𝐶) varies in proportion to weights 𝑤𝑖 (This is an 

estimate of a neural network's success based on the training data and predicted output). The 

𝐶 gradient for the weights was computed using the chain rule as follows: 
 

𝜕𝐶

𝜕𝑤𝑖
=

𝜕𝐶

𝜕ŷ
×

𝜕ŷ

𝜕𝑧
×

𝜕𝑧

𝜕𝑤𝑖
 

(13) 

 

where 
𝜕𝐶

𝜕ŷ
 is the gradient of the cost function, 

𝜕ŷ

𝜕𝑧
 is the gradient of the predicted value, and 

𝜕𝑧

𝜕𝑤𝑖
 is the gradient of 𝑧 in regard to 𝑤𝑖.  

 

Attacks on IoT are best detected using an ANN, which has been used many times in the past. 

Anitha and Arockiam (2019) recently developed ANN-based models for identifying IoT-

based attacks. When tested, the model performed well and may now be used to detect 

intrusions in IoT networks. Shenfield et al. (2018) demonstrate how to build ANNs for 

intrusion detection purposes. According to the findings of this study, the model showed an 

extremely low false- positive rate and near-perfect accuracy, resulting in outstanding 

outcomes. 
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INTRUSION DETECTION FOR IOT 
 

While IDS technology has advanced significantly for traditional networks, existing solutions 

are insufficient for IoT devices. First of all, it is crucial to consider the processing and storage 

capabilities of network nodes that host IDS agents. System administrators in traditional 

networks generally place IDS agents on more powerful nodes. Nodes in IoT networks often 

have limited resources. As a result, it is more challenging to locate nodes in IoT systems that 

can host IDS agents. The network's structure is the second distinguishing feature. End devices 

are directly linked to specific nodes (e.g., wireless access points, switches, and routers) in 

traditional networks, which are responsible for forwarding packets to the destination. 

Multihop networks are typical in the IoT. Then, regular nodes can both forward packets and 

act as end devices at the same time. For example, sensors that can communicate over short 

distances are put on light poles in IoT-based street lighting systems (Shahzad et al. 2016). The 

data acquired by a sensor is then sent along a route of sensors installed on various light poles 

until it reaches an Internet gateway. IDSs have unique issues when dealing with this sort of 

architecture. The last feature is connected to certain network protocols. IEEE 802.15.4, 

6LoWPAN, RPL, and CoAP are some of the protocols used in IoT networks that are not used 

in traditional networks. When implementing IDS, new requirements and vulnerabilities 

resulting from various protocols must be taken into consideration (Zarpelão et al. 2017). 

Except for the differences already mentioned, IDSs in common networks and IDSs in IoTs are 

the same. 

 

MOST WELL-KNOWN DATASETS 

 

There are several datasets offered for IDSs and IoT IDSs. This section talks about some 

popular datasets offered for IDSs and IoT IDSs because it's impossible to explain each one 

here. 

 

KDD99 

Since 1999, the KDD99 dataset has been the most widely used for detecting attacks based 

on data from the DARPA IDS assessment in 1998. There are 41 features in this dataset, and it 

may be classified as either a normal or a specific attack. Attacks include DoS, U2R, R2L, 

and probing attacks (Murali & Jamalipour, 2019). 

 

NSL-KDD 

The NSL-KDD dataset, which many people use as a benchmark, was made better from the 

main KDD'99 dataset by removing 78% and 75% of the train and test data, respectively 

(Dhanabal & Shantharajah, 2015). The dataset includes about 42 features (1 dependent, 41 

independent) and a separate train and test set, designated as KDDTrain+ and KDDTest+, 

respectively, with total records of 125,973 and 22,544. In addition, there are 39 attacks divided 

into four classifications: DoS, Prob, U2R, and R2L (Tavallaee et al., 2009). 

 

KYOTO 

This dataset has 24 statistical features, 14 of which are standard and 10 of which are new. Using 

honeypot systems established at Kyoto University, the first 14 standard features were 

retrieved based on the KDD Cup 99 dataset. Song et al. (2011) have also added 10 more 

features, which will make it easier for them to study what is happening on the network. 
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IOT DEVICE NETWORK LOGS 

Kaggle (Kaggle, 2020) is used to find IoT Device Network Logs, which are then preprocessed 

on IoT devices according to network based IDSs. The dataset contains 477,426 records with 

14 different features that are divided into 5 classifications: Normal, Wrong Setup, DDoS, Data 

Type Probing, Scan, and MITM. 

 
Distributed Smart Space Orchestration System 

Pahl and Aubet (2018) provided the DS2OS, a publicly available open-source synthetic 

dataset gathered via Kaggle. They created the dataset by collecting application layer traffic 

traces for 24 hours from 4 distinct IoT sites with a variety of services: smartphones, smart 

doors, thermostats, batteries, washing machines, movement sensors, thermometers, and light 

controllers. The dataset includes 357,952 records, 13 features, and 8 non-identical 

classifications: DoS, Data type Probing, Malicious Control, Malicious Operation, Scan, 

Spying, Wrong Setup, and Normal. 

 
IoT Intrusion Dataset 2020 

The fifth dataset is the IoTID20, which was developed by Ullah and Mahmoud (2020a) and 

is based on Kang et al. (2019). A total of 625,783 records are contained within the IoTID20 

dataset. 83 network features and 3 label features are included in the dataset. The total number 

of records is classified as follows: Mirai, Scan, DoS, Normal, and MITM. The following 7 

subclasses are created from these classes: Mirai Brute force, Mirai HTTP Flooding, Mirai 

UDP Flooding, Scan Host Port, Scan Port OS, Syn Flooding, and ARP Spoofing. 

 
IoT Botnet Dataset 2020 

IoT Botnet Dataset 2020 was created utilizing a network traffic flow analysis tool in order to 

enhance and expand the amount of flow as well as network features based on a complete IoT 

network (Ullah & Mahmoud 2020b). There are 46 network features, 2 label features, and a 

few flow features in the original one. On the other hand, the developed one includes 83 network 

features, including 3 labeling features: ‘Label’, ‘Cat’, and ‘Sub_cat’. It has 1,940,389 records 

(10% of the whole dataset) and is classified into 2 labels: normal and anomalous, including 

5 classes: DoS, DDOS, Reconnaissance, Normal, and Theft, that is further divided into 11 

subclasses: Normal, DDoS-HTTP, DDoS-TCP, DDoS-UDP, DoS-HTTP, DoS-TCP, DoS- 

TCP, OS-Fingerprint, Service-Scan, Keylogging, and Data-Exfiltration (Islam et al. 2021). 
 

ML CLASSIFIERS' PERFORMANCE 

 

With the advancement of technology and the introduction of new kinds of malware, hackers 

are getting more complex and deadly, rendering conventional attack protection techniques 

ineffective. Because of this, securing an IoT system with minimal resources becomes more 

challenging. ML techniques are one of the most frequently utilized methods for detecting 

these attacks. Several ML techniques have been shown to be very useful in preventing 

security and privacy attacks. Table 2 summarizes the performance of different ML methods. 

RF, DT, NB, KNN, SVM, LDA, and others are examples of prominent ML methods. TPR 

and FPR are the true positive and false-positive rates, respectively, in Table 2. 
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TABLE 2. Malware, Intrusions, and Other Attacks Performance Comparison Using ML 

Algorithms 
 

 
References 

Feature 

Selection 

Techniques 

 
Algorithm 

 
Dataset 

 
Results 

Karmous et al. 

(2022) 
- 

 
CART 

Light Motion F1 score: 0.93971939 

Thermostat F1 score: 1.000000 

Weather F1 score: 0.999912 

 
KNN 

Light Motion F1 score: 0.93793367 

Thermostat F1 score: 0.99997085 

Weather F1 score: 0.9990051 

 
RF 

Light Motion F1 score: 0.94209184 

Thermostat F1 score: 1.000000 

Weather F1 score: 1.000000 

Saheed et al. 

(2022) 
PCA 

 
XgBoost 

UNSW-NB15 

Accuracy: 99.99 

Precision: 1.00 

F1 score: 1.00 

 
CatBoost 

Accuracy: 99.99 

Precision: 1.00 

F1 score: 99.99 

 
KNN 

Accuracy: 99.98 

Precision: 1.00 

F1 score: 99.99 

 
SVM 

Accuracy: 99.98 

Precision: 1.00 

F1 score: 99.99 

 
QDA 

Accuracy: 99.97 

Precision: 99.99 

F1 score: 99.98 

 
NB 

Accuracy: 97.14 

Precision: 96.72 

F1 score: 97.94 

 

 

 

 

 

 

 

 

 
Manhas and 

Kotwal (2021) 

 

 

 

 

 

 

 

 

 

 
- 

 
KNN 

 

 

 

 

 

 

 

 

 

 
KDD’99 

Accuracy: 92.78 

Precision: 0.990684 

Recall: 82.05 

F1 score: 0.897615 

 
SVM 

Accuracy: 92.59 

Precision: 0.989431 

Recall: 81.65 

F1 score: 0.894688 

 
MLP 

Accuracy: 92.46 

Precision: 0.991393 

Recall: 81.14 

F1 score: 0.892455 

 
DT 

Accuracy: 95.09 

Precision: 0.964311 

Recall: 90.64 

F1 score: 0.934463 

 
NB 

Accuracy: 91.71 

Precision: 0.992839 
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Recall: 79.06 

F1 score: 0.880299 

 
Abdelmoumin 

et al. (2021) 

 

 
- 

 
SVM-PCA- 

NN (AUC) 

 
IoT Botnet 

Accuracy: 93.4 

Precision: 93.4 

Recall: 1 

F1 score: 95.6 

IoT Fridge 

Accuracy: 85.2 

Precision: 1 

Recall: 0 

F1 score: 0 

 

 

 
SVM-PCA- 

NN (F1 Score) 

 
IoT Botnet 

Accuracy: 93.4 

Precision: 93.4 

Recall: 1 

F1 score: 95.6 

 
IoT Fridge 

Accuracy: 85.2 

Precision: 1 

Recall: 0 

F1 score: 0 

 

 
SVM-PCA- 

NN 

(Accuracy) 

 
IoT Botnet 

Accuracy: 6.5 

Precision: 0 

Recall: 1 

F1 score: 00 

 
IoT Fridge 

Accuracy: 85.2 

Precision: 1 

Recall: 0 

F1 score: 0 

Liu et al. 

(2021) 

BPSO SVM NSL-KDD DoS attack DR: 82.9 

DoS attack FAR: 1.18 

Saba et al. 

(2021) 
 

GA 

DT  
NSL-KDD 

Accuracy: 99.5 

SVM Accuracy: 99.2 

Ensemble Accuracy: 99.8 

Banadaki et al. 

(2021) 
 

- 

 
XGBoost 

 
CICIDS2017 

Accuracy: 99.6 

Precision: 98.7 

Recall: 98.4 

F1 score: 97.9 

 

 

 

 

 

 

 
Ahmad et al. 

(2021) 

 

 

 

 

 

 

 
- 

 

 
RF 

 

 

 

 

 

 

 
UNSW-NB15 

Binary Accuracy: 98.67 

Multiclass Accuracy: 97.37 

Flow features Accuracy: 96.96 

Transport features Accuracy: 91.40 

Top features Accuracy: 97.54 

 

 
SVM 

Binary Accuracy: 97.69 

Multiclass Accuracy: 95.67 

Flow features Accuracy: 89.78 

Transport features Accuracy: 82.96 

Top features Accuracy: 89.93 

 

 
ANN 

Binary Accuracy: 94.78 

Multiclass Accuracy: 91.67 

Flow features Accuracy: 86.37 

Transport features Accuracy: 81.63 

Top features Accuracy: 87.68 
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Taghavinejad et 

al. (2020) 
CART HDT NSL-KDD 

Accuracy: 83.1485 

Precision: 97.2193 

Recall: 72.4694 

F1 score: 83.0394 

Kumar et al. 

(2019) 
 
- 

 
Improved NB 

Collected from the 

Google Play Store 

and Chinese App 

store (6192 

benign, 5560 

malware apps) 

TPR: 98.2 

FPR: 98.2 

Accuracy: 98 

 
NB 

TPR: 80.5 

FPR: 80.7 

Accuracy: 90.5 

 
SVM 

TPR: 95.2 

FPR: 95.2 

Accuracy: 95 

 
KNN 

TPR: 75.8 

FPR: 87.5 

Accuracy: 92 

 

 

 

 

 

 

 
Lei et al. 

(2019) 

 

 

 

 

 

 

 
 

- 

 

 

 

 

 

 

 
 

ANN 

In 2014, 

PlayDrone 

provided 10956 

benign samples 

(Viennot et al., 

2014), Play 

Store provided 

4000 new apps 

in 2018 (Google 

Play Store, 

2019), and 

VirusShare 

provided 28848 

harmful samples 

(VirusShare, 

2019). 

For 2014 and a 

benign dataset 

Precision: 99.1 

Recall 99. 2 

F1 score: 99.8 

 

 

 
For 2018 and a 

benign dataset 

Precision: 92.2 

Recall: 94.7 

F1 score: 93.4 

 
Doshi et al. 

(2018) 

 

 
- 

KNN  

 
Custom 

Accuracy: 99.5 

LSVM Accuracy: 92.1 

DT Accuracy: 99.5 

RF Accuracy: 99.8 

NN Accuracy: 98.9 

Kumar et al. 

(2018) 

- RF - Features: 

Permission 

Accuracy: 92.79 

 

 
Abdulhammed 

et al. (2018) 

 

 
ZeroR 

AdaBoost  

 
AWID 

 
Best performance 

RF with 32 

features 

Accuracy: 99.64 

RF 

RT Precision: 0.995 

J48 

logit Boost Recall: 0.966 

MLP 

 

 

The suggested PCA-XgBoost, PCA-CatBoost, PCA-KNN, PCA-SVM, PCA-QDA, and 

PCA- NB by Saheed et al. (2022) showed excellent accuracy when compared to the TABLE 

2. Their experimental findings were superior to previous papers regarding precision and F1 

score, and also the accuracy of the two approaches they developed. They were 99.99% 

successful. 
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CONCLUSION AND FUTURE INSIGHT 

 

This paper looks back at previous papers on the subject of intrusion detection. The major goal 

of this research was to look at the use of machine learning in IoT intrusion detection. As a 

result, the IoT's basic definition, layers, and challenges were investigated initially. Then there 

was a look at IoT attacks. The definition of IDS and several ML approaches were then given. 

Then, some popular datasets offered for IDSs and IoT IDSs were given. Finally, the 

performance of the previous papers in ML classifiers was investigated. 

 

According to the review, which used numerous metric measures to assess classifier 

performance, The suggested PCA-XgBoost, PCA-CatBoost, PCA-KNN, PCA-SVM, PCA- 

QDA, and PCA-NB show excellent accuracy when compared to the TABLE 2. They were 

superior to previous papers regarding precision, F1 score, and accuracy of the two approaches 

they developed. They had a 99.99% success rate. To achieve excellent model performance, 

most researchers use the hybrid classification method rather than individual classification 

when designing intrusion detection systems. The complexity of large datasets can be reduced 

by using dimension reduction. As a result, the best features for classifying are chosen, which 

leads to better accuracy and speed. 

 

Based on this review, an ML-based technique can be used to identify attacks on many types 

of IoT networks. It is possible to implement a variety of methods in ML today, including 

SVM, DT, RF, NB, ANN, AL, ND, and DL. Big data and IoT networks require a wide range 

of DL methods for IDSs. This algorithm may be implemented using any of the signature-

based detection, anomaly-based detection, or hybrid IDS solutions. 

 

ABBREVIATIONS 

 
6LoWPA N IPv6 over Low-power Wireless 

Personal Area Network 

GA Genetic Algorithm ND Novelty Detection 

AES Advanced Encryption 

Standard 

HDT Hybrid of Decision 

Trees 

NN Neural Network 

AI  

Artificial Intelligence 

H-ELM Hierarchical - 

Extreme Learning 

Machine 

NSL- KDD Network Security Laboratory -

Knowledge Discovery in Databases 

AL Active Learning HFSA Hybridized Feature 

Selection Approach 

PART Partial decision tree 

algorithm 

ANN Artificial Neural 

Network 

IC Integrated Circuit PCA Principal Component 

Analysis 

AUC Area under the ROC 

Curve 

ID3 Iterative 

Dichotomiser 3 

PSO Particle Swarm 

Optimization 

AWID Aegean Wi-Fi 

Intrusion Dataset 

IDS Intrusion Detection 

System 

QDA Quadratic 

Discriminant Analysis 

BPSO Binary Particle 

Swarm Optimization 

IoMT Internet of Medical 

Things 

R2L Remote-to-Local 

CART Classification And 

Regression Tree 

IoT Internet of Things RBF Radial Basis Function 

CIC- 

IDS2017 

Canadian Institute for 

Cybersecurity - 

Intrusion Detection Sysstem 

2017 

IoTID20 IoT Intrusion 

Dataset 2020 

RF Random Forest 
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CSE- 

CIC- 

IDS2018 

Communications Security 

Establishment - Canadian 

Institute for Cybersecurity - 

Intrusion Detection 

Sysstem 2018 

KDD Knowledge 

Discovery in 

Databases 

RFE Recursive Feature Elimination 

CNN Convolutional Neural Network KNN K-Nearest Neighbor RIPPER Repeated Incremental Pruning to 

Produce 

Error Reduction 

CoAP Constrained 

Application Protocol 

LDA Linear Discriminant 

Analysis 

RNN Recurrent Neural Networks 

DARPA Defense Advanced Research 

Projects 

Agency 

LSTM Long Short-Term 

Memory 

RPL Low-Power and Lossy Networks 

DDoS Distributed Denial of 

Service 

LSVM Lagrangian Support 

Vector Machine 

RT Random Tree 

DL Deep Learning MAC Message Authentication 

Code 

SDN Software Defined Networks 

DNN Deep Neural 

Networks 

MITM Man In The Middle SU Symmetrical Uncertainty 

DoS Denial of Service ML Machine Learning SVM Support Vector Machine 

S2OS Distributed Smart Space 

Orchestration System 

MLP Multi-Layer Perceptron U2R User-to-Root 

DT Decision Tree MNBIDS Modified Naïve Bayes 

Intrusion Detection 

System 

UNSW- 

NB15 

University of New South Wales - New 

Benchmark 2015 

ELM Extreme Learning 

Machine 

NB Naive Bayes WSN Wireless Sensor 

Network 
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