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ABSTRACT

Early pterygium screening is crucial to avoid blurred vision caused by cornea and pupil encroachment. However, medical 
assessment and conventional screening could be laborious and time-consuming to be implemented. This constraint seeks 
an advanced yet efficient automated pterygium screening to assist the current diagnostic method. Patch region-based 
anterior segment photographed images (ASPIs) focus the feature on a particular region of the pterygium growth. This work 
addresses the data limitation on deep neural network (DNN) processing with large-scale data requirements. It presents 
an automated pterygium classification of patch region-based ASPI using our previous re-establish network, “VggNet16-
wbn”, the VggNet16, with the addition of batch normalisation layer after each convolutional layer. During an image pre-
processing step, the pterygium and nonpterygium tissue are extracted from ASPI, followed by the generation of a single and 
three-by-three image patch region-based on the size of the 85×85 dataset. Data preparation with 10-fold cross-validation 
has been conducted to ensure the data are well generalised to minimise the probability of underfitting and overfitting 
problems. The proposed experimental work has successfully classified the pterygium tissue with more than 99% accuracy, 
sensitivity, specificity, and precision using appropriate hyperparameters values. This work could be used as a baseline 
framework for pterygium classification using limited data processing.
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INTRODUCTION

An anterior eye disease involves anterior parts of the 
eye, such as the cornea, which are frequently exposed to 
ultraviolet (UV) radiation (UVR). Ophthalmoheliosis is a 
class of eye disease that associates eye conditions with UVR 
aetiology (Bogdănici et al. 2013; M. T. Coroneo et al. 1991). 
The emitted UV light contains radiations which can lead to 
light damage to the exposed eye. The eyes are tremendously 
sensitive to light compared to the skin. UVR in sunlight 
could affect the lens and retina when high wavelengths 
penetrate the cornea (Yam & Kwok 2014). The cornea is 
located at the eye’s outermost layer and receives the most 
UVR exposure. This condition causes a chronic effect 
and significantly impacts eye diseases such as cataracts, 
pterygium and droplet keratopathy (Vanicek et al. 2000). 

The abnormal tissue formation, such as fibrovascular 
tissue on the conjunctiva, is related to excessive UVR 
exposure (Asokan et al. 2012; M. Coroneo 2011; Lucas et 
al. 2008; Paula et al. 2006). This abnormal tissue appears 
in a yellowish spot called pinguecula (Asokan et al. 2012; 

Le et al. 2015). Pinguecula anterior eye disease tends 
to grow faster and encroach into the corneal area with 
UVR exposure. This fibrovascular tissue encroachment 
has known as pterygium anterior eye disease (Abdani et 
al. 2015; Kwok & Coroneo 1994; Panchapakesan et al. 
1998). Besides the UVR exposure, the dry eye condition 
and the presence of wind and dust can also be factored in 
the presence of abnormal tissue (Zamani et al. 2020). The 
pterygium growth is usually triangular- and winged-shaped 
near the nasal area of the left and right eye (Anbesse et al. 
2017; Hill 1989; Kwok & Coroneo 1994; Panchapakesan et 
al. 1998; Twelker et al. 2000). Fortunately, pinguecula and 
pterygium tissues cause no harm to the patients as they are 
categorized as noncancerous abnormal tissue (Taylor 1989; 
Viso et al. 2011). However, if the tissue proliferates, it is 
likely to cause visual impairment resulting in vision loss. 
Hence, precautions must be taken to avoid this consequence, 
such as wearing sunglasses during outdoor activities and 
avoiding UV exposure for a long period.

The appearance of pterygium tissue can be seen and 
validated by the expert, an ophthalmologist, through earlier 
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screening using slit lamp examination (Anbesse et al. 2017; 
Asokan et al. 2012; Cajucom-Uy et al. 2010; Panchapakesan 
et al. 1998; Paula et al. 2006; Sherwin et al. 2011). Besides, 
it can also be detected via clinical diagnosis using a corneal 
topography machine to examine the presence of pterygium 
with topographic map visualisation (American Medical 
Association 2017; Minami et al. 2018; Ahmad et al. 2019). 
However, the current earlier screening and clinical diagnosis 
could be troublesome where it needs a well-trained 
ophthalmologist expertise within a specific procedure, and 
it takes time to carry out the diagnosis process. Since the 
transition towards technology, ophthalmologist experts 
have sought an automated approach for earlier pterygium 
detection and classification, which is less time-consuming. 
The widely used machine learning approach has developed 
rapidly in medical imaging. Digital image processing, also 
categorised as a machine learning method which involves 
hand-crafted heuristic methodology for feature extraction, 
has been implemented by previous researchers (Abbas 2017; 
Wang et al. 2018). Automated feature extraction has led to 
an advanced approach using DNN without hand-crafted 
feature extraction. DNN has been widely implemented in 
medical imaging and primarily focuses on eye diseases 
such as diabetic retinopathy using retinal images (Deepa 
et al. 2021) and optical coherence tomography images 
(Upadhyay et al. 2021). These automated approaches exist 
as an alternative to assist the expert in reducing diagnosis 
time. However, the implementation of DNN, which focuses 
on pterygium eye disease, is limited, and it requires large-
scale datasets and high specifications appliances to obtain 
optimum performance. Therefore, patch region-based 
and data augmentation techniques are proposed in this 
experimental work. It acts as a data space solver (Lee & Chin 
2020), besides developing a larger dataset scale compared to 
previous work (Zamani et al. 2020).

PREVIOUS WORK

There are very few published works on pterygium 
classification/detection using a deep learning approach, 
especially on deep neural networks. Previous work 
proposed a classification of ASPI between pterygium 
ASPI versus normal ASPI using a modified pretrained 
network (VggNet16-wbn) (Zamani et al. 2020). This 
project/literature has performed a few experimental 
works comparing existing classification networks. As a 
result, the best network, VggNet16, was modified with 
an additional batch normalisation layer and modification 
on the classification layer fixed with two ASPI classes. 
The modified network has surpassed all the experimented 
networks with 98.45% sensitivity, 99.22% accuracy and 
a perfect score for specificity and area under the curve 
performance. Both networks have been compared based on 
an activation map. Here, features of cornea circularity and the 
pterygium presence were highlighted to distinguish between 
pterygium ASPI and normal ASPI. The extracted features 

of pterygium can be highlighted with more visualisation 
by solely narrowing down to the pterygium ASPI database. 
However, the most critical part of DNN classification is the 
amount of data, whereby the pterygium ASPI database is 
half of the previous work data. 

In the present work, we aim to ameliorate the 
presentation of extracted features through region-based 
with a limited amount of data using the previously proposed 
network architecture. The proposed experimental work is 
briefly explained in Section 3, followed by the presentation 
of experimental results with a discussion in Section 4. 
The summary of this work in Section 5 has concluded the 
experimental work with a suggestion for further research.

METHODOLOGY

In this section, a pterygium database and experimental 
work consisting of image pre-processing, data preparation 
in DNN, hyper-parameter setting, training and testing 
DNN, and analysis performance shall be briefly explained 
throughout the proposed method. A proposed block diagram 
is depicted in Figure 1. The proposed experimental work 
is accomplished using Matlab version 2018b with license 
no: 40699855 on NVIDIA GeForce RTX 2070 graphical 
processing units (GPU) desktop.

FIGURE 1. Proposed block diagram of pterygium classification 
using deep patch region-based ASPI

DATABASE DESCRIPTION

In this proposed method, two sets of experimental work are 
performed with two datasets, namely single patch region-
based and patch region-based of 3 by 3. Both datasets 
are generated from pterygium ASPI for pterygium and 
nonpterygium cases. These datasets are acquired from a 
developed local database, namely myMata and have been 
used in previous work (Zamani et al. 2020) to classify 
pterygium and normal ASPI. A total of 30 pterygium 
ASPIs were captured using a high-resolution smartphone 
camera of Huawei P9 with co-engineered Leica. This 
database is developed in collaboration between the Faculty 
of Engineering and Built Environment and the Faculty of 
Health Science, both at Universiti Kebangsaan Malaysia, 
Malaysia. All the ASPIs are verified and validated by an 
ophthalmologist.
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IMAGE PRE-PROCESSING

All the ASPIs for pterygium classification are processed and 
filtered based on pterygium tissue growth on either the nasal 
side or both sides of the eye ASPIs. A region with pterygium 
tissue is classified as a pterygium case, while a region with 
no pterygium tissue is classified as a nonpterygium case, as 
depicted in Figure 2. This pre-processing image method is 
called pterygia-patch.

SINGLE PATCH REGION-BASED ASPI

A single patch region-based ASPI database is generated 
by three steps of image pre-processing, as illustrated in 
Figure 2 a). Each sample ASPIs was divided vertically into 
three parts, and only the first and third horizontal regions 
of ASPIs are included in this patch region-based, as 
illustrated in Figure 2 a). The purpose of this division is 
to remove unwanted regions (region 2) not affected by 
pterygium tissue growth. Therefore, 60 images are 
produced, including 30 images of pterygium and 30 
images of nonpterygium. Here, a single patch region-
based dataset proceeded with image rescale before 
image augmentation was performed to increase the 
number of images. All the images were position 
augmented through process image reflection (both 
horizontally and vertically) and image rotation for every 
possible angle, which are 45 degrees, 90 degrees, 135 
degrees, 225 degrees, 270 degrees and 315 degrees. A total 
of 240 images of pterygium and 240 images of nonpterygium 
were acquired and then underwent image enhancement 
to perform colour augmentation using the haze removal 
algorithm. This algorithm is commonly used for low-light 
images where dark and dim pixels are inverted to high 
contrast and enhance the image as illustrated in Figure 2 b) 
(colour augmentation). Hence, 1080 images were 
generated for a single patch region-based database.

PATCH REGION-BASED OF 3 BY 3 ASPI 

The database of patch region-based of 3 by 3 is developed 
as a single patch region-based database development with 
the addition of patches step as illustrated in Figure 2 b). 
All images were patched into a small pixel of image size 
before it is fed into the training network. Before that, the 
images were rescaled to an image size of 255 x 255 from 
the original size to standardise the image for computational 
simplicity. Then, the image size of 255 was patched to the 
size of 85 x 85 images. This patching process produces 
nine patched images which need to be improved for 
efficient DNN classification with large-scale 
datasets. Hence, a commonly used technique to 
increase the number of datasets, namely data 
augmentation, was used. All image patches are 
augmented in position by reflection (horizontal and 
vertical). Therefore, the dataset consisted of 1080 
patches of pterygium and nonpterygium, with 540 images 
each.

DATA PREPARATION (CROSS-VALIDATION)

Ten-fold cross-validation is conducted to ensure that 
the database can be generalised well and minimised the 
probability of underfitting and overfitting problems. These 
consequences could affect the performance of testing data 
and network training. This work divides all datasets into 
ten partitions (10% each). Therefore, one partition datasets 
consist of 108 images of a single patch and 108 image 
patches of 3 by 3, respectively. The ratio of data partition 
for both classes is randomly divided yet balanced to avoid 
imbalance data problems. Here, the network training would 
be performed on nine partitions and one partition for testing. 
Each partition is alternately tested 10-fold with 972 images 
used for network training and 108 testing images.

HYPER-PARAMETER SETTING

The deep neural network is generally performed using a 
network optimiser and several hyper-parameters to train 
the data, such as learning rate, batch size and the number 
of epochs. The network optimiser is crucial in assisting in 
optimising the network and minimising the loss function 
during network training. Thus, the mainly used optimisers 
are stochastic gradient descent with momentum (SGDM) 
and adaptive moment estimation (Adam) optimisers. These 
optimisers were tested to select which optimiser could 
converge faster. Adam computes adaptive learning rates 
individually (Kingma & Ba 2014). The network learns 
the features of data input by the rates of learning. The 
rate was tested with 0.1, 0.01, 0.001 and 0.0001 values. 
Besides, a hyper-parameter batch size of 32, 64 and 128 
with a base power of 2 (2x) has been tested. These two 
hyper-parameters are tuned during network training with 
a few numbers of cycles. The learning cycles (epochs) 
determine the repetition of the learning process that depends 
on the quantity of training data sets called iteration. Here, 
the number of epochs was tested, starting with the lowest 
number, ten, to the highest possible number, such as 100. 
The performance was observed to determine which number 
of epochs accuracy stops improving, which then will be 
selected.

TRAINING AND TESTING NETWORK

The experimental work for datasets and networks that 
read the input images as a collection of matrices has been 
implemented. This work adopted a previously proposed 
network, namely VggNet16-wbn, a modified pretrained 
deep convolutional neural network of VggNet16 (Simonyan 
& Zisserman 2014) with 13 additional batch normalisation 
layers as illustrated in Figure 3. 

All the input images were resized before entering the 
feature extraction layer to meet the input layer requirement 
of implemented networks. The input size networks are 
consistent with the same neuron number in the network input 



826

layer. From the matrices, the training network performs the 
windowing process of the input image for feature extraction 
in the convolutional layer. The extracted features were 
mapped into specific sizes before being processed in the 
subsequent layers. The sensitivity of pixels in the feature 
map is then minimised as the batch normalisation layer has 
been implemented and followed by the activation layer, 
which is rectified linear unit (ReLU) to activate the feature 
map. These activated feature maps were resampled (pooling 
layer) and combined (fully connected layer) to calculate the 
probability of class percentage by softmax classifier.

PERFORMANCE ANALYSIS

The classification of the pterygium tissue using DNN is 
evaluated based on ground truth acquired in the myMata 
database from the optometry expert in the Faculty of 
Science and Health, UKM. Apart from training and testing 
both networks, the performance of the algorithm network is 
evaluated quantitatively through confusion metrics. 

Generally, the confusion metrics are the quantitative 
evaluation to calculate the true positive (TP), false positive 

(FP), true negative (TN) and false negative (FN) between 
the binary classification. Here, performance metrics of 
experimental work are calculated to find the accuracy, 
sensitivity, specificity, and precision using (1-4), respectively. 

The quantitative performance of the network was sup-
ported by qualitative performance using gradient-weighted 
class activation mapping (GradCam) proposed by (Selvara-
ju et al. 2017). The interpretability technique of GradCam 
helps to visualise the active and important region of the 
image for the prediction of a network. GradCam function 
predicts the class score of the image by feature layer and 
reduction layer. The active region was selected by reducing 
the output to the image features in the feature layer.

(1)

(2)

(3)

(4)

FIGURE 2. Pterygia-patch pre-processing method a) single patch region-based ASPI (top) with three steps of the pre-processing 
image which includes filter, rescale and augment, and b) patch region-based of 3 by 3 ASPI (bottom) with four image processing    

steps and addition of image patch
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RESULTS AND DISCUSSION

This experimental work evaluated the proposed method of 
classifying pterygium tissue using deep patch region-based 
on single and 3 by 3 image patches of ASPIs on VggNet16-
wbn and VggNet16. These two experiments have performed 
10-fold cross-validation using a fixed network optimiser and
four values of hyper-parameters: Adam optimiser, 0.0001
learning rate, 64 size of batch and 74 epochs, respectively.
These hyper-parameters values have been tested and
analysed thoroughly; these were the most appropriate
combination values. Adam optimiser has been chosen as the
network converged well compared to the SGDM optimiser
from the beginning until the end of the network training.
Adam has adopted the first-order gradients with less
memory since SGDM requires higher-order optimisation,
which is unsuitable.

Furthermore, large-scale data requires high memory 
to perform the network training process. Hence, Adam was 
well suited for less memory requirement with a first-order 
gradient. The best performance recorded is a batch size of 64 
compared to the poor performance of 32, and less complex 
and time-consuming than 128 during network training. The 
rate of 0.0001 is selected as the network finds and learns the 
input features well than others. Based on the combination 

FIGURE 3. A deep patch-based pterygium tissue classification using the adopted proposed network architecture VggNet16-wbn 
(Zamani et al. 2020) and VggNet16 (Simonyan & Zisserman 2014)

hyper-parameters of a batch size of 64 and an optimum 
learning rate at 0.0001, network accuracy stops improving 
at 74 epochs.

In this work, four experimental works have been 
performed and evaluated by four performance metrics: 
accuracy, sensitivity, specificity, and precision, as listed in 
Table 1. Based on the quantitative performance in Table 
1, a single patch region-based dataset, VggNet16-wbn 
achieved high performance than VggNet16 with 99.63% 
for all performance metrics. Both networks achieved the 
same sensitivity performance. Regardless, VggNet16-wbn 
has succeeded in increasing the probability of pterygium 
classification in accuracy and precision by 0.19% and 0.37%, 
respectively. The additional layer, batch normalisation, 
has succeeded in minimising the sensitivity of feature 
maps before the ReLU layer activates it. The sensitivity 
performance metric is significant for the network to classify 
true positives and false negatives of pterygium in avoiding 
misclassification of true class. This scenario is because 
misclassification could lead to misdiagnosis of true patients, 
which can hinder them from going through follow-up for 
further treatment. Misdiagnosis of a patient is the most 
unwanted incidence that can occur on the expert’s behalf. 
Therefore, accuracy and sensitivity are crucial in medical 
imaging classification.

TABLE 1. A set of experimental work of two datasets using VggNet16-wbn and VggNet16

Dataset Network Accuracy Sensitivity Specificity Precision 
Single patch region-based VggNet16-wbn 99.63 99.63 99.63 99.63

VggNet16 99.44 99.63 99.26 99.26
Patch region-based of 3 by 3 VggNet16-wbn 95.19 96.67 93.70 93.88

VggNet16 94.54 95.37 93.70 93.81
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The image features in the patch region-based 3 by 3 
datasets are more complicated as it contains unfixed features 
such as line and shape, unlike the single patch region-
based dataset for the network, which is less complex. This 
feature representation has affected the patch region-based 
3 by 3 classification performance, which achieved less 
than 99% of all performance metrics for both networks. 
However, VggNet16-wbn has achieved higher accuracy, 
sensitivity, and precision performance than VggNet16 with 
95.19%, 96.67%, and 93.88%, respectively and the same 
specificity value of 93.70% with VggNet16. Figure 4 shows 
the confusion matrix for the single patch region-based to 
perceive a slight difference in the FP and TN prediction 
between the two networks.

The effectiveness of the networks was also evaluated 
in qualitative performance for robustness evaluation. The 
active region of the image can be visualised in GradCam, 
as illustrated in Figure 5. Based on qualitative observation, 
a single patch region-based dataset in Figure 5 a) depicts 
the VggNet16-wbn focusing on the nasal side as it is the 
common region of pterygium growth. The VggNet16-wbn 
detection covers pterygium tissue broadly, including the 
cornea encroachment, than VggNet16, where the network 
only focuses on the high visibility area of pterygium 
tissue. Pterygium tissue encroachment can be detected 
primarily on light green/yellow highlight and red highlight 
as the pterygium tissue thickens. On the other dataset, the 
detection area for patch region-based of 3 by 3, VggNet16-
wbn is also able to detect most pterygium tissue area than 
VggNet16. However, in comparison for both datasets, the 
detected area for patch region-based 3 by 3 was not robust as 
it is scattered and could not find the exact pterygium pattern. 
Therefore, these observation shows VggNet16-wbn network 

has successfully detected the pterygium areas on the precise 
pterygium growth region using a single patch region-based.

In the meantime, the highlighted region on nonpterygium 
was affected by the quantitative performance of specificity. 
Figure 5 b) illustrates the region near perfectly covered, 
performed by VggNet16-wbn using a single patch region-
based compared to the VggNet16 network. Here, the 
examined networks detect the highlighted region in the half-
moon sclera as the nonpterygium focus area with no cornea 
encroachment. Meanwhile, the highlighted region using patch 
region-based of 3 by 3 looks mostly scattered as performed 
in pterygium. Therefore, the nonpterygium area could not 
be focused firmly. The focus area for both classes depended 
on quantitative performance. Whereby precision shows the 
exact highlighted area for pterygium growth (sensitivity) 
and nonpterygium (specificity). Hence, this qualitative 
performance has proven that the VggNet16-wbn network 
prediction is robust and effective on pterygium classification 
in terms of quantitative and qualitative performances.

FIGURE 4. A confusion matrix for the single patch region-based

FIGURE 5. A sample tested on VggNet16-wbn and VggNet16 for single patch region-based and patch region-based of 3 by 3 datasets, 
a) pterygium and b) nonpterygium
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CONCLUSION

Pterygium classification using deep patch region-based 
images developed from myMata ASPIs performs well 
in the adopted previous proposed network VggNet16-
wbn and VggNet16. To our knowledge, no experimental 
work presents a patch region-based images approach 
in pterygium classification. Therefore, this is the first 
proposed experimental work of pterygium classification. 
A proposed patch region-based image is an alternative 
technique to solve the lack of data issues besides the data 
augmentation technique on pterygium ASPI. However, a 
large-scale dataset requires an appropriate combination of 
hyper-parameters and a small dataset to avoid overfitting 
and underfitting problems. In addition, accuracy and 
sensitivity performance metrics are the most important in 
the classification of medical imaging in minimising the 
chances of misclassification to avoid misdiagnosis of true 
class. The quantitative performance of a single patch region-
based dataset using VggNet16-wbn outperforms VggNet16 
with 99.63% accuracy, sensitivity, specificity, and precision 
on 10-fold cross-validation. The active region has been 
visualised through qualitative performance according to 
network prediction for both network and datasets using 
the GradCam technique. The VggNet16-wbn can focus on 
common pterygium growth regions with complete coverage 
of pterygium tissue, including cornea encroachment, as a 
robust and effective network prediction.

Moreover, the network is well generalised the data by 
implementing a cross-validation technique and minimises 
the chances of overfitting issues. In conclusion, a pterygium 
tissue classification using a deep patch region-based 
approach has been successfully accomplished. In future, the 
proposed experimental work of trained single patch region-
based and patch region-based 3 by 3 datasets can be used 
as a baseline framework using limited datasets. In addition, 
the data collection of extracted pterygium features is vital 
for automated pterygium detection systems using artificial 
intelligence development. 
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