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ABSTRACT
Numerous phenomena involve count data containing non-zero values and the zero-truncated Poisson-Sujatha 
distribution can be used to model such data. However, the confidence interval estimation of its parameter has not 
yet been examined. In this study, confidence interval estimation based on percentile, simple, biased-corrected and 
accelerated bootstrap methods, as well as the bootstrap-t interval, was examined in terms of coverage probability and 
average interval length via Monte Carlo simulation. The results indicate that attaining the nominal confidence level 
using the bootstrap methods was not possible for small sample sizes regardless of the other settings. Moreover, when 
the sample size was large, the performances of the methods were not substantially different. Overall, the bias-corrected 
and accelerated bootstrap approach outperformed the others, even for small sample sizes. Last, the bootstrap methods 
were used to calculate the confidence interval for the zero-truncated Poisson-Sujatha parameter via three numerical 
examples, the results of which match those from the simulation study.
Keywords: Bootstrap interval; count data; interval estimation; Poisson-Sujatha distribution; simulation

ABSTRAK
Banyak fenomena melibatkan data bilangan yang mengandungi nilai bukan sifar dan taburan Poisson-Sujatha 
terpangkas sifar boleh digunakan untuk memodelkan data tersebut. Walau bagaimanapun, anggaran selang keyakinan 
parameternya masih belum diperiksa. Dalam kajian ini, anggaran selang keyakinan berdasarkan kaedah persentil, 
mudah, pembetulan berat sebelah dan dipercepatkan, serta selang bootstrap-t, telah diperiksa dari segi kebarangkalian 
liputan dan panjang selang purata melalui simulasi Monte Carlo. Keputusan menunjukkan bahawa mencapai tahap 
keyakinan nominal menggunakan kaedah bootstrap tidak mungkin untuk saiz sampel yang kecil tanpa mengira 
tetapan lain. Selain itu, apabila saiz sampel adalah besar, prestasi kaedah tidak jauh berbeza. Secara keseluruhannya, 
pendekatan bootstrap yang diperbetulkan berat sebelah dan dipercepatkan mengatasi prestasi yang lain, walaupun 
untuk saiz sampel yang kecil. Terakhir, kaedah bootstrap digunakan untuk mengira selang keyakinan bagi parameter 
Poisson-Sujatha terpangkas sifar melalui tiga contoh berangka, yang hasilnya sepadan dengan kajian simulasi.
Kata kunci: Anggaran selang; data bilangan; selang Bootstrap; simulasi; taburan Poisson-Sujatha

INTRODUCTION

The Poisson distribution is a discrete distribution that 
measures the probability of a given number of events 
happening in specific regions of time or space (Andrew 
& Michael 2022; Kissell & Poserina 2017). Data such as 
the number of orders a firm will receive tomorrow, the 
number of people who will apply for a job tomorrow, 

the number of defects in a finished product, the number 
of confirmed COVID-19 cases per day, the number 
of bacteria in a higher organism, follow a Poisson 
distribution (Siegel 2016).

The probability mass function (pmf) of a Poisson 
distribution is defined as
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where e  is a constant approximately equal to 2.71828 
and λ  is the mean number of events within a given 
interval of time or space. This probability model can 
be used to analyze data containing zeros and positive 
values that have low occurrence probabilities within 
a predefined time or area range (Sangnawakij 2021). 
However, probability models can become truncated 
when a range of possible values for the variables is 
either disregarded or impossible to observe. Indeed, 
zero truncation is often enforced when one wants to 
analyze count data without zeros. David and Johnson 
(1952) developed the zero-truncated (ZT) Poisson (ZTP) 
distribution, which has been applied to datasets of the 
length of stay in hospitals, the number of published 
journal articles in various disciplines, the number of 
children ever born to a sample of mothers over 40 years 
old, and the number of passengers in cars (Hussain 2020). 
A ZT distribution’s pmf can be derived as

     (2)

where  0 ( ; )p x θ i s  the  pmf  of  the  un- t runcated 
distribution. Shanker (2016a) defined the pmf of the 
Poisson-Sujatha (PS) distribution having as

  

 (3)

The mathematical and statistical properties of the 
PS distribution for modeling biological science data were 
established by Shanker (2016a). The PS distribution 
arises from the Poisson distribution when parameter λ  
follows the Sujatha distribution proposed by Shanker 
(2016b) with porbability density function (pdf) 

    (4)

Shanker (2016b) showed that the pdf in (4) is a better 
model than the exponential and Lindley distribution 
(Lindley 1958) for modeling lifetime data. Several 
distributions have been introduced as an alternative to 
the ZTP distribution for handling over-dispersion in data, 
such as ZT Poisson-Lindley (ZTPL) (Ghitany, Al-Mutairi 
& Nadarajah 2018), ZT Poisson-Amarendra (ZTPA) 
(Shanker 2017a), ZT Poisson-Akash (Shanker 2017b) 
and ZT Poisson-Ishita (Shukla, Shanker & Tiwari 2020) 
distributions.

Shanker et al. (2015) proposed the ZTPS distribution 
and its properties, such as the moment, coefficient of 
variation, skewness, kurtosis and the index of dispersion. 
The method of moments and the maximum likelihood 
have also been derived for estimating its parameter. 
Furthermore, when the ZTPS distribution was applied 
to real data set, it was more suitable than the ZTP and 
ZTPL distributions.

To the best of our knowledge, no research has 
been conducted on estimating the confidence interval 
for the parameter of the ZTPS distribution. It is essential 
to note that the score function of ZTPS distribution is 
complicated, and the maximum likelihood estimator has 
no closed form. Therefore, likelihood-based, score, and 
Wald-type confidence intervals have no closed forms. 
In such cases, finding these confidence intervals can 
be challenging; alternative methods, such as numerical 
techniques or resampling methods like the bootstrap 
method, can be utilized. Bootstrap methods for estimating 
confidence interval provide a way of quantifying the 
uncertainties in statistical inferences based on a sample 
of data. The concept is to run a simulation study based 
on the actual data for estimating the likely extent of 
sampling error (Wood 2004). Therefore, the objective 
of the current study was to assess the efficiencies of 
four bootstrap methods, namely the percentile bootstrap 
(PB), the simple bootstrap (SB), the bias-corrected and 
accelerated bootstrap (BCa), and the bootstrap-t (B-t), 
to estimate the confidence interval for the parameter 
of the ZTPS distribution. Additionally, none of the 
bootstrap confidence intervals will be exact (i.e., the 
actual confidence level is exactly equal to the nominal 
confidence level 1 )α−  but they will all be consistent, 
meaning that the confidence level approaches 1 )α−    as 
the sample size gets large (Chernick & LaBudde 2011). 
In light of the impossibility of a theoretical comparison 
of these bootstrap confidence intervals, we conduct 
a simulated study to evaluate their relative merits. 
Moreover, the bootstrap confidence intervals had been 
compared via a simulation study in several studies 
(Flowers-Cano et al. 2018; Jung et al. 2019; Reiser et 
al. 2017). In this study, a Monte Carlo simulation study 
is conducted to compare their performance and used the 
results to determine the best performing method based on 
the coverage probability and the average length.  

THEORETICAL BACKGROUND

Compounding of probability distributions is a sound 
and innovative technique to obtain new probability 

0

0

( ; )( ; ) , 1,2,3,...,
1 (0; )

p xp x x
p




= =
−

  

3 2 2

0 2 3

( 4) ( 3 . 0,1,) 2,. 04( ; .) ,
2 ( 1)

. ,x

x xp x x   
  

+

+ + + + +
=

+ +


+
=    

3 2 2

0 2 3

( 4) ( 3 . 0,1,) 2,. 04( ; .) ,
2 ( 1)

. ,x

x xp x x   
  

+

+ + + + +
=

+ +


+
=    

( )
3

2
2( ; ) 1 , 0, 0.

2
f e      

 
−= + +  

+ +   



  1881

distributions to fit data sets not adequately fit by common 
parametric distributions. Shanker et al. (2016) proposed a 
new compounding distribution by compounding Poisson 
distribution with Sujatha distribution, as there is a need 
to find more flexible model for analyzing statistical data. 
The pmf of the PS distribution is given in Equation (3).

Let X be a random variable which follow the ZTPS 
distribution with parameter ,θ i t  is  denoted as 
XZTPS( ,θ ). Using Equations (2) and (3), the pmf of the 
ZTPS distribution can be obtained as

The plots of ZTPS distribution with some specified 
parameter values ,θ  shown in Figure 1.

The expected value and variance of X  are as follows:

and

 By equating the population mean to the corresponding 
sample mean, the method of moment (MOM) estimator 
θ  of θ  is the solution of the following non-linear 
equation;

where 
1

/
n

i
i

x x n
=

=∑  denotes the sample mean. Since the 
MOM estimator for θ  does not provide the closed-form 
solution, the non-linear equation can be solved by the 
numerical iteration methods such as Newton-Raphson 
method, bisection method and Ragula-Falsi method. In 
this research, we use rootSolve package (Soetaert 2021) 
with Newton-Raphson method for MOM estimation 
in the statistical software R (Ihaka & Gentleman 1996).
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FIGURE 1. The plots of the mass function of the ZTPS distribution with θ =0.5, 
1, 1.5 and 2
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The maximum likelihood (ML) estimator of θ
is obtained by maximizing the log-likelihood function 
log ( ; )iL x θ  o r  t he  loga r i thm o f  jo in t  pmf  o f 

1 2, ,..., .nX X X  Therefore, the ML estimator for θ  of the 
ZTPS distribution is derived by the following processes:
 

Solving the equation log ( ; ) 0iL x θ
θ
∂

=
∂

 for θ , we have 

the non-linear equation

Since the ML estimator for θ does not provide the closed-
form solution, the non-linear equation can be solved 
by the numerical iteration methods. In this research, 
we use maxLik package (Henningsen & Toomet 2011) 
with Newton-Raphson method for ML estimation in the 
statistical software R.

BOOTSTRAP METHODS

In this study, we focus on four bootstrap methods for 
estimating confidence interval for the parameter of the 
ZTPS distribution. In practice, the popular bootstrap 
methods are the percentile bootstrap, the simple 
bootstrap, the bias-corrected and accelerated bootstrap, 
and the bootstrap-t methods. The computer-intensive 
bootstrap methods described in this study provide 
alternative for constructing approximate confidence 
intervals without having to make an assumption about 
the underlying distribution (Meeker et al. 2017). See the 
details of some bootstrap methods in DiCiccio and Efron 
(1996) and Manoharan et al. (2017).

PERCENTILE BOOTSTRAP (PB) METHOD

The percentile bootstrap confidence interval is the 
interval between the ( / 2) 100α ×  and (1 ( / 2)) 100α− ×  

percentiles of the distribution of θ estimates obtained 
from resampling or the distribution of *ˆ ,θ whereθ  
represents a parameter of interest and α  is the level 
of significance (e.g., α = 0.05 for 95% confidence 
intervals) (Efron 1982). A percentile bootstrap confidence 
interval for θ can be obtained as follows: 

1) B  random bootstrap samples are generated,
2) a parameter estimate *θ̂  is computed from each 
bootstrap sample,
3) all B bootstrap parameter estimates are ordered from 
the lowest to highest, and 
4) the (1 )100%α−  percentile bootstrap confidence 
interval is constructed as follows:
      

 (5)

where *
( )
ˆ
αθ  denotes the thα  percentile of the distribution of 

*θ̂ and 0 100.r s≤ < ≤  For example, a 95% percentile 
bootstrap confidence interval with 1000 bootstrap 
samples is the interval between the 2.5 percentile value 
and the 97.5 percentile value of the 1000 bootstrap 
parameter estimates.

SIMPLE BOOTSTRAP (SB) METHOD

The simple bootstrap method is a method as easy to 
apply as the percentile bootstrap method. It is sometimes 
called the basic bootstrap method. Suppose that the 
quantity of interest is θ and that the estimator of θ  
is ˆ.θ  The simple bootstrap method assumes that the 
distributions of θ̂ θ−  and *ˆ ˆθ θ−  are approximately the 
same (Meeker et al. 2017). The (1 )100%α−  simple 
bootstrap confidence interval for θ  is

      (6)

where the quantiles *
( )
ˆ

rθ  and *
( )
ˆ

sθ  are the same percentile 
of empirical distribution of bootstrap estimates *θ̂  used 
in (5) for the percentile bootstrap method.

BIAS-CORRECTED AND ACCELERATED BOOTSTRAP (BCa) 
METHOD

The BCa bootstrap method corrects for both bias 
and skewness of the bootstrap parameter estimates 
by incorporating a bias-correction factor and an 
acceleration factor (Efron 1987; Efron & Tibshirani 
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1993) to overpower the over coverage issues in percentile 
bootstrap confidence intervals (Efron & Tibshirani 
1993). The bias-correction factor 0ẑ  is estimated as 
the proportion of the bootstrap estimates less than the 
original parameter estimate ˆ,θ

where 1−Φ  is the inverse function of a standard 
normal cumulative distribution function  (e.g. , 

1(0.975) 1.96).−Φ ≈  The acceleration factor â  is 
estimated through jackknife resampling (i.e., ‘leave 
one out’ resampling), which involves generating n  
replicates of the original sample, where n  is the number 
of observations in the sample. The first jackknife 
replicate is obtained by leaving out the first case ( 1)i =  
of the original sample, the second by leaving out the 
second case ( 2),i =  until n  samples of size 1n −  are 
obtained. For each of the jackknife resamples, ( )

ˆ
iθ −  is 

obtained. The average of these estimates is

Then, the acceleration factor â  is calculated as follow,

With the values of 0ẑ  and ˆ,a  the values 1α  and 2α  are 
calculated,

  
( )
0 /2

1 0
0 /2

ˆˆ
ˆ ˆ1
z zz
a z z

α

α

α + = Φ + − + 
  and  

where /2zα  is theα quantile of the standard normal 
distribution (e.g., 0.05/2 1.96).z ≈ − 0.05/2 1.96).z ≈ − Then, the (1 )100%α−  
BCa bootstrap confidence interval for θ is as follows

       (7)

where *
( )
ˆ
αθ denotes the thα percentile of the distribution 

of *ˆ .θ

BOOTSTRAP-t (B-t) METHOD

Suppose that the quantity of interest is θ  and that 
from the given data one can compute the estimate θ̂  
and ˆ. .( ),s e θ  a corresponding estimate of the standard 
error of ˆ.θ  Then, the bootstrap estimates ˆ

jθ  and their 
corresponding estimated standard errors ˆ. .( )js e θ ∗ are 
computed from each bootstrap sample 1, 2,..., .j B=  
From these, the bootstrap-t (studentized) statistics
  

are computed. The (1 )100%α−  B-t confidence interval 
for θ  is

      (8)

where 1 ( / 2)r α= −  and / 2,s α=  and *
qt  denotes the q 

quantile of the distribution of *.jR  

SIMULATION STUDY

The confidence interval for the parameter of a ZTPS 
distribution estimated via various bootstrap methods was 
considered in this study. Due to the unavailability of a 
direct theoretical comparison, a Monte Carlo simulation 
study was designed using R version 4.2.2 to cover cases 
with different sample sizes (  = 10, 30, 50, 100 and 
500). To observe the effect of small and large variances, 
the true parameter ( )θ was set as 0.25, 0.5, 1, 1.5, and 
2 (the variance of the random variables decreases as 
the value of θ increases). 1,000B =  bootstrap samples 
of size n  were generated from the original sample and 
each simulation was repeated 1,000 times. Without loss 
of generality, the confidence level (1 )α−  was set at 0.95. 
In this study, the confidence intervals were computed 
based on both of the MOM and ML estimators. The 
performances of the bootstrap methods were compared 
in terms of their coverage probabilities and average 
lengths. The one with a coverage probability greater 
than or close to the nominal confidence level means that 
it contains the true value and can be used to precisely 
estimate the confidence interval for the parameter of 
interest. The bootstrap confidence interval that satisfies 
the criterion is the best in comparison.

The coverage probabilities and average lengths 
of four bootstrap confidence intervals based on the 
MOM and ML estimators are reported in Tables 1 and 
2, respectively. In the simulation results, the coverage 
probabilities and average lengths of them based on the 
MOM and ML estimators are similar for all situations. 
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Therefore, the results of both cases are described at once. 
For 10=n  and 30, the coverage probabilities of the all 
methods tended to be less than 0.95 and so did not reach 
the nominal confidence level. Nevertheless, the BCa 
method outperformed the other in these scenarios. For 

50,=n  the PB, BCa, and B-t methods attained coverage 
probabilities close to the nominal confidence level. For 

100,≥n  all four methods performed similarly well 
in terms of coverage probability and average length. 
Thus, as the sample size was increased, the coverage 
probabilities of the methods tended to increase and 
approach 0.95. Moreover, the average lengths of the 
methods increased when the value of θ was increased 
because of the relationship between the variance and .θ  

Unsurprisingly, as the sample size was increased, the 
average lengths of the four methods decreased. Although 
the average length of the bootstrap-t method was the 
shortest when the sample size was small, it provided a 
poor coverage probability value significantly below the 
nominal confidence level.

The performances of the four methods differed 
when the variance of the distribution was small (i.e., 
var( ) 2.26,1.37X = for 1.5, 2,θ = respectively) and n  
was small (i.e., 30)≤n ; the PB and BCa approaches 
outperformed the others in terms of coverage probability. 
For a small sample size, a larger variance (i.e., 
var( ) 58.59,16.41X =  for 0.25,0.50,θ =  respectively) 
provided similar performances from all four methods.

TABLE 1. Coverage probability and average length of the 95% confidence intervals for θ  of the ZTPS distribution (based on 
MOM estimator)

n θ
Coverage probability Average length

PB SB BCa B-t PB SB BCa B-t

10 0.25 0.882 0.885 0.885 0.891 0.215 0.215 0.202 0.187

0.5 0.875 0.878 0.887 0.881 0.514 0.513 0.461 0.419

1 0.862 0.868 0.894 0.844 1.521 1.534 1.181 1.005

1.5 0.891 0.857 0.918 0.817 3.295 3.286 2.190 1.956

2 0.879 0.840 0.913 0.819 5.026 5.008 3.264 3.083

30 0.25 0.926 0.921 0.933 0.925 0.117 0.117 0.114 0.113

0.5 0.925 0.927 0.926 0.926 0.266 0.266 0.255 0.251
1 0.913 0.914 0.931 0.916 0.670 0.668 0.622 0.605

1.5 0.922 0.911 0.921 0.909 1.225 1.223 1.090 1.052
2 0.921 0.897 0.930 0.901 2.003 2.002 1.687 1.596

50 0.25 0.923 0.933 0.934 0.929 0.091 0.091 0.090 0.089

0.5 0.940 0.923 0.936 0.938 0.203 0.202 0.197 0.195

1 0.943 0.927 0.946 0.940 0.494 0.494 0.475 0.466

1.5 0.930 0.932 0.939 0.924 0.897 0.899 0.843 0.826

2 0.936 0.923 0.945 0.927 1.386 1.386 1.266 1.234
100 0.25 0.952 0.949 0.951 0.952 0.064 0.064 0.063 0.063

0.5 0.949 0.917 0.939 0.938 0.148 0.149 0.145 0.147
1 0.955 0.961 0.964 0.962 0.344 0.344 0.337 0.335

1.5 0.931 0.930 0.928 0.932 0.600 0.600 0.582 0.578

2 0.939 0.926 0.937 0.938 0.907 0.907 0.867 0.858

500 0.25 0.958 0.954 0.957 0.956 0.028 0.028 0.028 0.028

0.5 0.954 0.956 0.951 0.954 0.064 0.064 0.064 0.065

1 0.948 0.955 0.953 0.954 0.153 0.153 0.153 0.152

1.5 0.948 0.974 0.948 0.982 0.267 0.267 0.270 0.265

2 0.951 0.940 0.950 0.933 0.404 0.404 0.397 0.398
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TABLE 2. Coverage probability and average length of the 95% confidence intervals for θ  of the ZTPS distribution (based on 
ML estimator)

n θ
Coverage probability Average length

PB SB BCa B-t PB SB BCa B-t

10 0.25 0.891 0.876 0.909 0.899 0.211 0.212 0.200 0.187

0.5 0.883 0.884 0.904 0.884 0.511 0.514 0.471 0.421

1 0.871 0.872 0.880 0.833 1.612 1.647 1.469 1.084

1.5 0.897 0.851 0.884 0.815 3.007 3.040 2.774 1.952

2 0.938 0.814 0.942 0.797 4.375 4.363 4.265 3.171

30 0.25 0.928 0.942 0.938 0.930 0.117 0.117 0.115 0.113

0.5 0.924 0.922 0.930 0.929 0.265 0.264 0.257 0.251

1 0.927 0.908 0.931 0.929 0.654 0.653 0.624 0.599

1.5 0.906 0.913 0.921 0.911 1.239 1.235 1.155 1.071

2 0.922 0.895 0.935 0.907 2.025 2.031 1.840 1.626

50 0.25 0.923 0.921 0.920 0.918 0.089 0.089 0.088 0.088

0.5 0.934 0.929 0.941 0.939 0.202 0.203 0.199 0.197

1 0.929 0.916 0.935 0.931 0.484 0.485 0.473 0.462

1.5 0.934 0.928 0.937 0.931 0.897 0.894 0.859 0.829

2 0.938 0.912 0.942 0.932 1.385 1.385 1.312 1.239

100 0.25 0.941 0.934 0.948 0.946 0.064 0.064 0.063 0.063

0.5 0.930 0.936 0.933 0.925 0.141 0.141 0.140 0.139

1 0.942 0.946 0.935 0.940 0.343 0.343 0.337 0.336

1.5 0.954 0.931 0.950 0.947 0.595 0.594 0.584 0.574

2 0.951 0.928 0.950 0.944 0.900 0.902 0.879 0.856

500 0.25 0.949 0.940 0.944 0.950 0.028 0.028 0.028 0.028

0.5 0.944 0.942 0.944 0.946 0.062 0.063 0.062 0.062

1 0.945 0.939 0.947 0.942 0.149 0.148 0.148 0.148

1.5 0.939 0.935 0.937 0.937 0.255 0.256 0.255 0.255

2 0.947 0.951 0.946 0.946 0.390 0.391 0.387 0.386

NUMERICAL EXAMPLES

We used three real-world examples to demonstrate the 
applicability of the bootstrap methods for estimating 
the confidence interval for the parameter of the ZTPS 
distribution.

THE UNREST EVENTS EXAMPLE

The number of unrest events occurring in the southern 

border area of Thailand from July 2020 to October 
2022 collected by the Southern Border Area News 
Summarises (http://summarise.wbns.oas.psu.ac.th) was 
used for this example (the total sample size is 28). The 
number of unrest events per month during this time 
period in the five southern provinces of Pattani, Yala, 
Narathiwat, Songkhla, and Satun is reported in Table 3. 
For the Chi-squared goodness-of-fit test (Turhan 2020), 
the Chi-squared statistic was 4.2384 and the p-value 
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was 0.7522. Thus, a ZTPS distribution with ˆ 0.4252=θ  
is suitable for this dataset. Table 4 reported the 95% 
confidence intervals for the parameter of the ZTPS 
distribution. The estimated parameter θ̂  is approximately 
0.5. The results correspond with the simulation results 
for 30n =  because the average lengths of the BCa 
and B-t methods were shorter than those of the PB and 
SB methods. According to the simulation results, the 
coverage probability should be 0.92-0.93.

DEMOGRAPHIC EXAMPLE

Table 5 shows the demographic data on the number of 

fertile mothers who have experienced at least one child 
death (Shanker et al. 2015). The total sample size is 135. 
For the Chi-squared goodness-of-fit test (Turhan 2020), 
the Chi-squared statistic was 3.5906 and the p-value 
was 0.3092. Thus, a ZTPS distribution with 2.5254ˆ =θ  
is suitable for this dataset. The 95% confidence intervals 
for the parameter of the ZTPS distribution are reported in 
Table 6. The results correspond with the simulation results 
for 100n =  and 2θ =  because the average lengths of 
the BCa and B-t methods were shorter than those of the 
PB and SB methods. According to the simulation results, 
the coverage probability should be 0.94.

TABLE 3. The number of unrest events in the southern border area of Thailand

Number of 
unrest events 1 2 3 4 5 6 7 ≥ 8

Observed 
frequency 3 1 3 2 4 3 4 8

Expected 
frequency 2.3069 2.7231 2.8944 2.8675 2.7018 2.4518 2.1611 9.8934

TABLE 4. The 95% confidence intervals and corresponding widths using all intervals for the parameter in the unrest events 
example

Methods Confidence intervals Widths

PB (0.4625, 0.7381) 0.2756

SB (0.4072, 0.6785) 0.2713

BCa (0.4590, 0.7180) 0.2590

B-t (0.4505, 0.7039) 0.2534

TABLE 5. The number of fertile mothers who have experienced at least one child death

Number of child deaths 1 2 3 ≥ 4

Observed frequency 89 25 11 10

Expected frequency 83.4756 32.3839 12.2451 6.8953
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MIGRATION EXAMPLE
Table 7 reports the number of hourseholds having 
at least one migrant (Singh & Yadava 1971). This 
dataset contains 590 observations. For the Chi-squared 
goodness-of-fit test (Turhan, 2020), the Chi-squared 
statistic was 0.9053 and the p-value was 0.9232. Thus, 
a ZTPS distribution with ˆ 2.7223=θ  is suitable for this 

TABLE 6. The 95% confidence intervals and corresponding widths using all intervals for the parameter in the demographic 
example

Methods Confidence intervals Widths

PB (2.0716, 3.2597) 1.1881

SB (1.8031, 2.9829) 1.1798

BCa (2.0229, 3.1924) 1.1695

B-t (2.0390, 3.1623) 1.1233

TABLE 7. The number of hourseholds having at least one migrant

Number of migrants 1 2 3 4 ≥ 5

Observed frequency 375 143 49 17 6

Expected frequency 378.3141 137.8003 48.7321 16.7743 8.3791

TABLE 8. The 95% bootstrap confidence intervals and corresponding widths using all intervals for the parameter in the 
migrantion example

Methods Confidence intervals Widths

PB (2.4684, 3.0343) 0.5659

SB (2.4135, 2.9737) 0.5602

BCa (2.4567, 3.0098) 0.5531

B-t (2.4697, 3.0193) 0.5496

dataset. Table 8 reports the 95% confidence intervals 
for the parameter of the ZTPS distribution. The results 
correspond with the simulation results for 500n =  and 

2θ  because the average lengths of the BCa and B-t 
methods are shorter than those of the PB and SB methods. 
According to the simulation results, the coverage 
probability should be 0.95.
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CONCLUSION AND DISCUSSION

Herein, we propose four bootstrap methods, namely 
PB, SB, BCa, and B-t, to estimate the confidence interval 
for the parameter of the ZTPS distribution. When the 
sample size was 10 or 30, the coverage probabilities of 
all four were substantially lower than 0.95. When the 
sample size was large enough ( 100),≥n the coverage 
probabilities and average lengths using four bootstrap 
methods were not markedly different. According to our 
findings, the BCa method performed the best even for 
small sample sizes and parameter settings tested in both 
the simulation study and using real data sets.
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