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ABSTRACT

The neutral Volterra integro-differential equation with proportional and mixed delays (NDVIDE) is being solved by
a newly proposed technique in numerical method, namely, the two-point one off-point block multistep method
(10BM3). The method is also known as a hybrid multistep block method. Subsequently, Lagrange interpolating
polynomial is utilized in order to develop the hybrid block method. The foundation of the technique is taken from
predictor and corrector formulae. The proposed method will solve NDVIDE in two steps simultaneously, with three
predictor formulae including one off-point. The NDVIDE problems are solved via the constant step size
technique. In order to solve the integral and differential parts of the problems, two alternative numerical approaches
are applied. The differentiation part is approximated by deriving the divided difference formula, while the integration
part is interpolated using composite Simpson’s rule. Note that the proposed method has been analysed thoroughly
regarding its order, consistency, zero stability and convergence of the method. The stability region for 10BM3
has been constructed based on the stability polynomial obtained. Consequently, numerical results are presented to
demonstrate the effectiveness of the proposed method, 10BM3.

Keywords: Hybrid multistep block method; mixed delay; neutral delay Volterra integro-differential equations;
proportional delay

ABSTRAK

Persamaan kamiran-pembezaan neutral Volterra dengan kelengahan berkadar dan bercampur (NDVIDE)
diselesaikan dengan teknik baharu yang dicadangkan dalam kaedah berangka iaitu, kaedah blok berbilang langkah
dua titik dan satu luar-titik (10BM3). Kaedah ini juga dikenali sebagai kaedah blok berbilang langkah hibrid.
Interpolasi polinomial Lagrange dimanfaatkan bagi membangunkan kaedah blok hibrid. Asas kepada kaedah ini
diambil daripada formula peramal-pembetul. Kaedah yang dicadangkan akan menyelesaikan NDVIDE dalam dua
langkah serentak dengan tiga formula peramal termasuk satu luar-titik. Masalah NDVIDE diselesaikan melalui teknik
saiz langkah malar. Untuk menyelesaikan masalah di bahagian kamiran dan pembezaan, dua pendekatan berangka
alternatif digunakan. Bahagian pembezaan dianggarkan dengan memperoleh formula perbezaan terbahagi manakala
bahagian kamiran di interpolasi dengan menggunakan peraturan Simpson komposit. Kaedah yang dicadangkan telah
dianalisis dengan teliti dari segi peringkat, ketekalan, kestabilan sifar dan penumpuan. Kawasan kestabilan untuk
10BM3 telah dibina berdasarkan polinomial kestabilan yang diperoleh. Keputusan berangka dibentangkan untuk
menunjukkan keberkesanan kaedah 10BM3 yang dicadangkan.

Kata kunci: Kaedah blok berbilang langkah hybrid; kelengahan bercampur; kelengahan berkadar; kelengahan neutral
persamaan kamiran-pembezaan Volterra

INTRODUCTION technical areas, especially science, technology, and

Vito Volterra introduced the Volterra integral and engineerhing. Dele}y diﬁ“erential équations/systerr}s and
integro-differential equations in 1926 (Altun (2021a).  Volterra integro-differential equations (VIDEs), which are
These equations have been implemented widely in  Well-known mathematical models in the related literature,
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have been used in various real-world applications,
including electrical circuits, the process of making glass,
biology, physics, chemistry, control theory, and economics.
The proportional delay (the pantograph equation) is a
time delay system. However, unlike other time delay
systems, it operates proportionally. Time delays typically
appear in sensor and actuator-based feedback loops. They
are constantly presented in a structural testing method
called real-time dynamic substructuring. When an output
of a system is returned to or becomes the input in the
following cycle that creates a circuit or loop, a feedback
loop is created. Note that these transmission systems
are frequently used in communication technologies.
The transmission method for approximated indicators
to a remote-control centre is becoming simpler due to
the quick development of communication technologies,
providing more opportunities for researchers to propose
other solutions to these issues (Ismail, Majid & Senu
2020). Integral with time lags are considered to illustrate
the model realistically, given as follows,

y'(x) = f(x,y(), z(x)), x € [a,b] "

y(x) = ¢ (x),

where

A@=[K@ﬂaﬂwam»w

X

o is a mixed delay since it could involve any kind of
delay, including proportional, constant, time-dependent,
and state-dependent delays. The specified starting
function, y(x) = ¢(x), is the initial value provided
wherever v = 0, which results in Equation (1) to be
reduced to a standard initial value problem (IVP). Note
that the expression of y(a) and y'(a) are the delay
solutions where o is the delay argument. The proportional
delay also plays an important role in industry and is
known as the pantograph equation where the general
form is modelled as follows:

y'(0) = f(xy(x),z(x)), x € [ab]
)
y(x) = ¢(x),

where

qx
d@=f K (£, y(8), y(qx), y'(qx) ).

Here, 0 < g <1 is the restricted ratio for the proportional
delay, gx is the delay term while y(gx) and y'(gx)

represent the delay solutions. The proposed method,
10BM3, will be derived to solve Equations (1) and
(2). Composite quadrature rule (Newton-Cote) is the
integration formula required to solve an integral part
implicitly.

According to the previous literature, an efficient
numerical method to solve NDVIDE with constant
type and retarded delay Volterra integro-differential
equation (RDVIDE) with pantograph equation has
been presented by Mirzaee, Bimesl and Tohidi (2016)
using both operational matrices of differentiation and
delay based on Euler polynomials. Since the issues
are frequently challenging to resolve analytically, a
numerical approach is necessary. The error estimation of
the method is also provided whereas if N is sufficiently
large enough, the errors decrease. Obviously, the present
method can be easily extended and applied to multi-
dimensional integro-differential equations. A while
later, a new backward substitution method for linear
functional arguments based on VIDEs with neutral delay
multipoint boundary value problems was proposed by
Reutskiy (2016). In the suggested method, the initial
equation is substituted for an approximate equation with
a set of free parameters and an exact analytic solution.
In this study, only polynomial functions are applied.
However, the framework of the suggested method also
allows for the utilization of trigonometric and radial
basis functions.

Later, the research from Wen and Yu (2016)
examined the convergence of numerical techniques for
NDVIDEs’ IVPs. For a class of nonlinear systems of
NDVIDE, the Runge-Kutta methods’ error estimation
is derived. The theoretical results are supported by a
few numerical experiments that were provided. Note
that the research could still be extended to the one-leg,
multistep, Runge-Kutta, and any general linear methods.
Consequently, Wen and Zhou (2017) have provided the
error analysis of one-leg methods for a class of nonlinear
NDVIDE proving that an A-stable one-leg method with
an appropriate quadrature rule applied to NDIDEs
is convergent. Numerical results further support the
theoretical findings.

A numerical method is proposed by Yuzbasi and
Karacayir (2017) to solve high-order linear Volterra delay
integro-differential equations. In the studies, a power
series can represent the exact solution. By calculating
the inaccuracy, the method seeks to improve the accuracy
of the approximate solutions. Vijayakumar (2018)
considered a class of abstract neutral integro-differential
inclusions with infinite delay in Hilbert spaces. The
author solved the problems by establishing Bohnenblust—



Karlin’s fixed point theorem. Correspondingly, the
global exponential stability (GES) of the zero solution
of a nonlinear NDVIDE with variable lags has been
investigated by Altun (2021b). A new stability criterion
is derived based on the Lyapunov functional approach.
It has been noted that the simulation results validate the
efficacy and precision of the study’s theoretical findings.
Moreover, Altun (2021b) reconsidered the asymptotic
behaviours of solutions to the NDVIDE problem where he
obtained novel sufficient conditions to establish it using
the Lyapunov method. Subsequently, a particular case
for NDVIDE is solved via the differential transformation
method (DTM).

In the same year, an effective numerical technique
was introduced by Gurbuz (2021) for finding the
solutions to first-order integro-differential equations,
including neutral terms with mixed delays. The delays
include constant, time-dependent (variable delay), and
state-dependent delays. Consequently, an alternative
numerical method is expressed by fundamental
matrices, Laguerre polynomials with matrix forms.
Prospects include the extension of this numerical
analysis and technique to further models that involve
Volterra integro-differential equations, including those
with retarded delay terms. However, some adjustments
are necessary. More recently, the Taylor collocation
method has been applied by Laib, Bellour and
Boulmerka (2022) to numerically solve a k"-order linear
NDVIDE with constant delay and variable coefficients.
The method is convergent with good accuracy and easy
to implement. Further research on this kind of problem
will be conducted by generalizing the work done to a
system of k”-order NDVIDE.

A detailed examination of the literature uncovers
several gaps in solving NDVIDE. Hence, this study aims
to create a two-step one-point (hybrid) multistep block
method to solve NDVIDE of mixed and proportional
delay types. This has not been done by any researcher in
the antecedent literature. Therefore, the formulation of

h
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the suggested method for dealing with the problems is
the main purpose of this research.

DERIVATION OF HYBRID MULTISTEP BLOCK METHOD

In agreement with Lambert (1991), a hybrid method is an
extension of a multistep method which involves off-point
in the general form of linear multistep method (LMM).
The formulation of third order two-point one off-step
multistep block method (10BM3) is based on a Lagrange
polynomial shown below,

P(x) = Ln,O(x)f(xO) +oet Ln,n(x)f(xn)

n
= L@
k=0
where
n
(x —x;)
L) =| | 77—,
e x (e = x;)
ik
k=01,..,n,

where p denotes the order of the method. The linear
difference operator L is associated with k-step hybrid
formula based on:

k
Ly Rl = ) ey + jh) = by’ G+ )]
=0

4)
— hB,y'(x + vh).

The evaluation of both points, y, (x, ) and y,(x,.,) as
well as their corresponding delay and delay derivative
solutions are shown in this subsection to derive I0BM3
where o, = 1, @, and 8, are not equals to zero, while
ve{0,1, ..., k}, as stated in Lambert (1973). In this
research, the off-step method is depicted in Figure 1:

k th

1
2 Xn+1
Xn+2

(k + 1)t

FIGURE 1. Hybrid multistep block method
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Supposed that the first & block compromised
x X, and x where x , represented the starting point
whereas x represent the final point in the current frame,
as shown in Figure 1. The starting values for (k+1)"
block is established by estimations from k" block. Before
evaluating y  andy ., the off-point iteration, Voeds will
be computed. The subsequent block will be calculated
according to the identical process until the interval’s
endpoint. Subsequently, the approach tries synchronously
to resolve the problem. As a two-point block method,
the suggested technique will produce two solutions
in a single block. The approximate solutions for y
and y ., will be developed by applying Lagrange
interpolating polynomial, Equation (3). Hence, the
first-order general linear hybrid multistep method for
the first point corrector of 10BM3 is shown as follows:

f " dx = f U Gy (O, 260,

Y (nss) — y() = j 1 (6 y (), 200)]dx,

Xn

by replacing the [f(x, y(x),z(x))] with P,

Xn+1
V) — () = f P, dx,
Xn

Y(ns1) = y(an) + [ Py dx,

(%)

where P, is the second-degree Lagrange interpolating
polynomial that will be applied to derive the function
S (x, y(x), z(x)) with h = x_ - x . The derived method
of order three requires applying a second-degree
Lagrange interpolating polynomial with three points
needed for all predictors and correctors formulae. The
points needed for the first point corrector formula are
listed as follows:

G Fretd s ] Gnns )

The implementation of Lagrange with second-degree is
shown herewith:

(e =2, ) = %-0) ©)

Plc,Z(x) = fn+1

(xn+1 - xn+%)(xn+1 - xn—l)
(x = Xp41) (X — Xp—1)
(xn+% - xn+1> (xn+% — Xn-1

o = Xps) (X =%, 1)
2

N

)fn+l

fn—lﬁ

(xn—l - xn+1)(xn—1 - xn+%)

where P, (x) represents the second-degree polynomial at
the first point corrector formula. Whilst the second point
corrector of 1OBM3 is shown as follows:

f "y odx = f " Gy (), 26 dx,
where the [ (x,y(x),z(x))] with P,

Xn+2
Y(ns) = y(n) = j P, dx,
*n )

y(xpi2) = y(xn) + f;:ﬁz Py 5. dx,

where the points required for the second point corrector
formula are:

Gonsn Frrd s Fa} Gt £

The second-degree polynomial at second point corrector
formula, P§,(x), is given by:

(r—x 1)(x ~ %)
ch,z(x) = 2

fn+2

(xn+2 - xn+%) (xn+2 - xn)

(X = Xpy2) (x — x)
’ (xn+% - xn:zz) <xn+% _ xn) fn+% (3

1)

*2
nid)

(x = Xp42) (x — X,

fa.

(xn - xn+2)(xn - X

Hence, taking s =HT"” in Equations (6) and (8)

yields:
3
=h + sh)(3h + sh
Pf,(x) = G 15 )( sh) - (h+ sf)(3h3+ sh) ”
dnan T E)
(h+sh)Gh+ sh)
t————— 3 Jn
(-2m)(-3h)
3
>h+ sh)(2h + sh
P, () = G 3s )(2h + sh) n+2+(h+s;z)(zh1+ sh) .
Goan G
(Sh)(%h+sh)
—2 -

(—2m)(-2h)

Then, we replace dx = h ds and solve Equations (5) and
(7) using MAPLE software. The predictor formulae are
obtained following the same procedures as the corrector
formulae. Hence, the developed 10BM3 is obtained as
shown herewith:



h
y:;_l =Yn + _(17fn - 7fn—1 + zfn—z)'
2

yn+1 (23fn 16fn—1 + 5fn-2),

Ynrz = Yo+ 5(1% = 20fn-1+ 7fa2), )

h
yrcz+1 =¥t %(3fn+1 + 32fn+% + fn—l)'

h
Viez =+ 5 (e + 16f,,1 = 3f0).

The derived method, 10BM3 will be applied in solving
NDVIDE with mixed and proportional delays.

ORDER, ERROR CONSTANT AND LOCAL TRUNCATION
ERROR OF HYBRID MULTISTEP BLOCK METHOD

According to Jator (2010), Definition 1 obtains the
suggested order and error constant for IOBM3. Note
that, the order of a numerical method quantifies the
reduction in error of a numerical solution with decreasing
step size.

Definition 1 The proposed off-step block method,
Equation (9), is of order s if,C, = C, = --- = C_ = 0 while
its error constant is C | # 0 where s =2,3,...,

k

=,
¢ = Zja, Zﬁj Zﬁv,

1 k k 1
C=5| D =D+ Y vV, ||
1= j=1 j=1

Based on Li and Li (2021), the definitions or theorems
applied to ordinary differential equations (ODEs) could
also be utilized in integro-differential problems. Hence,
by letting k£ = 3, the corrector formulae can be rewritten
as shown in the matrix form herewith:

[Yn—z n-2
_ Vo1l o = 0 2 oflfor
R [0 EE IR | Y
| o0 50 gl|en
Yn+2 frn2
- (10)

36

+hlE‘fn+%,
9
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where
=) @l @[] @-fl «-[
0 1 0 3 0
0=[0]' Bl_[g]' ﬁz—[_g, ﬁ3=[%] B4=[E],
0 9 0 9
E
po = [E2|.

As stated by Jator (2010), the hybrid method 10BM3 is
of order s when following Definition 1 where,

co=2af=[31

cg|rams( Lne i |-l

1[& 4 1
C4:E[Zf4aj_4 Zj3ﬁj+2vj3ﬁvj ]:
j=1 j=1 j=1

Based on these evaluation, as C = C = C =C,=C, =

0, thus 10BM3 is of order three with an error constant,
1

791 where C , # 0. Note that the local
9

truncation error (LTE) is determined by referring to
Baharum, Majid and Senu (2018).

Definition 2 The local truncation error (LTE) at x
of the method is defined as expression L[y(x)); &],
when y(x) is the theoretical solution of the IVP given
in, Equation (4). For the corrector formula, 5.1, stated
in Equation (9), the Taylor expansion will be applied to
find the LTE, where,

Coy1 =0y =

1 n
Y1 = Yn +hY'y +h25y n+h3§y n +0(h"),

while for the corrector formula, y¢,,, is given by,
Yn+2 = Yn + 2hy’y + 2R 2,y n+ 2h° 3,y”’n +0(h*).

Hence, the LTE for the proposed corrector method is
O(h*).

CONSISTENCY AND ZERO-STABILITY OF THE HYBRID
MULTISTEP BLOCK METHOD
Consistency and zero-stability are essential characteristics
in numerical analysis to ensure a numerical approach
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converges. Consistency is the ability of the numerical
method to get progressively closer to solving the issue
precisely as the step size or mesh size approaches zero.
A numerical method is considered consistent if the
step size approaches zero, and the truncation error also
approaches zero. Referring to Lambert (1973), if both
conditions listed in Equation are met, the multistep
procedure is said to be consistent.

Definition 3 The numerical method is said to be
consistent if the order of method is s > 1 and the method
is consistent if and only if,

DXk ga; =0, (i) Xfojay = Xf=o B (11)

Condition (i) has already been proven previously. Hence,
condition (if) is satisfied when,

k 4
Zjaj ZZjaj = B],
k j=20 jzo 2
Zﬁf +Zﬁ"f = Zﬁf +Zﬁw = B]
j=0 Jj=1 j=0 j=1

Therefore, the method is consistent.

On the other hand, zero-stability refers to the property
that the numerical method does not amplify errors over
time. Specifically, a numerical method is said to be
zero-stable if the errors introduced at each time step
do not grow over time, and instead decay to zero as the
number of time steps goes to infinity. In accordance
with Baharum, Majid and Senu (2018), the proposed
block method is said to be zero-stable when it fulfilled
Definition 4 herewith:

Definition 4 A multistep method is zero-stable if the
modulus of the first characteristic polynomial’s root in
Equation (12) is not greater than one:

(12)
=0.

k
p(€) = det [Z 4y
j=0

Accordingly,

1
p(O) = [ D 4y €T 1=14pg" — 4,°| = £ + 1),
=0

where the roots for the first characteristic polynomial in
Equation are given by:

§E+1=0
£=0,-1.

If taking the modulus for the roots, ¢ the root will be
0 and 1. Based on Lambert (1973), the linear multistep
method is claimed to be converged if both conditions
for consistency and zero-stability are satisfied.
Therefore, the proposed method, 10BM3, converges.

CONVERGENCE OF HYBRID MULTISTEP BLOCK
METHOD

Convergence analysis is essential in numerical analysis
since it enables us to comprehend how numerical
methods behave as the number of iterations or step
sizes approaches infinity. Relying on Ismail, Majid and
Senu (2022), the convergence analysis for 10BM3 is
demonstrated using the following theorem, where the
requirement is given as follows:

Theorem 1 The approximate solutions of Equation (9)
converge to its precise solution.

Proof A linear multistep method with an off-step
point, Equation (9), is convergent if the following two
conditions are fulfilled:

lim =y
h—0 Yn+1 Yn+1

(13)
}Li_r:% Yn+2 = Yn+2 .

From the conditions, if the suggested strategy
eventually approaches the exact phrase, y * where i =
0,1,2,..., then the strategy can be utilized since it has
properly converged. Using the approximate corrector
of 10BM3 shown in Equation (9), the exact solution
is given by:

h 32
it = Y+ 35 (3fus +32f 1 4 fuca ) + 32 hYO ),
h 16 (14
ViGe = I+ (Shez + 161,13 + RO E).

By applying the Lipschitz condition, we obtain,

F ey () + j Ky @y @y @)=

£ y(@) + f K (x, (), y(@),y' @) 1< Lly* - yl.

The exact and approximate solutions are subtracted,
eventually giving Equation (16), after letting



* —_ * — * —_—
Yn+1 ~ Yn+1 = dn+17 Vn+2 ~ Vn+2 = dn+2: Yn—Vn= dTL:

3 32
|dn+1| = |dn| +£hl‘|dn+1| +ghl’

L
32
+3—16hL|dn_1| + = hty (&), (16)

5 16
|dn+2| < |dn| + ;hlen+2| +;hL

LA
— 2hLldy| + TRty D (&),
As h approaches zero, we now have,

|dn+1| < |dn| = Y:l+1 — Yn+1 < Yn—=Yn

= Yn+1—Yn <Yn+1— Yn
ldpt2|l S ldnl = Yni2 = Vni2 S Vn —n

> Ya+2z —Yn < Yn+2 = Yn-

As a result, it has been determined that the suggested
strategy is converged since it is getting close to the
exact solution. The convergence analysis is crucial
for several reasons, including verifying numerical
techniques. By contrasting the results of numerical
approaches with the exact solutions to a problem,
convergence analysis offers a mechanism to validate
these solutions. Note that a numerical approach can be
regarded as accurate and dependable if it converges to
the true solution.

STABILITY ANALYSIS OF HYBRID MULTISTEP BLOCK
METHOD

The stability region is crucial to plot in numerical
analysis because it clarifies how numerical methods
behave when used to solve differential equations or other
mathematical issues. A numerical method is stable for a
set of parameters when it falls within the stability area,
which is a region in the complex plane where the solution
of the method produces does not diverge or fluctuate
uncontrollably. The numerical stability is investigated
in this section where a linear test equation for NDVIDE
is presented below:

Y'@) = &y(qx) +v [¥y du +ny'(qr), 17

where the test equation is obtained from Wu and Gan
(2008). For simplicity, assume assume that gx = mh
(m € 1) and y(¢gx) = Y, (Rihan et al. 2009). For I0BM3
in Equation (9) the multistep formula is rearranged as
follows:

2343

Zf‘:o Ay Yy = hZ?:o By Fy ik (18)

where the values for 4, and B, are given below:

0 -1 0 1 [0 0
A"‘[o —1]' A= 0 oF AZ_[O 1]’
1 32 3
- 0 = = 00
O e A o SRR
0 —; ? 0 9

From Equation (17), we then obtain:
Fy = y'(x) = &y(qx) +v [[7 y wdu + ny'(gx),
Fy =&Y, +v foqu (wdu +nY'p,

The numerical integration is adapted into an integral
part. Hence, by applying Simpson’s quadrature rule, we
have:

1 4 1
JYy @du=h(GYu +30a+3%) (19)

and implementing the test Equations (17) and (19) into
Equation (18) yields,

AOYN + A1YN+1 + AZYN+2

1 4 1 )
= h.BO (fan +vh (E YN*Z + EYN,1 + §YN) + T]Y nr)

1 4 1 ,
+hBO (fym. + vh (g Yyo1+ §YN + §YN+1) +nY nr)

1 4 1 '
+hBO (fym- + vh (g yN + EYN+1 +§YN+2) + Y]Y nr)'

By rearranging and substituting H, = nh and H,= vi’,
the stability polynomial may be determined as follows:

n(Hy, Hy; t) = det(t™2 (A2 - %HZBZ)
+ 67+ (Ay — T HyBy — S HyB,)
+t7 (A — $HyBy — 2H,B, = 1H,B;) (20)
+t71 (=3 H,By — H,B, )
+ 2 (—§HZBO) + t3™(—H,B, — nBy)
+ t*™(~H,B, — nB;)

+t°(=HBy —1By)) = 0,
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The complete calculation for the determinant is
computed using Maple software. Hence, the stability
polynomial is given by:

t5( 41 23H 5 S oun 5 H? - 5 H)
108 5271 " 162 Toz Mz~ 15g it — g7 12
t4(29+25H 9H zHH 4H2 14H)
27 '27°' 108 9172 27 243 2
t3( 1 107H 85 85 125H )
12 t 162 162 172 486 2
tz( 8 37H 16HH 8H2 65H)
27 mih T3 27172 27 108 2
t1(1+ H 1H 1H11 239H)
36 36 ' 54 2712 30472
0 1 1H 37H 10HH 1H2 145H)
108 54 ' 324 % 81 Y% 108 486 2
t*( 1H 1HH 10H) 2( 1H0
162 162 % 2432 97272)
H <o :

As a result, after setting # = 1, the stability region for
the 10BM3 is depicted in Figure 2. The stability region
may recommend selecting appropriate step sizes or other
numerical technique parameters to guarantee stability
and accuracy.

In Figure 2, it can be observed that the regions are
progressively smaller as m increases, and the step size,
h decreased, (% = m)where r= 1. The regions of stability
are obtained by replacing ¢ with -1,0,1 and # = cos 6 + i sin
6 for 0 < 6 < 2z in stability polynomial. The stability
regions are absolutely stable since all roots in the stability
polynomial satisfies |7 < 1.

IMPLEMENTATION OF HYBRID MULTISTEP BLOCK
METHOD
In order to solve the pantograph equation and mixed
type of NVDIDE by applying 10BM3, two approximations,
including one off-point, are calculated in one block using
the constant step size technique. Prior to computing the

H,

ENB WA 05
“".:Vli'qusun“
N e NY
= Mtﬂut‘« ¥
Jalliy
AP

FIGURE 2. Areas of numerical stability for |OBM3 with varying values

of m=

1;2:4



suggested approach, it is also necessary to determine
the position of delays. The delay term and its derivative,
as well as the integral and both functions of delay, are
considered. In this research, third-order backward (BDF)
and forward differentiation formulae (FDF) are derived
and applied in solving y'(«). The formulae are shown
as follow:

y,n — 23’11_3/1;—}11_3/11—2 (BDF)

y,n — _ZYn+Y;L;1+J’n+2 (FDF) (21)
The Composite Simpson quadrature rule will be
implemented for the integration part. Note that a
realistic computation of the integral over the full interval
is obtained using Simpson’s rule for each subinterval,
as presented below:

fabf (x)dx ~ §Z§=1[f(x2j_z) + 4f(x2j—1) +f(x21')]
(22)

= 2[FG0) + 253, £(ray) + 4 Z, faa) +F G|

where x=a +t jh forj =0,1,..., n - 1,n, with h=b%a
in particular, x,;= a and x = b. In solving the delay
problem, if the delay is smaller than the initial point, the
initial function is evaluated. If the delay is larger than the
initial point, an additional derived method is applied to
calculate the pantograph equation,

Vsl =Yn ¥ % (f) (23)

while a Lagrange interpolating polynomial is applied to
solve the mixed delay problem.

The initial solutions must be taken into consideration
prior to implementing 10BM3. Consequently, a single-
step method is employed since the hybrid multistep
block method cannot be implemented alone. Three initial
solutions are approximated for 10BM3 since the predictor
formula is of order three. The one-step technique for
10BM3 merely computes two approximated solutions
since the starting value is already provided. To evaluate
the initial solutions for the proposed method, a Runge-
Kutta of order three (RK3) was considered. The formula
of RK3 is shown below:

Yne1 = Yo + 2 Uy + 4k + k3)

n
ky=f (xn’ Yn t J K (Xn, Vs Ve y’a)>
a (24)

h h n ,
ky=f xn+§.()’n+zk1)+f K(xn'anya:ya)
a

a

n
ks =f (xn +h, (yn + 2hk; — hky) + f K (X, Y Yao y,a)>_

2345

All proportional and mixed delay problem-solving
algorithms have been developed using the constant step
size technique in the C programming language. Here,
the numerical outcomes demonstrated the applicability
and effectiveness of the suggested methods.

ALGORITHM OF HYBRID MULTISTEP BLOCK METHOD

This subsection illustrates of the 10BM3 algorithm
for the pantograph equation and mixed delay problem.
The algorithms are displayed in detail on how to handle
the integral part, the delay term, and its derivative.
The following notations are used in the algorithm: a =
Initial value, b = End value, 4 Step size, N Number of
iterations, y, = Initial solution, y' (a) = Delay derivative
for mixed delay, and y' (gx) = Delay derivative for
proportional delay.

ALGORITHM OF 10BM3 FOR PANTOGRAPH EQUATION
Step 1: All values given in equations, x, = a, x, = b, A,
N, y,, v (gx) < a are set. Step 2: The pantograph equation
for NDVIDE is given in Equation (2). Step 3: The delay
terms are solved by applying a prior solution if gx >
a. Step 4: The delay terms are resolved by utilizing
an additional derived method in Equation (23) if gx
> a. Step 5: Backward or forward divided difference
formulae are tested to find y'(¢gx).Step 6: Composite
Simpson is applied to approximate the integral part.
Step 7: For n =0,1. The initial solution is computed by
applying RK3 denoted in Equation (24). Step 8: Forn =
2,4, 6,... Approximate NDVIDE by using the proposed
method, 10BM3, denoted in Equation (9). Step 9:
Average and maximum error, total steps and function
calls are calculated computationally. Step 10: Stop.

ALGORITHM OF 10BM3 FOR MIXED DELAY

Step 1: All values given in equations x, = a, x, = b, A,
N, y,, ¥(gx) < a are set. Step 2: The mixed delay for
NDVIDE is given in Equation (1). Step 3: The original
function given is used if o < a. Step 4: The delay terms
are resolved using Lagrange interpolating polynomial
if o> a. Step 5: Backward or forward divided difference
formulae are tested to find y'(a). Step 6: Composite
Simpson is applied to approximate the integral part.
Step 7: For n = 0,1. The initial solution is computed
by applying RK3 denoted in Equation (24). Step 8: For
n=2,4,6,... Approximate NDVIDE using the proposed
method, 10BM3, denoted in Equation (9). Step 9: Average
and maximum error, total steps and function calls are
calculated computationally. Step 10: Stop.

NUMERICAL RESULTS

In this section, first-order NDVIDE problems with
mixed and proportional delays are considered. Two
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tested problems of proportional delay and two tested
problems of mixed delays are solved numerically using
the two-point one off-step point hybrid multistep block
method, 10BM3. Other specific classes of Volterra
integro-differential equations, such as those where the
kernel is independent of y'(¢) can also be solved using the
suggested method with efficiency. Note that all tested
examples were solved with different values of constant
step size. The numerical results for Examples 1 - 4 are
shown in Tables 1 - 4. By creating two approximations in
a single step, one of which comprises the off-point, all the
tested problems were numerically resolved using the
C programming language. Consequently, the accuracy,
total function evaluations, and the number of steps are
compared between the proposed method, lIOBM3 and
2MVIDE3 from Mohamed and Majid (2016), Adam
Moulton and RK3. The notations used in the tables are
as follows: & = Step size, MTD = Method, FC = Total
function calls, TSTEP = Total Step, MERR = Maximum
Error, AERR = Average Error, |OBM3 = Two-point one
off-step point hybrid multistep block method (Order 3),
2MVIDE3 = Two-point Fully Implicit Block Method
(Order 3), ABM3 = Adam-Bashforth-Moulton Method
(Order 3), RK3 = Runge Kutta Method (Order 3), 5¢—10
=5x10"°,
Example 1

y'(x) = —sin (E) cos (2) + f;[—sin(t)y(t)

+ cos(t)y'(t)]dt + cos(x)

y(©0)=0

Exact solution:

y(x) =sin(x), x€[0,1]
Example 2
: w(3)
y'(x) = y'(—) + xcos(x) — sin(x) - —==+ f [ty(t)]dt
2 2 )
+ cos(x)
y(©0)=0
Exact solution:
y(x) =sin(x), x€[01]
Example 3
X
, ! x2 x (2
Y@ =y D=5 -3+ [y
0
y(0) =1,
Exact solution:
y(x)=x+1, x €[0,1]
Example 4

b X
Y@ =y @) +ylx—1) —e2x? +e2x —e* 1 +

+ Jox[x e ty(t)]dt

X

+[ 16 - 20~ 2 yenae
0
y(0) =1,

Exact solution:
y(x)=e*, x€[01]

TABLE 1. Numerical result for Example 1

h MTD FC TSTEP MERR AERR
0.1 10BM3 6 6 1.4130e-02 5.6300e-03
2MVIDE3 10 6 3.7027e-02 1.4083e-02
ABM3 10 10 9.7075e-03 4.5462e-03
RK3 30 10 1.6173e-02 8.8926e-03
0.01 10BM3 51 51 1.5187¢-03 4.8531e-04
2MVIDE3 100 51 2.3798e-03 8.1800e-04
ABM3 100 100 6.9888e-04 3.0623e-04
RK3 300 100 1.6198e-03 7.5410e-04
0.001 10BM3 501 501 1.7547e-04 6.2421e-05
2MVIDE3 1000 501 2.2381e-04 7.8616e-05
ABM3 1000 1000 7.8904e-05 3.9663e-05
RK3 3000 1000 1.6172e-04 7.3772e-05
0.0001 10BM3 5001 5001 1.7780e-05 6.3987e-06
2MVIDE3 10000 5001 2.2238e-05 7.8416e-06
ABM3 10000 10000 7.9804¢e-06 4.0690e-06

RK3 30000

10000 1.6170e-05 7.3606e-06




TABLE 2. Numerical result for Example 2

h MTD FC TSTEP MERR AERR

0.1 10BM3 6 6 2.0388e-02 1.6841e-02
2MVIDE3 10 6 3.2477e-02 1.1130e-02

ABM3 10 10 2.1625e-02 1.8382e-02

RK3 30 10 2.0388e-02 1.6841e-02

0.01 10BM3 51 51 2.7278e-03 1.0101e-03
2MVIDE3 100 51 3.3276e-03 1.1848e-03

ABM3 100 100 2.0747¢-03 1.5197e-03

RK3 300 100 2.1180e-03 1.5850e-03

0.001 10BM3 501 501 2.7729e-04 1.0220e-04
2MVIDE3 1000 501 3.3328e-04 1.1952e-04

ABM3 1000 1000 2.0823e-04 1.4907e-04

RK3 3000 1000 2.1284e-04 1.5742¢-04

0.0001 10BM3 5001 5001 2.7773e-05 1.0232¢-05
2MVIDE3 10000 5001 3.3333e-05 1.1963e-05

ABM3 10000 10000 2.0832e-05 1.4879¢-05

RK3 30000 10000 2.1295e-05 1.5731e-05

TABLE 3. Numerical result for Example 3
h MTD FC TSTEP MERR AERR

0.1 10BM3 6 6 4.9074e-02 1.3583e-02
2MVIDE3 10 6 3.1375¢-02 1.1338e-02

ABM3 10 10 8.9038e-02 6.4965¢-02

RK3 30 10 4.4840e-01 1.5802e-01

0.01 10BM3 51 51 7.3068e-03 1.8207e-03
2MVIDE3 100 51 4.1762e-03 1.4433e-03

ABM3 100 100 8.4203e-03 6.5668e-03

RK3 300 100 5.9443¢-01 2.0952e-02

0.001 10BM3 501 501 7.4806e-04 1.8693e-04
2MVIDE3 1000 501 4.4174e-04 1.4766e-04
ABM3 1000 1000 8.3423¢-04 6.5630e-04

RK3 3000 1000 6.0944¢-01 2.1470e-03

0.0001 10BM3 5001 5001 7.4978e-05 1.8743e-05
2MVIDE3 10000 5001 4.4417e-05 1.4800e-05
ABM3 10000 10000 8.3342¢-05 6.5625¢-05
RK3 30000 10000 6.1094e-01 2.1522e-04
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TABLE 4. Numerical result for Example 4

h MTD FC TSTEP MERR AERR
0.1 10BM3 6 6 1.0645¢-01 3.6297e-02
2MVIDE3 10 6 1.4810e-01 8.3027e-02
ABM3 10 10 3.1559¢-01 1.9323¢-01
RK3 30 10 7.8390e-01 4.7050e-01
0.01 10BM3 51 51 1.5209¢-02 5.7137¢-03
2MVIDE3 100 51 1.7762e-02 1.1128e-02
ABM3 100 100 3.5733e-02 2.2538e-02
RK3 300 100 3.9392¢-01 5.6257¢-02
0.001 10BM3 501 501 1.5770e-03 5.9636e-04
2MVIDE3 1000 501 1.8086¢-03 1.1422¢-03
ABM3 1000 1000 3.6192e-03 2.2873e-03
RK3 3000 1000 3.6752e-01 5.7224e-03
0.0001 10BM3 5001 5001 1.5826e-04 5.9890e-05
2MVIDE3 10000 5001 1.8118e-04 1.1452¢-04
ABM3 10000 10000 3.6239¢-04 2.2907e-04
RK3 30000 10000 3.6498e-01 5.7321e-04
1072 E
o 10BM3
4 ~-2MVIDE3
= , +-ABM3
10" 1 =RK3
10-6 il ] il -
10° 10" 102 103 10% 10°
FC

FIGURE 3. MERR vs. FC for Table 1
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FIGURE 4. MERR vs. FC for Table 2
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FIGURE 5. MERR vs. FC for Table 3
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FIGURE 6. MERR vs. FC for Table 4

DISCUSSION

From the numerical result obtained in Table 1, the AERR
and MERR for 10BM3 at h =0.1,0.01,0.001 and 0.0001
is comparable with 2MVIDE3 and RK3. The results for
ABM3 is slightly better but the FC and TSTEP needed is
higher than 10PBM3. Hence, they are also comparable.
Additionally, the FC for IOBM3 is lesser than 2MVIDE3
and RK3 since the proposed method computed all
solutions in a single step. Even though both 10BM3 and
2MVIDE3 are block methods, the FC for 10BM3 are
lesser than 2MVIDE3. Meanwhile, the proposed 10BM3
is superior to RK3 in terms of TSTEP. Since highlighting
the benefits of an implicit hybrid block method is also
the primary priority of the discussion, all the factors that
affect how block and non-block methods are compared
must be considered.

In Table 2, the AERR and MERR for 10BM3 were
found to be compatible with 2MVIDE3, ABM3 and RK3
at all step sizes. 1IOBM3 outperformed 2MVIDE3, ABM3
and RK3 in terms of FC. Since 10BM3 is evaluated in a
block, fewer steps are necessary overall than for the other
methods (ABM3 and RK3). In Table 3, the approximate
solutions for l|OBM3 are comparable with 2MVIDE3 and
ABM3 as the step size is smaller. The FC for 10BM3 is
lesser than 2MVIDE3 taken from Mohamed and Majid
(2016), even though 2MVIDE3 is also a block method.

Finally, in Table 4, the proposed method is
comparable to 2MVIDE3 and ABM3, except for the

AERR at h=0.01, 0.001, 0.0001 where the maximum
error for IOBM3 is more accurate than RK3. Although
the proposed solution appears equivalent, it calls fewer
functions and requires fewer steps than the other methods.
In conclusion, compared to 2MVIDE3, ABM3 and RK3,
the proposed 10BM3 provides accurate results on several
parameters such as the accuracy, the total number
of steps required and the evaluated function call.
Additionally, an implicit hybrid method outperformed
the other ones in accuracy by computing the numerical
solutions via simultaneously estimating several points,
including the off-point in the predictors. Therefore, the
proposed methods are suitable for solving NDVIDE with
mixed delays and pantograph equations.

CONCLUSION

NDVIDE was numerically treated with mixed delays
and pantograph equation in this study. Consequently,
NDVIDE problems were resolved using 10BM3, which
produced two approximations in a single step using the
identical prior data, including the off-point. Compared
to ABM3, RK3, and 2MVIDE3, the number of overall
steps and the function evaluated when solving NDVIDE
problems can be decreased using the suggested approach.
The numerical data showed that the maximum and
average errors decreased with decreasing step size. An
assortment of examples is given to highlight the value
of the recommended strategy, and it is noted that they



all perfectly match the exact solutions. Additionally, the
numerical results show that 10BM3 effectively handles
NDVIDE problems involving mixed delays and the
pantograph equation.
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